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Abstract: The aim of this article is to introduce the notion of a (φ, ψ)-metric space, which extends the
metric space concept. In these spaces, the symmetry property is preserved. We present a natural
topology τ(φ,ψ) in such spaces and discuss their topological properties. We also establish the Banach
contraction principle in the context of (φ, ψ)-metric spaces and we illustrate the significance of our
main theorem by examples. Ultimately, as applications, the existence of a unique solution of Fredholm
type integral equations in one and two dimensions is ensured and an example in support is given.

Keywords: (φ, ψ)-metric space; topological property; fixed point; Fredholm integral equation

MSC: 46T99; 47H10; 54H25

1. Introduction

Fixed-point technique offers a focal concept with many diverse applications in nonlinear
analysis. It is an important theoretical tool in many fields and various disciplines such as topology,
game theory, optimal control, artificial intelligence, logic programming, dynamical systems (and chaos),
functional analysis, differential equations, and economics.

Recently, many important extensions (or generalizations) of the metric space notion have been
investigated (as examples, see References [1–5]). In 1989, the class of of b-metric spaces has been
introduced by Bakhtin [6], that is, the classical triangle inequality is relaxed in the right-hand term by a
parameter s ≥ 1. This class was formally defined by Czerwik [7] (see also References [8,9])) in 1993 with
a view of generalizing the Banach contraction principle (BCP). The above class has been generalized by
Mlaiki et al. [10] and Abdeljawad et al. [11], by introduction of control functions (see also Reference [12]).
Fagin et al. [13] presented the notion of an s-relaxed metric. A 2-metric introduced by Gahler [14] is a
function defined on =×=×= (where = is a nonempty set), and verifies some particular conditions.
Gahler showed that a 2-metric generalizes the classical concept of a metric. While, different authors
established that no relations exist between these two notions (see Reference [15]). Mustafa and Sims [16]
initiated the class of G-metric spaces. Branciari [17] gave a new generalization of the metric concept by
replacing the triangle inequality with a more general one involving four points. Partial metric spaces
have been introduced by Matthews [18] (for related works, see References [19–21]) as a part of the
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discussion of denotational semantics in dataflow networks. Jleli and Samet [22] introduced the notion
of a JS-metric, where the triangle inequality is replaced by a lim sup-condition. Very recently, Jleli and
Samet [23] also introduced the concept of F -metric spaces. For this, denote by Ξ the set of functions
F : (0, ∞)→ (−∞, ∞) satisfying the following conditions:

(F1) F is non-decreasing;
(F2) for each sequence {tn} ⊂ (0, ∞);

lim
n→+∞

F(tn) = −∞ i f and only i f lim
n→+∞

tn = 0.

Definition 1 ([23]). Let = be a nonempty set and D : =×= → [0, ∞) be a function. Assume that there exist
a function F ∈ Ξ and α ∈ [0, ∞) such that for σ, ς ∈ =,

(D1) D(σ, ς) = 0 if and only if σ = ς;
(D2) D(σ, ς) = D(ς, σ);
(D3) for each n ∈ N with n≥ 2, and for each {ui}n

i=1 ⊂ = with (u1, un) = (σ, ς) , we have,

D(σ, ς) > 0⇒ F (D(σ, ς)) ≤ F

(
n−1

∑
i=1

D(ui, ui+1)

)
+ α.

Then D is said to be a F-metric on =. The pair (=, D) is said to be a F-metric space.

In this paper, we present a new generalization of the concept of metric spaces, namely, a (φ, ψ)−metric
space. We compare our concept with the existing generalizations in the literature. Next, we give a natural
topology τφ,ψ on these spaces, and study their topological properties. Moreover, we establish the BCP in
the setting of (φ, ψ)-metric spaces. As applications, we ensure the existence of a unique solution of two
Fredholm type integral equations.

2. On (φ, ψ)−Metric Spaces

Definition 2. Let D be the set of functions φ : (0, ∞)→ (0, ∞) such that:

(φ1) φ is non-decreasing;
(φ2) for each positive sequence {tn},

lim
n→∞

φ(tn) = 0 if and only if lim
n→∞

tn = 0.

Let ψ : (0, ∞)→ (0, ∞) be such that:

(i) ψ is monotone increasing, that is, σ < ς⇒ ψ (σ) ≤ ψ (ς);
(ii) ψ(t) ≤ t for every t > 0.

We denote by Ψ the set of functions satisfying (i)–(ii).

Now, we introduce the notion of (φ, ψ)-metric spaces.

Definition 3. Let = be a nonempty set and d : =×= → [0, ∞) be a function. Assume that there exist two
functions ψ ∈ Ψ and φ ∈ D such that for all σ, ς ∈ =, the following hold:

(d1) d(σ, ς) = 0 if and only if σ = ς;
(d2) d(σ, ς) = d(ς, σ);
(d3) for each n ∈ N, n ≥ 2, and for each {ωi}n

i=1 ⊂ = with (ω1, ωn) = (σ, ς) , we have

d(σ, ς) > 0⇒ φ (d(σ, ς)) ≤ ψ

(
φ

(
n−1

∑
i=1

d(ωi, ωi+1)

))
.
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Then d is named as a (φ, ψ)-metric on =. The pair (=, d) is called a (φ, ψ)-metric space. It is known that
property (d2) states that this metric should measure the distances symmetrically.

Remark 1. Any metric on = is a (φ, ψ)-metric on =. Indeed, if d is a metric on =, then it satisfies (d2) and
(d2). On the other hand, by the triangle inequality, for every (σ, ς) ∈ =×=, for each integer n ≥ 2, and for
each {ωi}n

i=1 ⊂ = with (ω1, ωn) = (σ, ς),

d(σ, ς) ≤
n−1

∑
i=1

d(ωi, ωi+1).

It yields that
d(σ, ς) > 0⇒ ed(σ,ς) ≤ e[∑

n−1
i=1 d(ωi ,ωi+1)].

That is,

d(σ, ς)ed(σ,ς) ≤
n−1

∑
i=1

d(ωi, ωi+1)
(

e[∑
n−1
i=1 d(ωi ,ωi+1)]

)
.

Thus,

φ (d(σ, ς)) ≤ ψ

(
φ

(
n−1

∑
i=1

d(ωi, ωi+1)

))
.

Then (d3) holds with φ (t) = tet and ψ (t) = t.

Example 1. Let = = N and let d : =×= → [0, ∞) be defined by

d (σ, ς) =

{
|σ− ς| , if (σ, ς) /∈ [0, 2]× [0, 2] ,
(σ−ς)2

9 if (σ, ς) ∈ [0, 2]× [0, 2] ,

for all σ, ς ∈ =. It is easy to see that d satisfies (d1) and (d2). But, d does not verify the triangle inequality.
Indeed,

d (0, 2) =
4
9
>

2
9
=

1
9
+

1
9
= d (0, 1) + d (1, 2) .

Hence, d is not a metric on =. Further, let σ, ς ∈ = such that d (σ, ς) > 0. Let {ωi}n
i=1 ⊂ = where n ≥ 2

and (ω1, ωn) = (σ, ς) . Consider,

I = {1, 2, 3, ..., n− 1 : (ωi, ωi+1) ∈ [0, 2]× [0, 2]} ,

and
J = {1, 2, 3, ..., n− 1} \I.

Hence, we have

n−1

∑
i=1

d(ωi, ωi+1) = ∑
i∈I

d(ωi, ωi+1) + ∑
j∈J

d(ωj, ωj+1)

= ∑
i∈I

(ωi+1 −ωi)
2

9
+ ∑

j∈J

∣∣ωj+1 −ωj
∣∣ .



Symmetry 2020, 12, 1459 4 of 18

Now, we have two cases:

Case 1: If (σ, ς) /∈ [0, 2]× [0, 2] , we have

d (σ, ς) = |σ− ς| ≤
n−1

∑
i=1
|ωi+1 −ωi|) ≤

n−1

∑
i=1

4
3
|ωi+1 −ωi|)

= ∑
i∈I

4 |ωi+1 −ωi|
3

+ ∑
j∈J

4
3

∣∣ωj+1 −ωj
∣∣

≤ ∑
i∈I

4 |ωi+1 −ωi|
3

+ ∑
j∈J

4
∣∣ωj+1 −ωj

∣∣ .

Observe that
|ωi+1 −ωi|

3
≤ (ωi+1 −ωi)

2

9
.

Thus, we get that

d (σ, ς) ≤ 4

[
∑
i∈I

(ωi+1 −ωi)
2

9
+ ∑

j∈J

∣∣ωj+1 −ωj
∣∣]

= 4
n−1

∑
i=1

d(ωi, ωi+1).

Case 2: If (σ, ς) ∈ [0, 2]× [0, 2] , we have

d (σ, ς) =
|σ− ς|2

9
≤ |σ− ς|

3

= ∑
i∈I

|ωi+1 −ωi|
3

+ ∑
j∈J

∣∣ωj+1 −ωj
∣∣

3

≤ ∑
i∈I

|ωi+1 −ωi|
3

+ ∑
j∈J

3
∣∣ωj+1 −ωj

∣∣
≤ ∑

i∈I

|ωi+1 −ωi|2

3
+ ∑

j∈J
3
∣∣ωj+1 −ωj

∣∣
=

1
3

[
∑
i∈I

|ωi+1 −ωi|2

9
+ ∑

j∈J

∣∣ωj+1 −ωj
∣∣]

=
1
3

n−1

∑
i=1

d(ωi, ωi+1).

By combining the above, we conclude that for all σ, ς ∈ =, for each integer n ≥ 2, and for each
{ωi}n

i=1 ⊂ = with (ω1, ωn) = (σ, ς), we have

d (σ, ς) > 0⇒ d (σ, ς) ≤ 1
3

n−1

∑
i=1

d(ωi, ωi+1).

Therefore,

d (σ, ς) ed(σ,ς) ≤ 1
3

n−1

∑
i=1

d(ωi, ωi+1)e[
1
3 ∑n−1

i=1 d(ωi ,ωi+1)]

≤ 1
3

n−1

∑
i=1

d(ωi, ωi+1)e[∑
n−1
i=1 d(ωi ,ωi+1)].
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It further implies that

d (σ, ς) ed(σ,ς) ≤ 1
3

n−1

∑
i=1

d(ωi, ωi+1)e[∑
n−1
i=1 d(ωi ,ωi+1)].

Therefore, d is a (φ, ψ)-metric.

Remark 2. It should be noted that the class of (φ, ψ)-metric spaces is effectively larger than the set of F-metric
spaces. Indeed, a (φ, ψ)-metric is a F−metric by considering φ (t) = e f (t) and ψ (t) = e−αt. We present an
easy example to show that a (φ, ψ)-metric need not be a F -metric.

Example 2. Let = = [0, 1]. Define d : =×= → [0, ∞) as

d (σ, ς) =

(
σ− ς

6

)2
.

Clearly, d is a (φ, ψ) -metric on = with φ(t) = t and ψ(t) = t
36 . Assume that there are F ∈ Ξ and

α ∈ [0, ∞). Let n ∈ N and ωi =
i
n for i = 0, 2, ..., n. Using (D3), we obtain

f (d(0, 1)) ≤ f (d(0, ω1) + d(ω1, ω2) + ... + d(ωn−1, 1)) + α, n ∈ N.

Thus,

f (
1

36
) ≤ f (

1
36n

) + α, n ∈ N.

Using (F2), we get

lim
n→∞

f (
1

36n
) + α = −∞,

which is a contradiction. Therefore, d is not a F-metric space on =.

3. Topology of (φ, ψ)-Metric Spaces

Here, we study the natural topology defined on (φ, ψ) -metric spaces.

Definition 4. Let (=, d) be a (φ, ψ)-metric space and M be a subset of =. M is said to be (φ, ψ)-open if for
each σ ∈ M, there is r > 0 so that B(σ, r) ⊂ M, where

B(σ, r) = {ς ∈ = : d(σ, ς) < r} .

A subset Z of = is called (φ, ψ)-closed if =\Z is (φ, ψ)-open. We denote by τ(φ,ψ) the set of all (φ, ψ)-open
subsets of =.

Proposition 1. Let (=, d) be a (φ, ψ) -metric space. Then τ(φ,ψ) is a topology on =.

Proposition 2. Let (=, d) be a (φ, ψ)-metric space. Then, for each nonempty subset C of=, we have equivalence
of the following assertions:

(i) C is (φ, ψ) -closed.
(ii) For any sequence {σn} ⊂ =, we have

lim
n−→∞

d (σn, σ) = 0, σ ∈ = ⇒ σ ∈ C.

Proof. Suppose that C is (φ, ψ)-closed. Let {σn} be a sequence in C such that

lim
n−→∞

d (σn, σ) = 0, (1)
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where σ ∈ =. Assume that σ ∈ =\C. Since C is (φ, ψ)-closed, =\C is (φ, ψ)-open. Hence, there is r > 0
so that B(σ, r) ⊂ =\C, that is, B(σ, r) ∩ C = ∅. Also, by (1), there is N ∈ N so that

d (σn, σ) < r, n ≥ N.

That is, σn ∈ B(σ, r), n ≥ N. Hence, σN ∈ B(σ, r) ∩ C. It is a contradiction, and so σ ∈ C. That is,
(i)⇒ (ii) is proved. Conversely, assume that (ii) is verified. Let σ ∈ =\C. We now show that there
is some r > 0 so that B(σ, r) ⊂ =\C. We argue by contradiction. assume that for each r > 0, there is
σr ∈ B(σ, r) ∩ C. Thus, for each n ∈ N, there is σn ∈ B(σ, 1

n ) ∩ C. Then {σn} ⊂ C and

lim
n−→∞

d (σn, σ) = 0.

By (ii), we get σ ∈ C, which is a contradiction with σ ∈ =\C. Thus, C is (φ, ψ)-closed and so
(ii)⇒ (i).

Proposition 3. Let (=, d) be a (φ, ψ)-metric space, α ∈ = and r > 0. Let B(α, r) be the subset of = given as

B(α, r) = {σ ∈ = : d(α, σ) ≤ r} .

Assume that for each sequence {σn} ⊂ =, we have

lim
n−→∞

d (σn, σ) = 0, σ ∈ = ⇒ d (σ, ς) ≤ lim sup
n→∞

d (σ, ς) , ς ∈ =. (2)

Then B(α, r) is (φ, ψ)-closed.

Proof. Let {σn} ⊂ B(α, r) be a sequence so that

lim
n−→∞

d (σn, σ) = 0, σ ∈ =.

From Proposition 2, we show that σ ∈ B(α, r). By using the definition of B(α, r), we obtain
d (σn, σ) ≤ r, n ∈ N. Taking lim supn→∞, by (2), we get

d (σ, ς) ≤ lim sup
n→∞

d (σn, ς) ≤ r,

which yields that σ ∈ B(α, r). Consequently, B(α, r) is (φ, ψ)-closed.

Remark 3. Proposition 3 gives only a sufficient condition ensuring that B(α, r) is (φ, ψ)-closed. An interesting
problem is devoted to get a sufficient and necessary condition under which B(α, r) is (φ, ψ)-closed.

Definition 5. Let (=, d) be a (φ, ψ)-metric space. Let C be a nonempty subset of =. Let C be the closure of C
with respect to the topology τ(φ,ψ), that is, C is the intersection of all (φ, ψ)-closed subsets of = containing C.
Obviously, C is the smallest (φ, ψ)-closed subset containing C.

Proposition 4. Let (=, d) be a (φ, ψ)-metric space. Let C be a nonempty subset of =. If σ ∈ C,
then B(σ, r) ∩ C 6= ∅ for r > 0.

Proof. Let ψ ∈ Ψ and φ ∈ D be such that (d3) holds. Define

C′= {σ ∈ = : for every r > 0, there is c ∈ C : d (σ, ς) < r} .
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By (d1), it is easy to see that C ⊂ C′. Next, we will show that C′ is (φ, ψ)-closed. Let {σn} be a
sequence in C′ such that

lim
n−→∞

d (σn, σ) = 0, σ ∈ =. (3)

By (3), there are some δ > 0 and N ∈ N so that

d (σn, σ) <
δ

2
, for n ≥ N.

Since σN ∈ C, there is α ∈ C so that

d (σN , α) <
δ

2
, for n ≥ N.

If d (σ, α) > 0, by (d3), we have

φ (d (σ, α)) ≤ ψ [φ (d (σN , σ) + d (σN , α))] ≤ ψ [φ (δ)]

< φ (δ) .

Hence,
φ (d (σ, α)) < φ (δ) .

Using (φ1), we get
d (σ, α) < δ.

Hence, in all cases, we obtain d (σ, α) < δ, which yields that σ ∈ C′. Then by Proposition 2, C′ is
(φ, ψ)-closed, which contains C. Then C ⊂ C′.

Definition 6. Let (=, d) be a (φ, ψ)-metric space. Let {σn} be a sequence in =. We say that {σn} is
(φ, ψ)-convergent to σ ∈ = if {σn} is convergent to σ with respect to the topology τ(φ,ψ), that is, for each
(φ, ψ)-open subset Òσ of = containing σ, there is N ∈ N so that σn ∈ Òσ for any n ≥ N. Here, σ is called the
limit of {σn}.

The next result comes directly by combining the above definition and the definition of τ(φ,ψ).

Proposition 5. Let (=, d) be a (φ, ψ)-metric space. Let {σn} be a sequence in = and σ ∈ =. We have
equivalence of the following assertions:

(i) {σn} is (φ, ψ)-convergent to σ.
(ii) lim

n−→∞
d (σn, σ) = 0.

In the following, the limit of a (φ, ψ)-convergent sequence is unique.

Proposition 6. Let (=, d) be a (φ, ψ)-metric space. Let {σn} be a sequence in =. Then

lim
n−→∞

d (σn, σ) = lim
n−→∞

d (σn, ς) = 0⇒ σ = ς.

Proof. Let σ, ς ∈ = be so that

lim
n−→∞

d (σn, σ) = lim
n−→∞

d (σn, ς) = 0.

Assume that σ 6= ς. By (d1), d (σ, ς) > 0. Using (d3), there are ψ ∈ Ψ and φ ∈ D such that

φ (d (σ, ς)) ≤ ψ [φ (d (σn, σ) + d (σn, ς))]

< φ (d (σn, σ) + d (σn, ς)) ,
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for every n. Next, in view of (d2) and (φ2),

lim
n−→∞

φ (d (σn, σ) + d (σn, ς)) = 0,

and so φ (d (σ, ς)) = 0, which is a contradiction, and so σ = ς.

Definition 7. Let (=, d) be a (φ, ψ)-metric space. Let {σn} be a sequence in =. Then,

(i) {σn} is (φ, ψ)-Cauchy if lim
n,m−→∞

d (σn, σm) = 0.

(ii) (=, d) is (φ, ψ)-complete, if any (φ, ψ)-Cauchy sequence in = is (φ, ψ)-convergent to some element in =.

Proposition 7. Let (=, d) be a (φ, ψ)-metric space. If {σn} ⊂ = is (φ, ψ)-convergent, then it is (φ, ψ)-Cauchy.

Proof. Let ψ ∈ Ψ and φ ∈ D be such that (d3) holds. Let σ ∈ = be so that

lim
n−→∞

d (σn, σ) = 0.

For any δ > 0, there is N ∈ N such that

d (σn, σ) + d (σm, σ) < δ, n, m ≥ N. (4)

Let m, n ≥ N. We consider the two following cases.

Case 1: If σn = σm. Here, by (d1),

d (σn, σm) = 0 < δ.

Case 2: If σn 6= σm. Here, from (4),

0 < d (σn, σ) + d (σm, σ) < δ.

One writes
φ (d (σn, σ) + d (σm, σ)) < φ (δ) .

It implies that
ψ (d (σn, σ) + d (σm, σ)) < ψ (φ (δ)) .

Now, using (d3), we obtain

φ (d (σn, σm)) ≤ ψ (φd (σn, σ) + d (σm, σ)) < ψ (φ (δ))

< φ (δ) ,

which implies from (φ1) that
d (σn, σm) < δ.

Hence,
d (σn, σm) < δ, n, m ≥ N.

Consequently,
lim

n,m−→∞
d (σn, σm) = 0,

that is, {σn} is (φ, ψ)-Cauchy.

Now, we study the compactness on (φ, ψ)-metric spaces.

Definition 8. Let (=, d) be a (φ, ψ)-metric space. Let C be a nonempty subset of =. then C is called
(φ, ψ)-compact if C is compact with respect to the topology τ(φ,ψ) on =.
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Proposition 8. Let (=, d) be a (φ, ψ)-metric space. Let C be a nonempty subset of =. Then, we have equivalent
of the following assertions:

(i) C is (φ, ψ)-compact.
(ii) For each sequence {σn} ⊂ C, there is a subsequence {σn(k)} of {σn} so that

lim
k−→∞

d
(

σn(k), σ
)
= 0.

Proof. Assume that C is (φ, ψ)-compact. Note that the set of decreasing sequences of nonempty
(φ, ψ)-closed subsets of C has a nonempty intersection. Let {σn} be a sequence in C. For any n ∈ N,
let Zn = {σm : m ≥ n}. Clearly, Zn+1 ⊂ Zn for each n ∈ N. This implies that {Zn}n∈N is a decreasing
sequence of nonempty (φ, ψ)-closed subsets of Z. Thus, there is σ ∈ ∩n∈NZn. Given an arbitrary
element ε > 0. Since σ ∈ Z0, by Proposition 4, there are n0 ≥ 0 and σn0 ∈ C so that d (σn0 , σ) < ε.
Continuing in this direction, for any k ∈ N, there are n(k) ≥ k and σn(k) ∈ C so that

d
(

σn(k), σ
)
< ε.

Consequently,
lim

k−→∞
d
(

σn(k), σ
)
= 0.

Since C is (φ, ψ)-compact, one says that C is (φ, ψ)-closed, and σ ∈ C.Hence, we established that
(i)⇒ (ii). Conversely, suppose that (ii) is satisfied. Let ψ ∈ Ψ and φ ∈ D such that (d3) is satisfied.

First, we claim that

∀r > 0, ∃(σ0), i = 1, ..., n ⊂ C : C ⊂ ∪
i=1,...,n

B(σi, r). (5)

We argue by contradiction. Suppose there is r > 0 so that for any finite number of elements
(σ0), i = 1, ..., n ⊂ C,

C  ∪
i=1,...,n

B(σi, r).

Let σ1 ∈ C be a fixed element. Then

C  B(σ1, r).

That is, there is σ2 ∈ C so that d (σ1, σ2) ≥ r. Also,

C  B(σ1, r) ∪ B(σ2, r).

So there is σ3 ∈ C so that d (σi, σ3) ≥ r for i = 1, ..., n. Continuing in this direction and by
induction, we build a sequence {σn} ⊂ C so that d (σn, σm) ≥ r, n, m ∈ N. Note that we could bot
extract from {σn} any (φ, ψ)-Cauchy subsequence, and so (from Proposition 7), any (φ, ψ)-convergent
subsequence. We get so a contradiction with (ii), which proves (5). Next, let {Òi}i∈I be an arbitrary
family of (φ, ψ)-open subsets of = so that

C ⊂ ∪i∈IÒi. (6)

We claim that
∀r0 > 0 : ∀σ ∈ C, ∃i ∈ I : B(σ, r0) ⊂ Òi. (7)
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We argue by contradiction. Assume that for every r > 0, there is σr ∈ C so that B(σr, r)  Òi,
for all i ∈ I. Particularly, for all n ∈ N, there is σn ∈ C so that B(σn, 1

n )  Òi for all i ∈ I. By (ii),

we build a subsequence
{

σn(k)

}
from {σn} so that

lim
k−→∞

d
(

σn(k), σ
)
= 0, (8)

for some σ ∈ C. Moreover, using (6), there is j ∈ I so that σ ∈ =. In view of the fact that Òj is a
(φ, ψ)-open subset of =, there is r0 > 0 so that B(σ, r0) ⊂ Òj. Now, for each n(k) ∈ N and for every
q ∈ B(σn(k),

1
n(k) ), one writes

d (σ, q) > 0⇒ φ (d (σ, q)) ≤ ψ
(

φ
(

d
(

σ, σn(k)

)
+ d

(
σn(k), q

)))
< ψ

(
φ

(
d
(

σ, σn(k)

)
+

1
n(k)

))
φ

(
d
(

σ, σn(k)

)
+

1
n(k)

)
.

Using (8) and (φ2), there is K ∈ N so that

φ

(
d
(

σ, σn(k)

)
+

1
n(k)

)
< φ (r0)

for each k ≥ K. It yields that

d (σ, q) > 0⇒ φ (d (σ, q)) < φ (r0) .

Consequently, by (φ1), we find that d (σ, q) < r0. Hence, we get

B(σn(k),
1

n(k)
) ⊂ B(σ, r0),

for n(k) ∈ N. Thus,

B(σn(k),
1

n(k)
) ⊂ Òj, n(k) ∈ N.

We get a contradiction with respect to

B(σn(k),
1

n(k)
)  Òi, n(k) ∈ N.

for all i ∈ I. Then (7) holds. Further, by (5), there is
{

σp
}

p=1,...,n ⊂ C so that

C ⊂ ∪
p=1,...,n

B(σp, r0).

But by (7), for any p = 1, ..., n, there exists i(p) ∈ I such that B(σp, r0) ⊂ Òi(p), which yields

C ⊂ ∪
p=1,...,n

Òi(p).

Thus, C is (φ, ψ)-compact, and so (ii)⇒(i).
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Definition 9. Let (=, d) be a (φ, ψ)-metric space. Let C be a nonempty subset of =. The subset C is said to be
sequentially (φ, ψ)-compact, if for each sequence , there are a subsequence

{
σn(k)

}
of {σn} and σ ∈ C so that

lim
k−→∞

d
(

σn(k), σ
)
= 0.

Definition 10. Let (=, d) be a (φ, ψ)-metric space. Let C be a nonempty subset of =. The subset C is called
(φ, ψ)-totally bounded if

∀r > 0, ∃(σ0), i = 1, ..., n ⊂ C : C ⊂ ∪
i=1,...,n

B(σi, r).

Due to the proof of Proposition 8, we may state the following proposition.

Proposition 9. Let (=, d) be a (φ, ψ)-metric space. Let C be a nonempty subset of =.

(i) C is (φ, ψ)-compact if and only if C is sequentially (φ, ψ)-compact.
(ii) If C is (φ, ψ)-compact, then C is (φ, ψ)-totally bounded.

4. Banach Contraction Principle on (φ, ψ)-Metric Spaces

In this section, we prove a new version of the BCP in the context of (φ, ψ)-metric spaces.

Theorem 1. Let (=, d) be a complete (φ, ψ)-metric space and T : = → = be a self-mapping. Suppose that
there exists λ ∈ (0, 1) such that for all σ, ς ∈ =,

d (T (σ) , T (ς)) ≤ λd (σ, ς) . (9)

Then T has a unique fixed point in =.

Proof. Let σ0 ∈ =. Define the sequence {σn} in = by

σn+1 = T (σn) , where n ∈ N.

If for some n, d (σn, σn+1) = 0, then σn is a fixed point of T. Without restriction of the generality,
we may suppose that d (σn, σn+1) > 0 for all n. Using (9), we get

d (σn, σn+1) ≤ λd (σn−1, σn) ≤ λ2d (σn−2, σn−1)

≤ ... ≤ λnd (σ0, σ1) ,

for all n ∈ N. Thus,
m−1

∑
i=n

d (σi, σi+1) ≤
λn

1− λ
d (σ0, σ1) , m > n.

Hence, by (φ1), we have

φ

(
m−1

∑
i=n

d (σi, σi+1)

)
≤ φ

(
λn

1− λ
d (σ0, σ1)

)
, m > n.

Since ψ is monotone increasing, we obtain for m > n,

ψ

(
φ

(
m−1

∑
i=n

d (σi, σi+1)

))
≤ ψ

(
φ

(
λn

1− λ
d (σ0, σ1)

))
< φ

(
λn

1− λ
d (σ0, σ1)

)
.
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Since
lim

n−→∞

λn

1− λ
d (σ0, σ1) = 0,

by (φ2), we have

lim
n−→∞

φ

(
λn

1− λ
d (σ0, σ1)

)
= 0. (10)

Using (d3), we obtain

d (σn, σm) > 0, m > n⇒ φ (d (σn, σm)) ≤ ψ

(
φ

(
m−1

∑
i=n

d (σi, σi+1)

))

< φ

(
λn

1− λ
d (σ0, σ1)

)
.

It implies that

φ (d (σn, σm)) < φ

(
λn

1− λ
d (σ0, σ1)

)
.

By using (10), we obtain
lim

n,m−→∞
φ (d (σn, σm)) = 0.

Then from (φ2), we have
lim

n,m−→∞
d (σn, σm) = 0.

Therefore, {σn} is a (φ, ψ)-Cauchy sequence in =. Since = is (φ, ψ)-complete, we can find σ∗ ∈ =
such that

lim
n→∞

d (σn, σ∗) = 0. (11)

Next, we prove that T (σ∗) = σ∗. We argue by contradiction. Assume that d (T (σ∗) ,σ∗) > 0.
By using (d3), we obtain

φ (d (T (σ∗) , σ∗)) ≤ ψ (φ (d (T (σ∗) , T (σn)) + d (T (σn) , σ∗)))

< φ (d (T (σ∗) , T (σn)) + d (T (σn) , σ∗)) ,

for n ∈ N. By (9) and (φ1),

d (T (σ∗) , σ∗) < λd (σ∗,σn) + d (σn+1,σ∗) .

By using (φ2) and (11), we get

lim
n→∞

φ (λd (σ∗,σn) + d (σn+1,σ∗)) = 0,

which is a contradiction. Therefore, d (T (σ∗) , σ∗) = 0 and T (σ∗) = σ∗. Thus, T has a fixed point
σ∗ ∈ =. Next, we prove that T has at most one fixed point. Assume that σ∗ and ζ∗ are two fixed points
of T such that σ∗ 6= ζ∗. Then from (9), we have

0 < d (σ∗, ς∗) = d (T (σ∗) ,T (ς∗)) ≤ λd (σ∗, ς∗) < d (σ∗, ς∗) .

It is a contradiction. Hence, T has a unique fixed point in =.
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Corollary 1. Let (=, d) be a (φ, ψ)-metric space. Suppose there exist a continuous comparison function ψ ∈ Ψ
and φ ∈ D so that (d3) holds. Let S : B(σ0, r)→ = be a given mapping, where σ0 ∈ = and r > 0. Assume that:

(i) Suppose that for each sequence {σn} ⊂ =, we have

lim
n→∞

d (σn, σ) = 0⇒ d (σ, ς) ≤ lim
n→∞

sup d (σn, ς) , ς ∈ =;

(ii) (=, d) is (φ, ψ)-complete;
(iii) There exists λ ∈ (0, 1) such that

d(S(σ), S(ς)) ≤ λd(σ, ς), (σ, ς) ∈ B(σ0, r)× B(σ0, r);

(iv) There exists 0 < ε < r such that

φ (λε + d(Sσ0, σ0)) ≤ φ (ε) .

Then S has a fixed point.

Proof. Consider 0 < ε < r such that (iv) is satisfied. First, we will show that

S (B(σ0, ε)) ⊂ B(σ0, ε).

Let σ ∈ B(σ0, ε), that is, d(σ0, σ) ≤ ε. Assume that d(Sσ, σ0) > 0. By (d3),

φ (d(Sσ, σ0)) ≤ ψ (φ (d(Sσ, Sσ0) + d(Sσ0, σ0))) .

Using (iii), we obtain

φ (d(Sσ, σ0)) ≤ ψ (φ (d(Sσ, Sσ0) + d(Sσ0, σ0)))

≤ ψ (φ (λd(σ, σ0) + d(Sσ0, σ0)))

≤ ψ (φ (λε + d(Sσ0, σ0)))

< φ (λε + d(Sσ0, σ0))

≤ φ (ε) .

Hence, by (φ1), we have d(Sσ, σ0) ≤ ε, which yields S (σ) ∈ B(σ0, ε). Therefore,

S (B(σ0, ε)) ⊂ B(σ0, ε).

Further, the mapping S : B(σ0, ε)→ B(σ0, ε) is well-defined, and the Banach contraction condition
holds. Next, since the condition of Proposition 3 is satisfied, it is known that B(σ0, ε) is (φ, ψ)-closed,
so from (i), it is (φ, ψ)-complete. Finally, the result is deduced by using Theorem 1.

5. Solving a Nonlinear Fredholm Integral Equation

This section is devoted to discusses the existence and uniqueness of a solution of a Fredholm type
integral equation of the 2nd kind [24–29]. Consider the equation below:

σ(µ) = β(µ) +

v∫
u

Ω(µ, `)< (µ, `, σ(`)) d`, µ ∈ [u, v]. (12)

Let Θ = C[u, v] be the set of all continuous functions defined on [u, v]. For σ, ζ ∈ Θ and q > 1,
define d : Θ×Θ→ [0, ∞) by

d (σ, ζ) =

(
1
6

sup
µ∈[u,v]

|σ(µ)− ζ(µ)|
)q

.
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Then (Θ, d) is a complete (φ, ψ)−metric space with φ(ρ) = ρ and ψ(ρ) = ρ
6q .

To study the existence of a solution for the problem (12), we state and prove the theorem below.

Theorem 2. Consider the problem (12) via the assumptions below:

(†1) < : [u, v]× [u, v]×R→ R, Ω : [u, v]× [u, v]→ R, and β : [u, v]→ R are continuous functions;
(†2) For µ ∈ [u, v], we have

sup
µ∈[u,v]

v∫
u

Ω(µ, `)d` ≤ 1;

(†3) For q > 1, consider

|< (µ, `, σ(`))−< (µ, `, ζ(`))| ≤ 1
q
√

3
|σ(`)− ζ(`)| .

Then the nonlinear integral equation (12) has a unique solution in Θ.

Proof. Define the operator T : C[u, v]→ C[u, v] by

Tσ(µ) = β(µ) +

v∫
u

Ω(µ, `)< (µ, `, σ(`)) d`, µ ∈ [u, v]. (13)

The solution of problem (12) is a fixed point for the operator (13). By hypotheses (†1)− (†3),
we have

d (Tσ(µ), Tζ(µ))

=

(
1
6

sup
µ∈[u,v]

|Tσ(µ)− Tζ(µ)|
)q

=
1
6q

 sup
µ∈[u,v]

∣∣∣∣∣∣
v∫

u

Ω(µ, `)< (µ, `, σ(`)) d`−
v∫

u

Ω(µ, `)< (µ, `, ζ(`)) d`

∣∣∣∣∣∣
q

≤ 1
6q

 sup
µ∈[u,v]

v∫
u

Ω(µ, `) |< (µ, `, σ(`))−< (µ, `, ζ(`))| dν

q

≤ 1
6q

 sup
µ∈[u,v]

v∫
u

Ω(µ, `)

q

× sup
`∈[u,v]

(
1

q
√

3
|σ(`)− ζ(`)|

)q

≤ 1
3

sup
`∈[u,v]

(
1
6
|σ(`)− ζ(`)|

)q

= λd (σ(µ), ζ(µ)) .

Thus, the condition (9) of Theorem 1 holds with λ = 1
3 . Therefore, all hypotheses of Theorem 1

are fulfilled. So the problem (12) has a unique solution in Θ.

The example below supports Theorem 2.

Example 3. The following problem:

σ(µ) =
1

36

1∫
0

`2σ(`)d`, µ ∈ [0, 1], (14)

has a solution in C[0, 1].
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Proof. Define the operator T : C[0, 1] → C[0, 1] by Tσ(µ) = 1
36

1∫
0
`2σ(`)d`. Customize Ω(µ, `) = `

6 ,

β(µ) = 0 and < (µ, `, σ(`)) = `σ(`)
6 in Theorem 2. Note that

• < and Ω are continuous functions;
• For µ ∈ [0, 1], we have

sup
µ∈[u,v]

v∫
u

Ω(µ, `)d` = sup
µ∈[0,1]

1∫
0

`

6
d` =

1
12

< 1;

• Take q = 2. For ` ∈ [0, 1], we get

|< (µ, `, σ(`))−< (µ, `, ζ(`))| =

∣∣∣∣ `σ(`)

6
− `ζ(`)

6

∣∣∣∣
=

`

6
|σ(`)− ζ(`)|

≤ 1√
3
|σ(`)− ζ(`)| .

Therefore, the stipulations of Theorem 2 are justified, hence the mapping T has a unique fixed
point in C[0, 1], which is the unique solution of the equation (14).

6. Solving a Two-Dimensional Nonlinear Fredholm Integral Equation

In many problems in engineering and mechanics under a suitable transformation, two-dimensional
Fredholm integral equations of the second kind appear. For example, in the calculation of plasma physics,
it is usually required to solve some Fredholm integral equations, see References [30–32].

Now, consider the two-dimensional Fredholm integral equation of the shape:

ζ(r, j) = e(r, j) +
1∫

0

1∫
0

Ω(r, j, f , g)k(r, j, ζ( f , g))d f dg; (r, j) ∈ [0, 1]2, (15)

where e, Ω and k are given continuous functions defined on L2(C ([0, 1]× [0, 1])) and ζ is a function
in L2(C ([0, 1]× [0, 1])).

Let ∇ = C([0, 1]) be the set of all real valued continuous functions on [0, 1]. Consider the same
distance of the above section, then for σ, ζ ∈ ∇, the pair (∇, d) is a complete (φ, ψ)−metric space with
φ(ρ) = ρ and ψ(ρ) = ρ

6q .
Now, we consider the problem (15) under the hypotheses below:

(‡1) Ω : [0, 1]4 → R, and k : [0, 1]2 ×R→ R and e : [0, 1]2 → R are continuous functions;
(‡2) for all σ, ζ ∈ ∇, there is a constant κ < 1 such that

|k(r, j, σ( f , g))−k(r, j, ζ( f , g))| ≤ 1
q
√

2κ
|σ(h, g)− ζ(h, g)| , q > 1;

(‡3) we have
1∫

0

1∫
0

Ω(r, j, f , g)d f dg ≤ κ.

Our related theorem in this part is listed as follows.

Theorem 3. The problem (15) has a unique solution in L2(C ([0, 1]× [0, 1])) if the hypotheses (‡1)− (‡3) hold.



Symmetry 2020, 12, 1459 16 of 18

Proof. Define the operator T : ∇ → ∇ by

T (ζ(τ, µ)) = e(r, j) +
1∫

0

1∫
0

Ω(r, j, f , g)k(r, j, ζ( f , g))d f dg, (a, b) ∈ [0, 1]× [0, 1], (16)

then for q > 1, we get

1
6q |T (σ(r, j))− T (ζ(r, j)))|q

=
1
6q

∣∣∣∣∣∣
1∫

0

1∫
0

Ω(r, j, f , g)k(r, j, σ( f , g))d f dg−
1∫

0

1∫
0

Ω(r, j, f , g)k(r, j, ζ( f , g))d f dg

∣∣∣∣∣∣
q

≤ 1
6q

 1∫
0

1∫
0

Ω(r, j, f , g) |k(r, j, σ( f , g))−k(r, j, ζ( f , g))| d f dg

q

≤ 1
6q

 1∫
0

1∫
0

Ω(r, j, f , g)d f dg

q

(|k(r, j, σ( f , g))−k(r, j, ζ( f , g))|)q

≤ 1
6q κq

(
1

q
√

2κ
|σ(h, g)− ζ(h, g)|

)q

=
1
2

(
1
6
|σ(h, g)− ζ(h, g)|

)q
.

Taking the supremum, we get

d(Tσ, Tζ) =

(
1
6

sup
µ∈[u,v]

|T (σ(r, j))− T (ζ(r, j)))|
)q

≤ 1
2

(
1
6

sup
µ∈[u,v]

|σ(h, g)− ζ(h, g)|
)q

= λd(σ, ζ).

Thus, from Theorem 1, the operator (16) has a unique fixed point in L2(C ([0, 1]× [0, 1])), which is
considered as the unique solution of the problem (15).

7. Conclusions

In this manuscript, we initiated the concept a (φ, ψ)-metric space. It is a generalization of the metric
space setting. We also presented its topological structure natural topology. The Banach contraction
principle in this class has been established. Moreover, we gave some examples and applications in support
of the introduced new concepts and presented results. As perspectives, it is an open problem to treat
the cases of Kannan, Chatterjea, Hardy-Rogers, Ćirić and Suzuki type contractions. Also, it would be
interesting to investigate the case of common fixed points.
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