
symmetryS S

Article

Lagrange Multiplier Test for Spatial Autoregressive
Model with Latent Variables

Anik Anekawati 1,2 , Bambang Widjanarko Otok 1,*, Purhadi Purhadi 1 and Sutikno Sutikno 1

1 Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
anik@wiraraja.ac.id (A.A.); purhadi@statistika.its.ac.id (P.P.); sutikno@statistika.its.ac.id (S.S.)

2 Faculty of Teacher Training and Education, Universitas Wiraraja, Sumenep 69451, Indonesia
* Correspondence: bambang_wo@statistika.its.ac.id

Received: 15 July 2020; Accepted: 17 August 2020; Published: 18 August 2020
����������
�������

Abstract: The focus of this research is to develop a Lagrange multiplier (LM) test of spatial dependence
for the spatial autoregressive model (SAR) with latent variables (LVs). It was arranged by the standard
SAR, where the independent variables were replaced by factor scores of the exogenous latent
variables from a measurement model (in structural equation modeling) as well as their dependent
variables. As a result, an error distribution of the SAR-LVs should have a different distribution
from the standard SAR. Therefore, this LM test for the SAR-LVs is based on the new distribution.
The estimation of the latent variables used a weighted least squares (WLS) method. The estimation
of the SAR-LVs parameter used a two-stage least squares (2SLS) method. The SAR-LVs model was
applied to the model with a positive and negative spatial autoregressive coefficient to illustrate how
it was interpreted.
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1. Introduction

Researchers have often faced models involving latent variables and analyzed the relationships
between two or more of those latent variables simultaneously. Latent variables are unobserved or
unmeasured variables [1] and measured by connecting to the observed variables because they cannot be
directly measured [2]. The statistical methodology that is able to accommodate these two objectives is
structural equation modeling (SEM). SEM is a statistical method used to test the relationships between
latent variables (path models) and between its observed variables (confirmatory factor models) [2].
In general, SEM has two submodels, namely the measurement model and the structural model.
The structural model describes the relationship between latent variables, while the measurement model
is the relationship between indicators and the latent variables that construct it.

In social research, analyses involving latent variables and at the same time having a spatial effect
have often been found. Spatial dependence may be caused by different kinds of spatial spillover
effects. There are two frameworks that involve spatial data in the SEM model, namely at the level
of the measurement model or the structural model. The involvement of spatial data at the level of
the measurement model is commonly used to analyze multivariate spatial data [3], i.e., when several
variables are measured at the same locations over a spatial area, and they are often correlated with each
other. Each of them might also be correlated across the locations because of geographic similarities of
the different locations.

Christensen and Amemiya [4] suggested a model with a latent variable that is distribution-free
to analyze multivariate spatial data. However, it was limited by the assumption of a linear
relationship between observed and latent variables that might not apply to Poisson and binomial
data. The parameters of the model were estimated by means of a moment method. Wang and Wall [3]
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proposed the generalized common spatial factor, which was an extension of the traditional factor
analysis model. In this model, it was assumed that the common factors were spatially correlated and
extended to handle more types of observed data from exponential families, especially Poisson and
binomial data.

Hogan and Tchernis [5] proposed the method of a Bayesian hierarchical model for analysis factors
of spatially correlated multivariate data. At the first level, the distribution of a vector of manifest
variables was conditional on an underlying latent factor in each location, whereas at the second level,
the area-specific latent factors had a joint distribution that combined spatial correlation.

In contrast to previous researchers that only analyzed multivariate spatial data in measurement
models in the SEM model, Liu et al. [6] developed a generalized spatial structural equation model
(GSSEM). They joined the generalized common spatial factor model proposed by Wang and Wall in [3]
and SEM that calculated spatial correlations. The GSSEM can also be extended to spatial correlations
that can be added to the measurement model. Congdon [7] used the factor analysis on the measurement
model. In this model, the construct was observed through indicators. Indicators allowed both spatial
correlation and correlation with one another. The relation among constructs that are nonlinear was
approached using a spline regression.

Oud and Folmer [8] proposed a SEM approach to the spatial dependence model. They combined
the standard spatial model in [9] with the multiple indicators multiple causes (MIMIC) model in [10].
In this approach, the spatial weight that described the spatial spillover effects was located in the
structural model. This approach was more flexible and informative compared to modeling that gave
the spatial weight to the measurement model. The parameters of this model were estimated using
Full Information Maximum Likelihood (FIML) and resulted in an estimator to control the bias of
endogeneity due to the interaction between the dependent variable and its lag.

Anekawati et al. [11] conducted modeling of education quality in the senior high school level
using the spatial SEM approach. Although they allocated the spatial weight on the structural model,
their work had a different perspective on the model in [8]. They developed the spatial SEM model
from the standard spatial model by Anselin in [9] but replaced the dependent variables by endogenous
latent variables, as well as independent variables. The latent variables were estimated as the factor
scores using the partial least squares (PLS) method through iterative estimation developed by Trujillo
in [12]. The factor scores were modeled by involving the spatial effects, and the spatial dependence of
this model was tested using the Lagrange multiplier (LM) test. The results of the spatial dependence
test led to the spatial autoregressive (SAR) model. Furthermore, this model was called the spatial
autoregressive model with latent variables (SAR-LVs). The parameters of the SAR-LVs model were
estimated using maximum likelihood estimation (MLE).

Anekawati et al. [13] estimated the parameters of the SAR-LVs model from Anekawati et al.
in [11] using the generalized method of moment (GMM), which was developed by Kelejian and Prucha
in [14,15]. The SAR-LVs model in [13] indicated a better fit for the model than the MLE method since it
produced a higher R-square. Additionally, the GMM was computationally easier than MLE.

This idea can be used as alternative modeling involving latent variables and spatial data
simultaneously, as the research limitation in [16]. The research purposes in [16] were to identify
the relationship between vulnerability factors related to social, economic, and environmental aspects,
and economic losses from natural disasters in 230 local communities in South Korea. The social, economic,
and environmental aspects were latent variables measured by connecting to the observed variables.
The social aspect was constructed by two indicators, namely the percentage of the population over age 15
without elementary school completion and a minority percentage of foreigners. Additionally, the economic
and environmental aspects were latent variables. However, the relationship was modeled based on
indicators, which were not latent variables. It was less precise to identify the research purpose. That study
revealed the limitations of the study, which was an indicator-based approach for the identification of
vulnerability factors. Therefore, the method in this study provides an alternative solution for the spatial
model that involves latent variables, especially focusing on the spatial dependency test using the LM test.
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Oud and Folmer [8] did not perform a diagnostic test of spatial dependence, so there was no
direction in determining whether the model led to the spatial autoregressive model or the spatial
error model. Anekawati’s research works in [11,13] tested the spatial dependence using the Lagrange
multiplier (LM) to diagnose spatial dependence.

One of the constructions of the test of parametric hypotheses based on asymptotic theory is
the LM test [17]. Anselin [18] developed the diagnostics for spatial dependence using the LM
test. The LM approach seems reasonable and relatively easy based on estimation under the null
hypotheses [17], namely, in its most simple form. Yang [19] introduced a residual-based bootstrap
method for asymptotically refined approximations to the finite sample critical values of the LM statistics.

The LM test of spatial dependence [18,19] did not involve latent variables for the standard
SAR model. Anekawati‘s work [11,13] used the LM test of spatial dependence for the SAR-LVs
model, but an error distribution of the model was assumed the same as the standard SAR model
in [9,18]. The LM test for the standard SAR model in [9,18] had an assumption that error was normally
distributed ε ∼ N

(
0,σ2I

)
. Meanwhile, the SAR-LVs model was modeled based on the standard

SAR model, where factor scores replaced the independent and dependent variables. The factor scores
were the estimation result of the latent variables in the submodel in SEM, namely, the measurement
model. The measurement model had the assumption that the error was normally distributed,
namely, δ ∼ N(0, Θδ) for exogenous and ε∗ ∼ N(0, Θε∗) for endogenous, while the error distribution
in the standard SAR model was ε ∼ N

(
0,σ2I

)
. As a result, the error distribution of the SAR-LVs

model should have a different distribution from the error of the standard SAR model. In this paper,
an attempt is made to fill this gap. The focus of this study is to develop a Lagrange multiplier test of
spatial dependence for the spatial autoregressive model (SAR) with latent variables (LVs).

To complete this paper, the estimation of latent variables into factor scores uses the weighted
least squares (WLS) method, so that the error distribution of the SAR-LVs model is constructed from
the result of this estimation. The estimation of parameters of the SAR-LVs model uses the two-stage
least squares (2SLS) method. In the last section, the SAR-LVs model is applied for cases of the
positive and negative spatial autoregressive coefficient to provide an interpretation of the spatial
autoregressive coefficient.

2. Materials and Methods

2.1. Spatial Autoregressive Model with Latent Variable (SAR-LVs Model)

SEM consists of two basic components—the structural model and measurement model in [2].
The measurement model represents the relationship between the manifest variable and exogenous
latent variables (1) or endogenous latent variables (2), while the structural model describes the
relationship among the latent variables (3). Bollen in [1] wrote the measurement and structural model
as Equations (1)–(3).

x = Λx ξ+ δwith δ ∼ NA(0, Θδ) (1)

y = Λy η+ ε∗ with ε∗ ∼ NB(0, Θε∗) (2)

η = Bη+ Γ ξ+ ζ (3)

where η is the (q× 1) endogenous random vector, q is the number of the endogenous variables, ξ is the
(p× 1) exogenous random vector, p is the number of the exogenous variables, B is the (q× q) coefficient
matrix that shows the effect of the relationship of an endogenous latent variable to another endogenous
variable, Γ is the (q× p) coefficient matrix which shows the effect of ξ relationship to η, ζ is the (q× 1)
random error vector, y is the (B× 1) observed vector of the endogenous variables, B is a total number
of indicators of the endogenous variables, x is the (A× 1) observed vector of the exogenous, A is a
total number of indicators of the exogenous variables, Λy is the (B× q) coefficient matrix which shows
the relationship of y to η, Λx is the (A× p) coefficient matrix which shows the relationship of x to ξ,
ε∗ is the (B× 1) measurement error vector of y, and δ is the (A× 1) measurement error vector of x.
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Assumptions that must be fulfilled are E(η) = 0, E(ξ) = 0, E(ζ) = 0, E
(
ξζ
′
)
= 0, E(ε∗) = 0,

E(δ) = 0, (I−B) is nonsingular, and the element of error vectors of measurements, namely δi and ε∗i ,
are homoscedastic and nonautocorrelated across observations (see [1]).

Anselin wrote the standard SAR model in [9]:

y∗ = λWy∗ + Xβ+ εwith ε ∼ N
(
0,σ2I

)
, (4)

where y∗ is the (T × 1) spatially lagged dependent vector, T is the number of the observed units, X is
the (T × (p + 1)) exogenous matrix, λ is coefficient of y∗, β is the ((p + 1) × 1) parameters vector of
exogenous, W is the (T × T) spatial weight matrix with the main diagonal elements being zero, ε is
the (T × 1) disturbance vector, where it is the classic homoscedastic situation. The queen contiguity
method was used for spatial weighting. In queen contiguity, Wij is defined as 1 for the entity where
the common side or the common vertex meets the region of concern, and Wij is defined as 0 for other
regions [20].

Oud and Folmer in [8] wrote the SAR-LVs model in the form of the MIMIC. The proposed model
was η̃ = λWη̃+ X̃γ+ ζ̃, where λ was the spatial lag coefficient of the endogenous variable, W was
the contiguity matrix, and X̃ was the observation matrix of the explanatory variable.

The SAR-LVs model is a model that involves latent variables, and the unit of observation is
location. The SAR-LVs model is a standard SAR model in which the independent and dependent
variables are latent variables. In the SEM model, there are latent variables that cannot be measured
directly as a sample unit. Therefore, in this work, to represent the latent variable in the standard SAR
in Equation (4) is changed by the factor score. The latent variable is replaced by the factor score from
the measurement model in Equations (2) and (3) as a measured and random unit sample. As seen in
Equation (4), the spatially lagged dependent variable (y∗) is changed by the endogenous latent variable
(η), and the exogenous variable (X) is changed by the exogenous latent variable (ξ), which is previously
estimated using the WLS method. The result of estimation of the latent variable is denoted by η̂ = l
and ξ̂ = K. This SAR-LVs model does not use the MIMIC model, since there are no exogenous or
endogenous variables that are observed variables, and the endogenous variable is limited to only one.

Thus, the SAR-LVs model in Equation (4) changes to:

l = Kβ+ λWl + ε , (5)

where l is the the (T × 1) endogenous factor score vector, K is the (T × (p + 1)) exogenous factor score
matrix, and β is the ((p + 1) × 1) regression coefficient vector.

2.2. Estimation of Score of Latent Variable

The factor score is the estimation result of the latent variables, both the endogenous and exogenous
variables in the measurement model. The method used is the WLS, which is by minimizing the sum
squared errors that are weighted by the error variant matrix. In the estimation process, to obtain a
factor score, it is assumed that the value of the loading factor and the error variant matrix are constant.

In the equation of the measurement model of the exogenous latent variable (1), where p is the
number of the exogenous latent variable, ai is the number of indicators of the ith exogenous latent

variable, and
p∑

i = 1
ai = A. δ is an error, where δ ∼ NA(0, Θδ) with Θδ(A×A) is the covariant–variant

matrix of measurement error of observed variable x, namely

Θδ = diag
(
σ2
δ(1)1

, σ2
δ(2)1

, · · · , σ2
δ(a1)1

, σ2
δ(a1)2

, σ2
δ(a2)2

, · · · , σ2
δ(a2)2

, · · · , σ2
δ(1)p

, σ2
δ(2)p

, · · · , σ2
δ(ap)p

)
.

The distribution of x is obtained through the properties of the expected value and variance of a
random variable. It is assumed that the value of Λx and Θδ are constant. E(x) = E(Λx ξ+ δ) = Λx ξ

and var(x) = var(Λx ξ+ δ) = var(δ) = Θδ. Therefore, if x = Λx ξ+ δ and δ ∼ NA(0, Θδ) then
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the distribution of x is x ∼ NA(Λxξ, Θδ). Suppose that a random sample T is given from a random
variable x(

x(x)11, x(2)12, · · · , x(ai)1T, x(1)21, x(2)22, · · · , x(a2)2T, · · · , x(1)pl, x(2)pT, x(ap)pT,ξ11,ξ12,··· ,ξ1T ,ξ21,ξ22,...,ξ2T ,...,ξp1,ξp2,...ξpT

)
with t = 1, 2, . . . , T so xt ∼ NA(Λxξt, Θδ). The probability function of xt is

f (Xt) = (2π)−
A
2 |Θδ|

−
1
2 exp

{
−

1
2
(xt −Λxξt)

′
Θ−1
δ (xt −Λxξt)

}
The likelihood function is

L(ξ, Θδ) = (2π)−
AT
2 |Θδ|

−
T
2 exp

{
−

1
2

Qx

}
with Qx =

∑T

t=1
(xt −Λxξt)

′
Θ−1
δ (xt −Λxξt)

The latent variable ξ is estimated using the WLS method with optimization L(ξ, Θδ).
Maximum L (ξ, Θδ)⇐⇒ minQx by adding the weight of an error variant matrix Θδ is obtained
as

∑T
t=1 ξ̂t =

(
Λ′xΘ−1

δ Λx
)(

Λ′xΘ−1
δ

)∑T
t=1 xt or can be written in matrix form and contain each element as


ξ̂11 ξ̂12 · · · ξ̂1T
ξ̂21 ξ̂22 · · · ξ̂2T
...

...
. . .

...
ξ̂p1 ξ̂p2 · · · ξ̂pT

 =
(
Λ′xΘ−1

δ Λx
)(

Λ′xΘ−1
δ

)



x(1)11 x(1)12 · · · x(1)1T
x(2)11 x(2)12 · · · x(2)1T

...
...

. . .
...

x(a1)11 x(a1)12 · · · x(a1)1T
x(1)21 x(1)22 · · · x(1)2T
x(2)21 x(2)22 · · · x(2)2T

...
...

. . .
...

x(a2)21 x(a2)22 · · · x(a2)22
...

...
. . .

...
x(1)p1 x(1)p2 · · · x(1)pT
x(2)p1 x(2)p2 · · · x(2)p2

...
...

. . .
...

x(ap)p1 x(ap)p2 · · · x(ap)pT



By assuming matrix


ξ̂11 ξ̂12 · · · ξ̂1T
ξ̂21 ξ̂22 · · · ξ̂2T
...

...
. . .

...
ξ̂p1 ξ̂p2 · · · ξ̂pT

 = K
′

and X =



x(1)11 x(1)12 · · · x(1)1T
x(2)11 x(2)12 · · · x(2)1T

...
...

. . .
...

x(a1)11 x(a1)12 · · · x(a1)1T
x(1)21 x(1)22 · · · x(1)2T
x(2)21 x(2)22 · · · x(2)2T

...
...

. . .
...

x(a2)21 x(a2)22 · · · x(a2)22
...

...
. . .

...
x(1)p1 x(1)p2 · · · x(1)pT
x(2)p1 x(2)p2 · · · x(2)p2

...
...

. . .
...

x(ap)p1 x(ap)p2 · · · x(ap)pT



, so

K
′

=
(
Λ′xΘ−1

δ Λx
)(

Λ′xΘ−1
δ

)
X. (6)
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X in Equation (6) is a random observation matrix. Based on Definition A.1 in [21] (Appendix A),
X has normal distribution X ∼ NA,T

(
Λxξte

′

, Θδ ⊗ IT
)
, where eT×1 = (1, . . . , 1).

The definition of the characteristic function of the random matrix X is φx(Z) = E
[
etr

(
ιXZ

′
)]

,

where ι =
√
−1. If part of Equation (6) is assumed

(
Λ′xΘ−1

δ Λx
)(

Λ′xΘ−1
δ

)
= P then Equation (6) can be

simplified into K
′

= XP. The characteristic function of K
′

isφK
′ (Z) = E

[
etr

(
ι(PX)Z

′
)]

= E
[
etr

(
ι P

(
XZ

′
))]

.

Based on Theorem B.1, the characteristic function of K
′

can be changed into φK
′ (Z) = E

[
etr

(
ιX

(
Z
′

P
))]

.

If Z′1 = Z
′

P then the characteristic function of K
′

can be changed into φK
′ (Z) = E

[
etr (ιXZ′1

]
.

The distribution of X is X ∼ NA,T
(
Λxξte

′

, Θδ ⊗ IT
)

and K
′

= XP. Based on Theorem A.2,

the characteristic function of K
′

is φK
′ (Z) = etr

(
ιZ′1Λxξte

′

− 1/2Z′1Θδ Z1IT
)

. If Z′1 is changed by

Z′1 = Z
′

P then the characteristic function of K
′

is φK
′ (Z) = etr

(
ι
(
Z
′

P
)
Λxξte

′

− 1/2
(
Z
′

P
)′

Θδ

(
Z
′

P
)
IT

)
Furthermore, P is changed by P =

(
Λ′xΘ−1

δ Λx
)(

Λ′xΘ−1
δ

)
, so the characteristic function of K

′

is

φK
′ (Z) = etr (ιZ

′

ξte
′

− 1/2Z
′

(Λ′xΘ−1
δ Λx)

−1ZIT) (7)

Based on Theorem A.2 and Equation (7), K
′

is the matrix variate normal distribution with mean
ξte

′

and covariate matrix (Λ′xΘ−1
δ Λx)−1

⊗ IT and is notated by K
′

∼ NT, p (ξte
′

, (Λ′xΘ−1
δ Λx)−1

⊗ IT).
Based on Theorem A.1, K is the matrix variate normal distribution that is notated by:

K ∼ NT, p (eξt, IT ⊗ (Λ
′
xΘ−1

δ Λx)
−1). (8)

In this paper, the number of the endogenous variables is limited only to one. The covariance matrix

of the measurement error of the observed variable for y is Θε∗ , namely Θε∗ = diag
(
σ2
ε∗1

, σ2
ε∗2

, . . . , σ2
ε∗B

)
,

where B is the number of indicators of the endogenous latent variable. In the same way as the previous
estimation with the exogenous latent variable and by assuming that vector (η̂1 η̂2 . . . η̂t ) = l′ and

Y =


y11

y21
...

yB1

y12

y22
...

yB2

· · ·

· · ·

. . .
· · ·

y1T
y2T

...
yBT

, it is obtained

l′ =
(
Λ′y Θ−1

ε∗ Λy
)−1

Λ′y Θ−1
ε∗ Y, (9)

and its distribution is
l ∼ NT

(
eηt,

(
Λ′y Θ−1

ε∗ Λy
)−1

IT

)
. (10)

Theorem A.1, A.2, and B.1 are provided in Appendix A.

2.3. The Error Distribution of The SAR-LVs Model

The equation of the SAR-LVs model from the estimated factor score can be arranged as Equation (6)
and adding β0, it can be written as

l = K β+ λWl + ε, (11)

or can be written in the matrix form


l1
l2
...

lT

 =


1 k11 k12 · · · k1p
1 k21 k22 · · · k2p
...

...
...

. . .
...

1 kT1 kT2 · · · kTp





β0
β1
β2
...
βp




l1
l2
...

lT

+

ε1

ε2
...
εT
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where K ∼ NT, p

(
eξt, IT ⊗

(
Λ′xΘ−1

δ Λx
)−1

)
is Equation (6) and l ∼ NT

(
eηt,

(
Λ′y Θ−1

ε∗ Λy
)−1

IT

)
is

Equation (10).
The SAR-LVs model (11) is a spatial regression model by considering l as a response variable

and K as a predictor variable, both of which are random. Thus, the function of l is f (l|K), so that the
variable K is no longer random but fixed. As a result, the error in Equation (11) is ε = (I− λW)l−Kβ
where l is a random variable, K is fixed and is assumed not to correlate with ε, and cov(l, K) , 0.

The expectation value of ε is E (ε) = (I− λW)eηt − Kβ, and the variance of ε is

var(ε) = (I− λW)
(
Λ′y Θ−1

ε∗ Λy
)−1

(I− λW)′, so the error distribution of ε is

ε ∼ NT ((I− λW)eηt − Kβ, Θ), (12)

where
Θ = (I− λW)

(
Λ′y Θ−1

ε∗ Λy
)−1

(I− λW)′. (13)

The error distribution of the standard SAR model is ε ∼ N
(
0,σ2I

)
, while the error distribution of

the SAR-LVs model is as Equation (12). This error distribution is used to construct the LM test.

2.4. Test of Dependency Spatial

The Lagrange multiplier (LM) test of the SAR-LVs model, as shown in Equation (11), is a test based
on estimation under the null hypothesis. The likelihood function l in the SAR-LVs model is obtained
by replacing ε and multiplying by the Jacobian in the Gaussian function so that the likelihood
function for the SAR-LVs model is obtained: L(λ,β, Θ; l) = π−T/2

∣∣∣Θ|−1/2
|C| exp

(
−

1
2ε
′

Θ−1ε
)
,

where C = (I− λW).
The log-likelihood function for the SAR-LVs model is L(λ,β, Θ; l) = −T

2 ln |π| − 1
2 ln|Θ|+ ln|C| −

1
2

(
ε
′

Θ−1ε
)
, where the value of Θ is as in Equation (13), and ε = (I− λW)l−Kβ.

Breusch and Pagan in [17] defined LM test statistics as follows: LMλ = D̂′λΨ̂
−1
λλD̂λ, where Ψ̂

−1
λλ is

an element of an information matrix measuring k× k whose elements are the second derivative of each

parameter estimated as ψ̂θ = E
[
−
∂2
L(θ)

∂θ∂θ
′

]
. The test was under the null hypothesis, so D̂λ is the first

derivative of the log-likelihood function of λ where λ = 0.
The value of Ψ̂

−1
λλ and D̂λ were decomposed in Appendix A, which obtained

Ψ̃
−1
λλ = −p−1

(
(eηt − Kβ)′WW

′

(eηt − Kβ)
)−1

so D̂λ = p(WKβ)′(l −K β) where (l −Kβ)
is an error of the OLS regression model, l −Kβ = ε̃, so D̂λ = p(WKβ)′ε̃. The LM statistic test is

LMλ =
−

(
p(WKβ)′ε̃

)2

p(eηt − Kβ)′WW
′

(eηt − Kβ)

where p =
(
Λ′y Θ−1

ε∗ Λy
)

and d = (eηt − Kβ)′WW
′

(eηt − Kβ), so the value of test statistic LM becomes

LMλ =
−

(
p(WKβ)′ε̃

)2

pd
(14)

The LM statistics LMλ follows the asymptotic distribution of χ2
(1)

.

2.5. Estimation of Parameter of SAR-LVs Model

If the parameter of the SAR-LVs model in Equation (11) and its error distribution as Equation (12)
are estimated by the OLS, then the estimator is biased and inconsistent, since there is a case where the
regression variable (Wl) correlates with the error ε or cov(Wl, ε) , 0. If the model is estimated
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by the moment method, the overidentified condition is obtained. The following explains the
overidentified condition.

The Equation (11) can be simplified as follows:

l = Zα+ ε, (15)

where Z is Z = (K|Wl) and has the (T × (p + 2))-sized, α is α =
(
β
′
∣∣∣λ)′ and has the the

((p + 2) × 1)-sized.
In this work, δ as Equation (15) was estimated by the 2SLS method as performed by [14,15],

namely two steps of the ordinary least squares (OLS) method as follows: (i). The 2SLS method
requires an H instrument variable, which is a joint of the K matrix and the WK matrix or written as
H = (K|WK). The instrument variable H is valid because it does not correlate with ε and correlates

with regressor Wl; (ii). Regress Wl on instrument variable H to obtain Ŵl = H
(
H
′

H
)−1

H
′

(Wl);
(iii). Regress l on Ẑ to obtain

α̂ = (Ẑ
′

Ẑ)
−1

Ẑ′l, (16)

where Ẑ =
(
K
∣∣∣Ŵl

)
and α̂ which contains β̂ and λ̂.

3. Results and Discussion

In the discussion, this study examined two cases or models developed with the results of positive
and negative spatial autoregressive coefficient to provide an interpretation of the spatial autoregressive
coefficient. The first case was the education quality model developed by [13], with updated data in
2018 and showing a negative spatial autoregressive coefficient. Meanwhile, the second case related to
a poverty model conducted by [22] producing a positive spatial autoregressive coefficient.

The education quality model for senior high schools in Sumenep Regency involved 27 observation
units, one endogenous latent variable, and two exogenous latent variables. The endogenous latent
variable was the education quality with three indicators. Indicators of education quality were the ratio
of the gross enrolled number of senior high school students to the number of children aged between
15 and 18 years in each district (Y11)—the ratio of the number of accredited senior high schools with
at least B levels to the total number of senior high schools in each district (Y12) and the average of
national exam scores of senior high school students in each district (Y13).

Exogenous latent variables were school infrastructure and socioeconomic conditions. Indicators of
school infrastructure were the proportion of the number of schools with a minimum classroom space
according to the regulations of the national education ministry (X11), the proportion of the numbers
of schools with laboratories according to the regulations of the national education ministry (X12),
and the proportion of the number of schools with libraries according to the regulations of the national
education ministry (X13).

Indicators of socioeconomic conditions were the ratio of the number of households running a
home industry or with a shop at home to the total number of households in each district (X21) and the
ratio of the number of households using clean water to the total number of households in each district
(X22). The model is shown in Figure 1.

Latent variables were estimated as in the Equations (6) and (9), then were modeled as in the
Equation (11). The estimation of the model parameters as the Equation (16) used the Matlab software,
and the results are shown in Table 1. The LM test based on the Equation (14) used Matlab software, and the
obtained value LMλ was −2.3272. The value of LMλ was compared to χ2 with degrees of freedom of one
and α = 5%. Then, the result was significant towards the SAR-LVs model. Additionally, the spatial
autoregressive coefficient was negative.
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Figure 1. The education quality model.

Table 1. The estimation result of parameter and spatial autoregressive coefficient for the education model.

Variable Coefficient

School Infrastructure (b1) 2.3121
Socioeconomic condition (b2) 0.1286

Constant (b0) 9.6604

Spatial Autoregressive Coefficient (λ) −0.002

In general, the SAR-LVs model for the education quality of the senior high school is:
li = 9.6604 − 0.002

∑27
j = 1,i,j Wijl j + 2.3121k1 + 0.1286k2 , where li is the education quality in the

i-th district, k1 is the infrastructure, and k2 is socioeconomic condition.
The spatial dependence test result was significant. This means there was a correlation between

the education quality of the senior high schools in one district and the one in other contiguous
districts. The negative spatial autoregressive coefficient interpreted the opposite of the common
spillover effect, i.e., a district was supported by or gained a spillover effect of the neighboring districts’
education quality.

The spillover effect of the neighboring districts’ education quality was generally due to the
migration of students to find high-quality schools in the neighboring districts. As a result, the districts
that had high-quality schools, gained the spillover effect of quality education through high-achieving
students from the neighboring districts. In general, high-quality schools in Sumenep Regency are
public schools. Figure 2 draws the distribution of districts with and without public schools. To illustrate
the student migration, an example is provided in the Gapura district (see Figure 2). Table 2 shows
the number of junior high school graduates and new senior high school students for seven districts
in the same year, 2018, based on [23]. This table provides an overview of the migration data of
students entering senior high school among districts. The Gapura District was used as an example to
illustrate student migration (see Figure 2 and Table 2). The Gapura District has one public school and
six neighboring neighbors (queen contiguity). Based on Table 2, the Gapura District has 485 junior
high school graduates and 622 new high school students. This means that there was a migration of
students to the Gapura District.
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Figure 2. Distribution of public schools in Sumenep Regency.

Table 2. Number of students and public schools for the neighboring of Gapura district.

District Number of Public
Senior High Schools

Number of Junior High
School Graduate Students

Number of New Senior
High School Students

Kalianget 1 488 744
Kota Sumenep 3 1582 2041

Manding 0 201 93
Batuputih 0 226 143

Gapura 1 485 622
Batang Batang 0 552 360

Dungkek 0 409 156

The Gapura District received the spillover effect of quality education from neighboring districts,
especially those with no public schools. The quality spillover was due to schools in the Gapura district
having the opportunity to select the best students from the district itself or the neighboring districts.

The second case was the poverty model in East Java province, with an observation unit of
38 regencies. This model had one endogenous latent variable, namely poverty, and three exogenous
latent variables, namely Economy, Human Resource, and Health. Poverty indicators were the
percentage of the poor population (Y1), the index of poverty depth (Y2), and the index of poverty
severity (Y3). Indicators of economics were the percentage of poor people around 15 years old or
more who were unemployed (X1), the percentage of poor people aged 15 years old or more who
were working in agriculture (X2), and the percentage of households gaining Raskin (X3). Raskin is an
Indonesian subsidy program to provide rice for people who live under the poverty line. Indicators of
Human Resources were the percentage of poor people aged 15 years old and over who did not
complete elementary education (X4), the literacy rate of the poor aged from 15 to 55 years (X5), and the
participation rates in schools for the poor aged from 13 to 15 years (X6). Health indicators were
the percentage of women using KB (Family planning program) devices in poor households (X7),
the percentage of children under five in poorly immunized households (X8), the percentage of poor
households using drinking water (X9), and the percentage of poor households using private/together
latrines (X10). The model is shown in Figure 3.
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Figure 3. Model of poverty.

Latent variables were estimated as in the Equations (6) and (9), then were modeled as in the
Equation (11). The estimation of the model parameters as in the Equation (16) used the Matlab
software, and the results are shown in Table 3. The LM test based on Equation (14) used the Matlab
software, and the obtained value LMλ was −4965. The value of LMλ was compared to χ2 with
degrees of freedom of one and α = 5%. Then, the result was significant towards the SAR-LVs model.
Meanwhile, the spatial autoregressive coefficient was positive.

Table 3. The estimation result of parameter and spatial autoregressive coefficient for the poverty model.

Variable Coefficient

Economy (b1) 0.0742
Human Resource (b2) −0.0722

Health (b3) 0.0155
Constant (b0) 7.0881

Spatial Autoregressive Coefficient (λ) 0.2345

In general, the SAR-LVs model for the poverty is li = 7.0881 + 0.2345
∑38

j=1,i,j Wijl j + 0.0742k1 −

0.0722k2 + 0.0155k3, where li is poverty in the i-th regency, k1 is Economy, k2 is Human Resource,
and k3 is Health.

The spatial dependence test result was significant. This means there was a correlation between
poverty in one regency and the one in other contiguous regencies. The positive spatial autoregressive
coefficient interpreted the common spillover effect, i.e., a regency gives a poverty spillover effect to
the neighboring regencies. Figure 4 describes the poor people distribution in the East Java province
measured in percent. The percentage of poor people was based on the poverty data in [24] and was
clustered into four quartiles. The regency with the high percentage of poor people was categorized as
the first quartile (red zone), with 20.71–13.01%. On the other hand, the fourth quartile (green zone)
includes the regency with 7.13–3.80% of the poor group. The first quartile was the regency group
with the highest percentage of poor people, and so on until the fourth quartile was the regency group
with the lowest percentage of poor people. According to Figure 4, the location of regencies in the
first quartile was always close to the regencies in the first and the second quartile. This visualization
reinforces the results of the multiplier Lagrange test that there is a spatial effect where one regency
gives the influence of poverty on its neighboring regencies.
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The finding of this method provides value for policymakers relating to existing problems.
The first case was the negative spatial autoregressive coefficient for the education quality model.
It interpreted that a district was supported by or gained a spillover effect of the neighboring districts’
education quality through students’ migration. This case needs the policy to strive for quality
standardization for all schools. The second case was the positive spatial autoregressive coefficient for
the poverty model. It interpreted that a regency gives a poverty spillover effect to the neighboring
regencies. Policymakers need this information to assist at the locus of poverty appropriately.

4. Conclusions

The SAR-LVs model is a standard SAR model in which the independent and dependent variables
are latent variables. The standard SAR model is y∗ = λWy∗ + Xβ+ ε. The variable of y∗ is changed
by the endogenous factor score (η̂), and X is changed by the exogenous factor score (ξ̂). The estimation
of the latent variables uses the WLS method and assumes that the value of Λx and Θδ are constant.
Therefore, the SAR-LVs model can be modeled as l = K β+ λWl + ε, where η̂ = l and ξ̂ = K.

The distribution of K and l are K ∼ NT, p

(
eξt, IT ⊗

(
Λ′xΘ−1

δ Λx
)−1

)
and l ∼ NT

(
eηt,

(
Λ′y Θ−1

ε∗ Λy
)−1

IT

)
.

The variables of l and K are random. Thus, the function of l is f (l |K), so that the variable K is no
longer random but fixed. The error distribution is obtained through the properties of the expected
value and the variance of the error in the SAR-LVs model, namely ε ∼ NT ((I−λW)eηt − Kβ, Θ),

where Θ = (I−λW)
(
Λ′y Θ−1

ε∗ Λy
)−1

(I−λW)′. Based on its error distribution model, so under the null

hypothesis, the LM statistic is LMλ =
−(p(WKβ)′ε̃)

2

pd and follows the asymptotic distribution of X2
(1).

Some significant limitations of this study need to be considered. Firstly, the number of endogenous
latent variables is one. Future studies can be developed for the higher number of endogenous latent
variables. Secondly, the LM test developed was merely for SAR-LVs. Future studies can be developed
for a spatial error model with latent variables (SEM-LVs).
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Appendix A

Appendix A.1. Matrix Variate Normal Distribution

Definition A.1 based on [21] page 56.
The matrix variate normal distribution arises when sampling from the multivariate normal

population. Let x1, . . . , xN be a random sample of size N from Np(µ, Σ). Define the observation random
matrix as

X =


x11 x12 · · · x1N
x21 x22 · · · x2N

...
...

. . .
...

xp1 xp2 · · · xpN

 = (x1, x2, · · · , xN) =


x′1
x′2
...

x′p

 then X
′

∼ NN,P
(
eµ
′

, IN ⊗ Σ
)

where eNx1 = (1, . . . , 1)′

Theorem A.1 based on [21] page 56.
If X ∼ Np,n(M, Σ ⊗Ψ), then X

′

∼ Np,n
(
M
′

, Σ ⊗Ψ
)

Teorema A.2 based on [21] page 56.
If X ∼ Np,n(M, Σ ⊗Ψ), then the characteristic function of X is φX(Z) = etr

(
ιZ
′

M− 1/2Z
′

ΣZΨ
)

where ι =
√
−1

Appendix A.2. Properties of Matrix and Derivative of Matrix/Vector

Theorem B.1 based on [21] page 56.
tr(AB) = tr(BA) with Ap×q and Bq×p

Properties of derivative matrix/vector
B.2. ∂ln|X| = Tr

(
X−1∂X

)
B.3. ∂

(
X−1

)
= −X−1(∂X)X−1

B.4.
∂AT

(x)A(x)

∂x = 2
(
∂A(x)
∂x

)T
A(x)

B.5. ∂
∂s =

(
x−As)T(x−As) = −2AT(x−As)

B.6.
∂AT

(x)B(x)

∂x =
(
∂A(x)
∂x

)T
B(x) +

(
∂B(x)
∂x

)T
A(x)

Appendix A.3. Derivative of the Element of the Information Matrix for the SAR-LVs Model

1. The first partial derivative of the log-likelihood function L(λ,β, Θ; l) toλ based on the error distribution

in Equation (12) where Θ = Ap−1A
′

= p−1 A A
′

; p =
(
Λ′y Θ−1

ε∗ Λy
)
; A = (I− λW) and ε = Al−Kβ.

a. The first partial derivative of Θ to λ

∂λ
∂Θ

= p−1
∂
(
(I− λW)(I− λW)′

)
∂λ

= −p−1
(
W(I− λW)′ + (I− λW)W

′
)

∂λ
∂Θ

= −p−1
(
WA

′

+ AW
′
)

b. The first partial derivative of ln|Θ| to λ Based on B.2

∂ ln|Θ|
∂λ

= Tr
((

p−1AA
′
)−1 ∂Θ

∂λ

)
= Tr

(
p
(
p−1AA

′
)(
−p−1

(
WA

′

+ AW
′
)))

= −2Tr
(
A−1W

)
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c. The first partial derivative of In|A| to λ Based on B.2:

∂ ln|A|
∂λ

= Tr
(
(I− λW)−1 ∂(I− λW)

∂λ

)
= Tr

(
A−1W

)
d. The first partial derivative of A−1 to λ Based on B.3:

∂ ln A−1

∂λ
= −(I− λW)−1(−W)(I− λW)−1 = A−1WA−1

e. The first partial derivative of ε′Θ−1ε to λ

ε
′

Θ−1ε = [(Al−Kβ)′
(
p−1AA

′
)−1

(Al−Kβ) or ε′Θ−1ε = p
(
l−A−1Kβ

)′(
l−A−1Kβ

)
Based on B.4:

∂
(
ε
′

Θ−1ε
)

∂λ
= −2p

(
A−1WA−1Kβ

)′(
l−A−1Kβ

)
The first partial derivative of the log-likelihood function L(λ,β, Θ; l) to λ based on the error
distribution in Equation (12), point b, c, and d

∂L(λ,β, Θ; l)
∂λ

= −
1
2

(
−2Tr

(
A−1W

))
− Tr

(
A−1W

)
+ p

(
A−1WA−1Kβ

)′(
l−A−1Kβ

)
∂L(λ,β, Θ; l)

∂λ
= p

(
A−1WA−1Kβ

)′(
l−A−1Kβ

)
2. The first partial derivative of the log-likelihood function L(λ,β, Θ; l) to β based on the error

distribution in Equation (12) Based on B.5:

∂L(λ,β, Θ; l)
∂β

= p
(
A−1K

)′(
l−A−1Kβ

)
3. The second partial derivative ∂2l(λ,β,Θ;l)

∂λ2 Based on B.3:

∂2L(λ,β, Θ; l)
∂λ2 = p[2 (Kβ)′

((
A−1WA−1

)
A−1

(
A−1WA−1

))′(
l−A−1Kβ

)
−

(
A−1WA−1Kβ

)′(
A−1WA−1

)
(Kβ)]

4. The second partial derivative ∂2L(λ,β,Θ;l)
∂β∂β

′

∂2L(λ,β, Θ; l)

∂β∂β
′

= −p
(
A−1K

)′(
A−1K

)
5. The second partial derivative ∂2L(λ,β,Θ;l)

∂β∂λ

∂2L(λ,β, Θ; l)
∂β∂λ

= p
[(

l−A−1Kβ
)′(

A−1WA−1K
)
−

(
A−1WA−1Kβ

)′(
A−1K

)]
6. The element of the information matrix
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a. The Element (1,1), namely Ψ̃λλ

Ψ̃λλ = E
(
−
∂2L(λ,β, Θ; l)

∂λ2

)
Ψ̃λλ = p

[(
A−1WA−1Kβ

)′(
A−1WA−1

)
(Kβ) − 2(Kβ)′

((
A−1WA−1

)
A−1

(
A−1WA−1

))′
(
eηt −A−1Kβ

)]
if λ = 0 then

Ψ̃λλ = p
[
(WKβ)′(WKβ) − 2(WKβ)′W

(
eηt −A−1Kβ

)]
b. The Element (2,2), namely ψ̃ββ

ψ̃ββ = E
(
−
∂2L(λ,β, Θ; l)

∂β∂β′

)
= E

(
−

(
−p

(
A−1K

)′(
A−1K

)))
= p

(
A−1K

)′(
A−1K

)
if λ = 0 then ψ̃ββ = p

(
K
′

K
)

c. The Element (1,2), namely ψ̃λβ

ψ̃λβ = E
(
−
∂2L(λ,β, Θ; l)

∂λ∂β′

)
ψ̃λβ = p

[(
A−1WA−1Kβ

)′(
A−1K

)
−

(
eηt −A−1Kβ

)′(
A−1WA−1K

)]
if λ = 0 then ψ̃λβ = p

[
(WKβ)′K− (eηt −Kβ)′(WK)

]
d. The Element (2,1), Namely ψ̃βλ

ψ̃βλ = E
(
−
∂2L(λ,β, Θ; l)

∂β∂λ

)
ψ̃βλ = p

[(
A−1K

)′(
A−1WA−1Kβ

)
−

(
A−1WA−1K

)′(
eηt −A−1Kβ

)]
if λ = 0 then

ψ̃βλ = p
[
K
′

(WKβ) − (WK)′(eηt −Kβ)
]

7. The information matrix if λ = 0 then the information matrix is Ψ̃θ =

[
Ψ̃λλ

Ψ̃βλ

Ψ̃λβ

Ψ̃ββ

]
8. Invers of the information matrix when λ = 0 If the partition matrix is C =

[
C1 C2

C3 C4

]
then the

invers matrix is C−1 =

[
CE1 CE2

CE3 CE4

]
where CE1 =

(
C1 −C2C−1

4 C3
)−1

; CE2 =
(
−CE1C2C−1

4

)
;

CE3 = −C−1
4 C3CE1; and CE4 =

(
C−1

4 −C−1
4 C3CE2

)
The element (1,1) of the information matrix

invers is Ψ̃
−1
λλ =

(
Ψ̃λλ − Ψ̃λβ(Ψ̃ββ)

−1
Ψ̃βλ

)−1

Ψ̃
−1
λλ = (p(WKβ)′(WKβ) − 2(WKβ)′W

′

(eηt −Kβ) − p((WKβ)′(WKβ)−(eηt −Kβ)′

W(WKβ) − (WKβ)W
′

(eηt −Kβ) + (eηt −Kβ)′WW′ (eηt −Kβ)))−1

Ψ̃
−1
λλ = p−1

(
−(eηt −Kβ)′WW′(eηt −Kβ)

)−1
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Ψ̃
−1
λλ = −p−1

(
(eηt −Kβ)′WW′(eηt −Kβ)

)−1
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