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Abstract: The current nondestructive testing methods such as ultrasonic, magnetic, or eddy current
signals, and even the existing image processing methods, present certain challenges and show a
lack of flexibility in building an effective and real-time quality estimation system of the resistance
spot welding (RSW). This paper provides a significant improvement in the theory and practices
for designing a robotized inspection station for RSW at the car manufacturing plants using image
processing and fuzzy support vector machine (FSVM). The weld nuggets’ positions on each of the
used car underbody models are detected mathematically. Then, to collect perfect pictures of the weld
nuggets on each of these models, the required end-effector path is planned in real-time by establishing
the Denavit-Hartenberg (D-H) model and solving the forward and inverse kinematics models of
the used six-degrees of freedom (6-DOF) robotic arm. After that, the most frequent resistance
spot-welding failure modes are reviewed. Improved image processing methods are employed to
extract new features from the elliptical-shaped weld nugget’s surface and obtain a three-dimensional
(3D) reconstruction model of the weld’s surface. The extracted artificial data of thousands of samples
of the weld nuggets are divided into three groups. Then, the FSVM learning algorithm is formed by
applying the fuzzy membership functions to each group. The improved image processing with the
proposed FSVM method shows good performance in classifying the failure modes and dealing with
the image noise. The experimental results show that the improvement of comprehensive automatic
real-time quality evaluation of RSW surfaces is meaningful: the quality estimation could be processed
within 0.5 s in very high accuracy.

Keywords: quality estimation; resistance spot welding (RSW); failure modes; 6DOF robotic arm;
image processing; fuzzy support vector machine

1. Introduction

Resistance spot welding (RSW) is a technology utilized extensively in the automobile industry
due to its effective and easy implementation. Recently, there has been an increasing demand in the
automotive companies for reducing the number of weld nuggets while still ensuring the quality of the
RSW, which may save time and cost [1–3].

The traditional method for verification of RSW’s quality includes many kinds of destructive
testing methods like tension tests, bend tests, and peel tests. Compared to interfacial failure mode,
resistance spot welding that fails in the nugget pullout model is better because it provides higher peak
loads and energy absorption levels [4]. To prove the quality of the RSW during automobile lifetime,
the nugget pullout failure mode should be guaranteed by adjusting the process parameters [5,6].
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The very nature of the destructive test means that just a few chosen welds will be sampled for quality.
These results deviate in quality from weld to weld, and more than 99% of RSW in a car is never checked.
There are important costs and hazards related to reworking and scrapping the defective welded parts
made between the teardown tests.

Many nondestructive inspection methods of the RSW were presented based on ultrasonic
transmission inspections [7]. Baradarani et al. [8] proposed an effective algorithm to enhance the
scanning signal to extract the required features from highly polluted signal mixtures in the ultrasonic
spot-welding inspection. There are some disadvantages to this method, such as restricted detection
ranges, inaccurate readings, and inflexible scanning process. Other technologies on the welding quality
monitoring studied the welding voltage, current signal, and dynamic resistance [9] or sensing of the
force and electrode pressure-displacement of the welding machine. Johnson et al. [10] discussed the
coefficient of electrode movement due to the expansion of the weld and discussed its effect on the
quality of the resistance spot weld. A method to evaluate the quality of weld as an in-process system
with monitoring the dynamic resistance utilizing a microprocessor in the secondary circuit of the
welding machine has been suggested by Patange et al. [11].

Several researchers used an artificial neural network for evaluating nugget sizes of spot welds.
Brown et al. [12] used this method to estimate the nugget diameter, a factor closely related to weld
strength. Shimamoto et al. [13] developed a direct current nugget-tester and proposed a nondestructive
method for evaluating the fixed strength of the welded joints. The proposed method was based on
the relative decrease in surface electrical resistance of the RSW and the effect of the corona bond area,
which were both considered as two factors to accurately estimate the nugget diameter. Jiyoung [14]
designed an exponential for estimating the welding pitch, utilizing the ratio of adaptive welding heat
inputs to the reference welding heat inputs at the height of the reference welding strength curve.
Based on the relationship between nugget diameter, heat input, and weld pitch, the logistic growth
model was subsequently developed to evaluate the heat input restitution. The experimental results
based on the proposed method showed that the shunting effect reduced significantly, and an improved
nugget shape was produced. Duan et al. [15] introduced a novel work based on the post-weld current
pulse as the main factor in a novel post-weld heat treatment to change the crystallization direction on
the microstructure of the weld nugget, then they verified the results by using a tensile shear test.

Other works were based on a magnetic method that does not supply good morphology information
compared with ultrasonic and radiographic methods, but it is a suitable and low-cost technique.
In Reference [16], the authors have used eddy current testing for surface depth profile analysis and
magnetic flux permeation to investigate the linkage between the magnetic analyses and the strength of
the spot weld.

The following works introduced automatic identification systems of RSW’s defects by using
novel image processing methods. Ruisz et al. [17] presented an online real-time nondestructive
estimation system based on vision methods to test the quality of RSW. The images have been taken by
a low-cost camera fixed on the welding gun. A real-time process was ensured in the structure system.
The computing method of the fractal dimension theory indicates some characteristics of irregular
geometric objects in images [18]. This technique is identical to the process of human visual processing.
It reveals the features of the material damage and its development, in a sense. To overcome the noise
and other disturbances in the traditional image processing methods, microcosmic and macrocosmic
image processing algorithms in welding were compared in Reference [19], then the authors combined
a novel image processing method with fractal theory, Laplace operator, and least square method to
detect and recognize the image edges correctly. In Reference [20], effective results were obtained for
identifying and segmenting line defects in X-ray welding images based on multiple thresholds for
images, the support vector machine (SVM) method to classify defects, and a Hough transform to delete
the noise pixels in the coarse defect area. Vilar et al. [21] proposed a more effective method for defect
detection in X-ray images based on fuzzy logic theory. Boersch et al. [22] used data mining techniques
based on data preprocessing and segmentation, feature extraction and selection, and model creation
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and validation in order to estimate the weld diameter in RSW. The results showed high performance in
classifying more than 3000 welds using the proposed predictor, with a success rate of 93%.

However, several proposed methods face certain challenges in the reliable quality evaluation of
the weld nuggets in automobile production. The destructive techniques show a lack of low-cost and
safety and cannot effectively be used. The non-destructive techniques show the weakness of experience
in various fields such as illumination, location of the camera, lack of flexibility in the production line,
and no successful real-time inspection attempts, yet. These factors can influence the quality estimation
of RSW.

In our previous paper [23], an online quality monitoring system was proposed using image
processing and fuzzy logic. After extracting data, the trained fuzzy approach was used to classify the
weld nuggets’ flaws into the good and bad weld. However, our proposed system showed limitations
when the shape of the weld nugget to be analyzed was not a circle and also due to the few samples which
were used for training the system. The purpose of this study is building a more reliable, cost-effective,
fully intelligent, and automatic online quality inspection system based on image processing methods
with a fuzzy support vector machine (FSVM) without any human interaction to evaluate the RSW
quality in order to meet the industry’s requirements. The fundamental contributions are listed in the
following points:

• Improve the image processing methods to cover the non-circular weld nuggets. More accurate
results in extracting the characteristics from the weld nugget surface. Major and minor diameters,
center coordinates, and angle of both “the fusion zone and heat-affected zone” are considered.

• Show more details of the weld nugget’s surface: the appearance’s accuracy of the topography of
the weld nugget’s surface is enhanced in the concluded three-dimensional (3D) model.

• Increase the efficiency of the proposed system by using an excessive number of samples for data
training. Also, the FSVM machine learning method is carried out by applying the fuzzy functions
to three groups of the extracted data to improve data training and classify the failure modes of the
RSW effectively.

• The weld nuggets’ position detection is taken into consideration mathematically and the required
end-effector path of the 6-degrees of freedom (6-DOF) robotic arm is planned to take a perfect
picture of each weld nugget.

The experimental results show that the improvement of comprehensive automatic real-time
quality evaluation of RSW surfaces is satisfactory, and the execution time of the whole process for each
weld nugget is 0.5 s, with very high accuracy.

2. Hardware and Software Interface

The proposed work presents an integrated approach of a vision system (as shown in Figure 1) to
estimate the quality of RSW in the car underbodies. The hardware of the system consists of a 6-DOF
robotic arm with six AC servo motors which are driven by six AC servo drivers and controlled by
Galil motion card (DMC-2163) to achieve the robot movement in real-time as well. The feedback to
the Galil motion card has been achieved using six absolute position encoders with a resolution of
131,072 pulses per revolution, installed directly on the rotation axes of the AC servo motors. The end
effector of the robotic arm is a fixture that carries a charge-coupled device (CCD) digital camera,
HC-SR04 ultrasonic sensor, variable intensity lightning, and linear laser light device. A digital camera
“MER-125-30UM/C”, which has a high resolution at the rate of 30 frames per second and is mainly
suitable for the typical machine vision applications such as surface inspection and defect detection,
has been used to collect the images of the RSW. The CCD image sensor is a global exposure and
monochromatic Sony sensor chip ICX445 with a 1292(H) × 964(V) array of 8-bit pixels, it can be used to
acquire a grayscale image with a light intensity ranging from 0 to 255, where 0 represents the lowest
light intensity, and 255 represents the highest light intensity. The images in their turn have been
transferred to the computer via the USB2.0 data interface. To ensure diffuse lighting on the surface of
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the car underbody, get more information about the surface of the weld nugget, and detect the failure
mode, a controllable white light-emitting diodes (LEDs) lighting system was installed circularly on the
front side of the CCD camera lens. This construction nearly prevents the influence of ambient light and
ensures constant homogeneous lighting conditions. The linear laser light has been used to scan the
weld nuggets’ surface and find the geometrical position of the weld nugget. Arduino was connected to
an HC-SR04 ultrasonic sensor to measure the distance between the camera and the weld nugget and
send the measurement results to the system interface on the computer in real-time.
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Figure 1. System integration diagram.

A real-time software provided by a graphical user interface (GUI), as shown in Figure 2, has been
developed using C++ to analyze the weld nugget pictures, estimate the quality of the weld, display the
results to the human, and control the robot movement. The whole process of the software could
be executed within 0.5 s, which meets the requirements of the high mass production environment.
The forward and inverse kinematic solutions of the used robotic arm have been embedded within
the motion control software. The motion commands have been transferred to the Galil motion card
through LAN connection protocol, which in turn sends the control commands to six Mitsubishi AC
servo drivers to realize the robot movement on all target weld nuggets. The other function of the
software is to execute the embedded image processing algorithms in order to analyze the weld nugget
images and predict the weld quality.
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3. Positions Detection of the Resistance Spot Welding

In order to reach the target position correctly and accurately, the position of the weld nugget
needs to be obtained, and the position where a perfect picture of the weld nugget could be taken
also need to be calculated and fed back to the motion control system. It is the key to achieving the
synchronization between the camera (end-effector) coordinate system and the weld nuggets’ coordinate
system (target system), related to the base coordinate system [24].

3.1. Weld Nugget’s Position Description

The position description is a description of the relative position and orientation relationship
between two coordinate systems (see Figure 3). In the production environment, the 3D model of the
car underbody is given so all six coordinates (the position and orientation) of the weld nuggets’ centers
relative to the world coordinate system are given. The coordinates of the weld nugget, G, relative

to the base coordinate system {B} are given as: G =
[

xG yG zG ψz θy ϕx
]T

. Where, xG, yG,
and zG refer to the translation coordinates, and ψz, θy, and ϕx refer to the Roll Pitch Yaw (RPY) angles.
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The coordinates of C relative to the base coordinate system {B} can be calculated using the
following equation: 

xC|B
yC|B
zC|B

 =


xG − s.cϕxsθycψz − s.sϕxsψz

yG − s.cϕxsθysψz + s.sϕxcψz

zG − s.cϕxcθy

 (1)

where, Sθ and Cθ represent sinθ and cosθ respectively, and s represents the best distance between the
weld nugget’s center, G, and the end-effector, C. The final results of all the weld nuggets will be used
to write a G-code in order to plan and control the motion of the robotic arm.

3.2. Establishing the Forward Kinematics of the Robotic Arm

According to the D-H description method [25], the kinematics description of the 6-DOF robotic
arm is carried out, the fixed-coordinate coordinate system of each link of the manipulator is established,
as shown in Figure 4, and the D-H parameters are shown in Table 1.
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Table 1. The 6-degrees of freedom (6-DOF) robot Denavit-Hartenberg (D-H) parameters.

ji:li−1−li ai(mm) αi(o) di(mm) θi(o)
Initial

Configuration
Angle

Initial
End-Effector

Position/Base

j1 : l0 − l1 O0O1 = a1 = 100 −90◦ 0 θ1 0◦ X = a1 + d4 =
410 mm

j2 : l1 − l2 O1O2 = a2 = 290 0◦ 0 θ2 − 90 0◦ Y = 0 mm

j3 : l2 − l3 O2O3 = a3 = 121 −90◦ 0 θ3 0◦ Z = a2 + a3 −

d6 = 85.5 mm

j4 : l3 − l4 0 90◦ O3O4 = d4 = 310 θ4 0◦ ϕ = 0◦

j5 : l4 − l5 0 90◦ 0 θ5 − 90 0◦ θ = 180◦

j6 : l5 − l6 0 0◦ O5O6 = d6 = 325.5 θ6 0◦ ψ = 180◦

The homogeneous transformation matrix, i
i−1T, between each two coordinate systems {i − 1} and

{i} is defined through two translations ai and di along the x and z axis respectively, and two rotations
αi and θi along the x and z axis respectively, as shown in Equation (2).

i
i−1T =


cθi −sθicαi sθisαi aicθi

sθi cθicαi −cθisαi aisθi

0 sαi cαi di
0 0 0 1

 (2)

Equation (2) has been used to calculate the homogeneous transformation matrix for each joint,
and the results are shown in Table 2.

The comprehensive transformation matrix of the 6-DOF robotic arm is obtained by multiplying
the above transformation matrices in turn:

C
BT = 6

0T = 1
0T · 21T · 32T · 43T · 54T · 65T (3)

6
0T =


cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ xo6/B
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ yo6/B
−sθ sϕcθ cϕcθ zo6/B

0 0 0 1

 =


sx nx ax px

sy ny ay py

sz nz az pz

0 0 0 1

 (4)
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Moving from a given position to another with an industrial robot can be a challenging problem.
Lozano-Pérez et al. [26] presented a collision-free algorithm for planning a safe path for a polyhedral
object moving through known polyhedral objects. This algorithm converts the obstacles so that they
represent the place of prohibited positions for an arbitrary reference point on the moving object.
Another approach was presented in Reference [27], which posed the path planning problem as a finite
time, nonlinear control problem which can be solved by a Newton-Raphson-type algorithm together
with an exterior penalty function method. As defined previously, it is simple to detect the robotic arm
joints’ configurations from the position and orientation of the end-effector. To move the end-effector
to a particular point, the inverse kinematic is solved and instructions are given to the robotic arm’s
micro-controller. A specific direction of rotation is provided to each servo motor of each joint.

Table 2. The homogeneous transformation matrices.

1
0T =


cθ1 0 −sθ1 a1cθ1

sθ1 0 cθ1 a1sθ1

0 −1 0 0
0 0 0 1

 2
1T =


sθ2 cθ2 0 a2sθ2

−cθ2 sθ2 0 −a2cθ2

0 0 1 0
0 0 0 1


3
2T =


cθ3 0 −sθ3 a3cθ3

sθ3 0 cθ3 a3sθ3

0 −1 0 0
0 0 0 1

 4
3T =


cθ4 0 sθ4 0
sθ4 0 −cθ4 0
0 1 0 d4
0 0 0 1


5
4T =


sθ5 0 −cθ5 0
−cθ5 0 −sθ5 0

0 1 0 0
0 0 0 1

 5
6T =


cθ6 −sθ6 0 0
sθ6 cθ6 0 0
0 0 1 d6
0 0 0 1


4. Resistance Spot Welding’s Failure Modes

The car underbodies used in this paper are made up of high-strength steels of 300–700 MPa
with 1.2–2 mm thickness and include various modes of weld nuggets. The weld nuggets are mainly
distributed in the car underbody on the left and right sides, the front and rear floors, the engine room,
and the wheel cover area. For some parts, it is not easy to see the weld nuggets on them. Some are
covered by other parts and the weld nuggets on them cannot be checked easily. The typical good RSW
is shown in Figure 5.Symmetry 2020, 12, x FOR PEER REVIEW 8 of 20 
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Figure 5. Typical good resistance spot welding.

For a specific sheet metal density, the selection of the right size of the welding is critical.
The weakness could occur as a result of the subside weld nuggets, while more cost is needed in case
of oversized weld nuggets. Regarding a front panel used for the experimental work in this study,
which has average thickness t = 2 mm and is made up of steel, the optimal nugget’s diameter is
d = 4

√
t = 5.6 mm. The weld nuggets are elliptical-shaped. During the welding process, various types

of flaws may happen. Some flaws can be found by visual inspection, such as those which include
cracks. There are surface conditions that may cause premature failure of the weld: excessive wear
or damage to the hardware, equipment downtime, or unacceptable surface appearance. The CCD
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camera with suitable parameters is very sensitive to the surface conditions of the weld nugget and
very practical to detect different kinds of spot-welding failure modes. Common surface conditions are
as shown in Figure 6.
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Figure 6. Failure modes: (a) Surface side expulsion, (b) deformed metal, (c) pitting, (d) blowholes,
(e) crack (interfacial failure), and (f) skidding.

Figures 5 and 6 show images of weld nuggets with their geometrical characteristics. The inner
fusion zone of the weld nugget is contoured by the inner elliptical contour, while the heat-affected
zone of the weld nugget is detected by the outer elliptical contour. Surface side expulsion is when
molten metal is blown out from under the weld tips to form spatters located close and outside of the
outer elliptical contour in the base metal zone. This occurs when too much heat is generated at the
weld tip interface. The most likely causes are low weld tip force, high weld current, and excessively
large weld tips.

Deformed metal is when the metal surrounding the weld nugget is bent or distorted.
Deformed metal is most likely caused by incorrect weld gun position, angle or movement,
incorrectly aligned weld tips, or incorrect part position.

Pitting is when the arcing current burns a black hole into the weld nugget’s surface. It is most
likely caused by short squeeze time, the buildup of sealant on the weld tips, dirt contamination on the
metal, or short hold time. A blowhole is created when molten metal is squeezed between the weld
tips. This occurs when too much heat is generated at the weld tip interface. Inner troughs refer to the
existence of voids (blowholes) or cracks inside the fusion zone. The inner peaks refer to the superficial
protuberances around the blowhole.

Interfacial failure is governed by a crack. The crack occurs when there is an extreme heat change
in the weld area. Crack is most likely caused by high weld current or long hold time. Skidding occurs
when the weld tips slide on the surface of the metal. Skidding is most likely caused by excessive weld
tip force or incorrect weld tip alignment. Weld tip force presses the metal together.

We tested our systems on different kinds of spot welding with different kinds of materials and
thicknesses. Also, we asked the workers to play with the target values of the welding parameters,
such as current, hold time, weld time, aligned electrodes vs. misaligned ones, and new or worn
electrodes, in order to create welds with defects, because normally it is easy to make normal welds
and not easy to make welds with failures. The following table shows the target values of the welding
parameters of the RSW machine, where the cycle is 1/50 s in a 50 Hz power system (Table 3).
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Table 3. Target values of the welding parameters (cycle: 1/50 s, 50 Hz power system).

Sheet Metal
Thickness

t (mm)

Electrode
Force
F (kN)

Weld
Current

I (A)

Weld
Time

(Cycles)

Hold
Time

(Cycles)

Electrode
Diameter
d (mm)

1.00 + 1.00 2.50 9500 10 2 6
1.12 + 1.12 2.80 9750 11 2 6
1.25 + 1.25 3.15 10,000 13 3 6 7
1.40 + 1.40 3.55 10,300 14 3 6 7
1.50 + 1.50 3.65 10,450 15 3 6 7
1.60 + 1.60 4.00 10,600 16 3 6 7
1.80 + 1.80 4.50 10,900 18 3 6 7
2.00 + 2.00 5.00 11,200 23 4 6 8

5. Data Extraction from the Weld Nugget’s Surface Using Improved Image Processing Methods

5.1. Calibration

The image processing algorithms, which are embedded in the system software on the supervisor
computer, are employed to process the weld nugget images and extract features mentioned previously.
These data will be used in the next training process in order to finally predict the weld quality.
The original grey images, which are taken by the CCD camera, are inputted to the algorithms.
The best illumination density of the controllable lightening device and the best gradient value of these
images have been tuned to get the best difference in contrast between the weld nugget and the metal
background and to reduce the effect of the salt and pepper noise in the weld image. Sobel operators
and thresholding functions have been used to achieve the image segmentation. These factors could
be obtained separately during the preliminary calibration stage of the proposed system based on the
lightening conditions of the environment. The main interface, which was designed by C++, is provided
with this function to tune these values for each work environment. By clicking on the pushbutton
called “Calibration” in the main interface shown in in Figure 2, the following interface will appear
(see Figure 7):Symmetry 2020, 12, x FOR PEER REVIEW 10 of 20 
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Figure 7. Typical good resistance spot welding.

5.2. Heat-Affected Zone Contour Detection

Then, morphological dilation operators with two linear vertical and horizontal structuring
elements and flood-fill operations have been used to remove the gaps and fill the holes respectively,
in the resulting binary gradient image. Gaps and holes refer to a small area of the black background
pixels surrounded by white forward pixels. Next, all the objects, which may be connected to the
borders, have been removed by using border clear function. After that, all the pixels which belong to
the perimeters (a pixel is part of the perimeter if it is nonzero and connected to at least one zero-valued
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pixel) of the segmented areas are isolated while other pixels are converted into a background pixel.
The resulting image is shown in Figure 8 below:

Symmetry 2020, 12, x FOR PEER REVIEW 10 of 20 

 

 
Figure 7. Typical good resistance spot welding. 

5.2. Heat-Affected Zone Contour Detection 

Then, morphological dilation operators with two linear vertical and horizontal structuring 
elements and flood-fill operations have been used to remove the gaps and fill the holes respectively, 
in the resulting binary gradient image. Gaps and holes refer to a small area of the black background 
pixels surrounded by white forward pixels. Next, all the objects, which may be connected to the 
borders, have been removed by using border clear function. After that, all the pixels which belong to 
the perimeters (a pixel is part of the perimeter if it is nonzero and connected to at least one zero-
valued pixel) of the segmented areas are isolated while other pixels are converted into a background 
pixel. The resulting image is shown in Figure 8 below: 

 
Figure 8. Heat-affected zone contour detection: (a) input gray image, (b) segmentation and 
morphological operations, and (c) contours detection. 

Figure 8c shows the most intense lines in the original picture of the weld nugget in white colors 
with a black background. These lines refer to the most likely locations for the pixels’ existence. 
Usually, those pixels belong to the inner and outer contours of the whole weld nugget, or they belong 
to inside the fusion zone, and very few out of the outer contour of the weld nugget. The goal is to 
split these pixels into two images. Figure 9b contains only the pixels which belong to the outer 
contour of the weld nugget. To execute that, Figure 8c has been divided into 4 quarters in order to 
check the white pixels’ locations separately. In each row, only those white pixels closest to the image 
border were selected, while the rest are converted to zero. Whenever white pixels are found in two 
consecutive rows, the one closest to the border is preserved and the other one turns into zero. 

 

Figure 8. Heat-affected zone contour detection: (a) input gray image, (b) segmentation and
morphological operations, and (c) contours detection.

Figure 8c shows the most intense lines in the original picture of the weld nugget in white colors
with a black background. These lines refer to the most likely locations for the pixels’ existence. Usually,
those pixels belong to the inner and outer contours of the whole weld nugget, or they belong to inside
the fusion zone, and very few out of the outer contour of the weld nugget. The goal is to split these
pixels into two images. Figure 9b contains only the pixels which belong to the outer contour of the
weld nugget. To execute that, Figure 8c has been divided into 4 quarters in order to check the white
pixels’ locations separately. In each row, only those white pixels closest to the image border were
selected, while the rest are converted to zero. Whenever white pixels are found in two consecutive
rows, the one closest to the border is preserved and the other one turns into zero.
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Figure 9. The outlined contours of the segmented areas of the weld nugget: (a) smoothing the image,
and (b) the most obvious boundaries.

The information gathered from all four quarters is then displayed, according to their original
location, in Figure 9b. This method is called the “location-based selection of pixels” and its process is
shown in Figure 10.

By using the newton method with the “least-squares fitting curve” algorithm for fitting an ellipse
to a set of points, the most likely ellipse curve of the white pixels has been detected as shown in
Figure 11a. In Figure 11b, the coordinates system of the weld nugget has been established.

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (5)

The least-squares fitting curve algorithm is used to determine the coefficients A, B, C, D, E, and F
in the last equation of the outer elliptical contour.
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The center coordinates, radius, and angle of the ellipse are determined using the following
equations:

a = −4ACD+B2D+2AEB−DB2

8A2C−2AB2

b = 2AE−DB
−4AC+B2

r2
1,2 =

(A+C)±
√
(A+C)2

−4(Aa2+Cb2+abB−F)
2

(6)

where (a, b), the center coordinates of the weld nugget related to the image, are the coordinates system.
r1, 2 represents the small and big radius of the ellipse. The angle α of the ellipse is calculated by solving
these equations:

A = r2
2 cos2 α+ r2

1 sin2 α
B = 2(r2

1 − r2
2) cosα sinα

C = r2
2 sin2 α+ r2

1 cos2 α
(7)
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In the case of α = 0:
A = r2

2
B = 0
C = r2

1
D = −2ar2

2
E = −2br2

1
F = −r2

1r2
2 + r2

2a2 + r2
1b2

(8)

The previous three equations are concluded using these formulas:

(X)2

r2
1

+
(Y)2

r2
2

= 1

X = X1 cosα−Y1 sinα, Y = X1 sinα+ Y1 cosα
X1 = x− a, Y1 = y− b

(9)

5.3. Detect the Biggest Rectangle Area Inside the Outer Contour of the Weld Nugget

After detecting the outer contour, the inner contour is wanted. To detect it, the biggest rectangle
area, p1p2p3p4, inside the outer contour of the weld nugget has been taken. The four corners have
been detected based on the focus points f 1 and f 2 and the latus rectums of the ellipse p1p2 and p3p4,
as shown in Figure 12.
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The parameter f f is called the foci of the ellipse, and is calculated using this formula:

f f =
√

r1
2 − r22 (10)

The coordinates of f 1 and f 2 are:

X f1 =
√

r1
2 − r22, X f2 = −

√
r1

2 − r22

Y f1 = Y f2 = 0
(11)

Using Equations (9), (10), and (11), the coordinates of f 1 and f 2 can be calculated related to the
image frame.

5.4. Rotate the Irregular Rectangle Area and Inner Contour Detection

As it is shown above, the rectangle is not regular, and its angle is α. To display all the pixels inside
this irregular rectangle, a method has been used to rotate all the pixels inside it with an angle “-α”
until this rectangle becomes regular. The method is illustrated in Figure 13. The distances s1 and s2
between p1 and p2, and between p2 and p3 respectively, have been calculated. A matrix has been
established with s1 rows and s2 columns. The equation of line p2p3 has been calculated. All the pixels
which belong to this line have been inserted into the first row in the matrix. Then, another line has
been considered between the second top pixel of the line p2p1 and the second top pixel of the line p3p4.
The equation of this line has been calculated and all the pixels which belong to this line have been



Symmetry 2020, 12, 1380 13 of 19

inserted in the second row of the matrix. The last row of the matrix includes all the pixels which belong
to the line p1p4. Finally, the matrix has been displayed as shown in Figure 13.
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results from the methods of image processing, these results have been combined and shown in a 3D 
model. All experiments in this work are tested in an indoor environment. Also, the camera is always 
perpendicular to the weld surface, and it is provided with a controllable lightening system around it. 
So, the illuminated area of the surface is caused by the curvature of the surface. The brightest areas 
refer to the location of the ridges and the darkest areas refer to the location of the hollows. This has 
been used to discover the locations of the hollows and ridges and determine their numbers and areas 
in order to estimate the 3D model. As a result, the extracted 3D model accurately shows the locations 
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Figure 13. Irregular rectangle area segmentation and rotation and inner contour detection.

5.5. 3D Model

In order to show more details of the weld nugget’s surface, the appearance’s accuracy of the
topography of the weld nugget’s surface is enhanced in the concluded 3D model. After extracting the
results from the methods of image processing, these results have been combined and shown in a 3D
model. All experiments in this work are tested in an indoor environment. Also, the camera is always
perpendicular to the weld surface, and it is provided with a controllable lightening system around it.
So, the illuminated area of the surface is caused by the curvature of the surface. The brightest areas
refer to the location of the ridges and the darkest areas refer to the location of the hollows. This has
been used to discover the locations of the hollows and ridges and determine their numbers and areas
in order to estimate the 3D model. As a result, the extracted 3D model accurately shows the locations
of the blowholes, pitting, or other defects. Also, a kind of salt and pepper noise could appear in the 3D
model due to the variety of illumination. The lighting system reduced this kind of noise, however it
can still affect estimating the quality of the weld, so FSVM is used to remove this effect during the data
training process (Figure 14).Symmetry 2020, 12, x FOR PEER REVIEW 14 of 20 
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6. Estimation Methods Based on Fuzzy Support Vector Machine

The artificial data of eight-hundred samples of the weld nuggets, which are extracted based on
the improved image processing methods, are shown in Figure 15. Figure 15a shows the error in the
weld position of the samples. It is calculated using the following equation:

e =
√(

(xo − xi)
2 + (yo − yi)

2
)

(12)
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where, (xo, yo) and (xi, yi) are the ellipse parameters of the outer and inner contours, respectively.
Figure 15b shows results of the area difference between the heat-affected zones and the fusion

zones of the actual weld nuggets compared with the ideal weld nuggets. Also, it shows the areas’
results of the troughs and spatters of the actual weld nuggets. Figure 15c shows the counting results of
troughs and spatters of the actual weld nuggets.
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Figure 15. The artificial data of eight-hundred samples of the weld nuggets. (a) the error in the weld
position of the samples; (b) area difference between the heat-affected zones and the fusion zones of the
actual weld nuggets compared with the ideal weld nuggets; (c) counting results of troughs and spatters
of the actual weld nuggets.

Next, the extracted weld nugget data were separately divided into three classifiers (as shown in
Figure 16) to execute the training using the FSVM method. The first and second classifiers consist of
two types of data in two training sets respectively, while the third one consists of three types of data in
a training set. As mentioned above, FSVM is proposed to handle the salt and pepper noise in the weld
image. The FSVM learning algorithm is formed by assigning membership values for the training data
in each classifier and then applying the fuzzy membership functions.Symmetry 2020, 12, x FOR PEER REVIEW 15 of 20 
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The input fuzzy variables L1, L2, and L3 are based on the distance of a sample to the best
hyperplane in each classifier, while the output fuzzy variable is the quality. The fuzzy approach has
been shown in Figure 17. Finally, the classification results of the three classifiers have been used to
predict the final failure result of the weld quality. In other words, the category of the weld quality that
receives the most votes in the three classifiers will be the most probable result in the prediction process.

The efficiency of the proposed system is increased by using an excessive number of samples for
data training. Also, the FSVM machine learning method is carried out by applying the fuzzy functions
to three groups of the extracted data in order to improve data training and classify the failure modes of
the RSW effectively. The improved image processing with the proposed FSVM method shows good
performance in classifying the failure modes and dealing with the image noise. The results show that
the training process based on FSVM is very sensitive to those outliers or noises in the training dataset
which are far away from their own class. Unlike the equal treatment in standard SVM, this kind of
SVM fuzzifies the penalty term to reduce the sensitivity of less important data points.
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7. Experimental Work

7.1. Path Planning Simulation and Execution

Experimental investigation of surface quality estimation of RSW has been applied on the car
underbody for DFM S50, which contains 1000 weld nuggets. Based on the previous method, the best
coordinates, where perfect pictures of the weld nuggets could be taken, have been extracted and
are shown in the following table. Also, the following table represents the camera coordinates or the
end-effector coordinates, or the coordinates of the best point in the space, where a perfect picture of
the target weld nugget could be taken. These six coordinates were calculated using the “12 forward
kinematics equations” by the means of the joint angles of the robotic arm, which were measured by
using the AC servo absolute encoders. Figure 18 shows the RPY angles and the coordinates of the
camera and the weld nugget’s center related to the base coordinate frame system. Also, it shows the
required robot joint angles to reach to each position after solving the inverse kinematic.
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Figure 19 shows the end-effector path to collect the pictures of the target weld nuggets.
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7.2. Experimental Results

Table 4 shows different cases and results of applying the previous methods on different images of
RSW types.

Compared with other works, the proposed system in this work enhanced the quality estimation
of the RSW and solved the problem of the bad lighting conditions by using a controllable lighting
system, as shown, and FSVM. The results showed improved efficiency and high accuracy of our new
system in the detection of the failure modes of the RSW. The common types of RSW failure modes can
be judged by using the proposed vision inspection system of the weld nuggets’ surfaces and the FSVM
learning algorithm. Ultrasonic inspection is also used to verify the efficiency of our methods as shown
in Table 5.
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Table 4. Experimental results.
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Table 5. Ultrasonic inspection results.

Ultrasonic
Diameter (mm)

Ultrasonic
Indentation
Depth (mm)

Ultrasonic Detection
of the Plate

Thickness (mm)

Ultrasonic
Inspection

1 5.51 0.16 2.11 no defects

2 5.42 0.08 2.11 no defects

3 5.51 0.13 2.12 no defects

4 5.42 0.06 2.12 no defects

5 5.51 0.11 2.30 no defects

6 5.11 0.18 2.31 no defects

7 5.13 0.12 2.30 defective

8. Conclusions

(1) In this study, the vision system for detecting the defects and quality estimation of RSW has been
developed using image processing methods and FSVM to evaluate an elliptical-shaped nugget’s
surface on the car underbody.

(2) Different kinds of failure modes, such as surface side expulsion, deformed metal, pitting,
blowholes, crack, and skidding, were utilized as the input for the system built in this research to
estimate the weld quality of RSW.

(3) The full experimental results were developed and successfully tested in the car underbody in the
Dongfeng Motor (DFM) factory in China. The experimental results conclude that the estimation
of the 3D reconstruction model of the weld’s surface and the automatic quality inspection of RSW
surfaces can reach higher accuracy based on the proposed methods.

(4) In our future work, the inner quality of the RSW will be considered by developing our system
and installing a suitable measuring ultrasonic sensor to the end-effector of the robotic arm with a
CCD camera. Using visual inspection and ultrasonic inspection with a robotic arm will help to
create a valuable quality inspection technology of RSW.
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