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Abstract: In this paper, a way to build two-dimensional Schoenberg type operators with arbitrary
knots or with equidistant knots, respectively, is presented. The order of approximation reached
by these operators was studied by obtaining a Voronovskaja type asymptotic theorem and using
estimates in terms of second-order moduli of continuity.
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1. Introduction

The Schoenberg operators provide a concrete method for obtaining spline approximations of
functions. These operators have very good approximation properties. However, they are not very
present in the literature. The study of the positive linear Schoenberg operators was the subject of several
recent papers, among which we mention here Beutel, Gonska, Kacso and Tachev [1], Tachev [2,3],
and Tachev and Zapryanova [4]. In [1] variation-diminishing one-dimensional Schoenberg spline
operators, especially with equidistant knots and inequalities in terms of moduli of continuity,
were studied. An analysis of the second moment of one-dimensional Schoenberg spline operators
moment was presented. A discussion about the degree of simultaneous approximation for multivariate
case, more specifically for Boolean sums, was realized. Additionally, a similar discussion was presented
for tensor products of one-dimensional Schoenberg spline operators. In [2] a lower bound for the
second moment of one-dimensional Schoenberg spline operators is made. In [3] a Voronovskaja’s type
theorem for one-dimensional Schoenberg spline operators is presented. In [4] a generalized inverse
theorem for one-dimensional Schoenberg spline operators is established.

In practice, the use of the one-dimensional Schoenberg operators offers many advantages. This fact
was illustrated, for example, in the recent paper [5], in which these operators were applied for
improving the clear sky models used to estimate the direct solar irradiance, with influences of the
system design and financial benefits.

The subject of multivariate splines was approached by different methods and from various points
of view, such as in the papers written by: Curry and Schoenberg [6], Goodman and Lee [7], de Boor
and Hollig [8], Karlin et al. [9], Goodman [10], Chui [11], Schumaker [12], Conti and Morandi [13],
Ugarte et al. [14], and Groselj and Knez [15]. Curry and Schoenberg indicated in [6] that the multivariate
spline functions can be constructed from volumes of slices of polyhedra; therefore, papers can be
found that were written toward that direction. For example, this idea led to the recurrence relations
for multivariate splines presented by Karlin et al. in [9]. Goodman and Lee in [7] and Goodman
in [10] approached the subject of multidimensional Bernstein–Schoenberg operators depending on
m-dimensional volume. In [8] the subject of multidimensional B-splines is treated by de Boor and
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Hollig as the m-shadow of the polyhedral convex body included in Rn. In [11] the Box splines,
multivariate truncated powers and many other aspects of multivariate splines are studied by Chui.
Conti and Morandi used mixed splines to solve the interproximation problem for surfaces in the case of
scattered data in [13]. The aim of Ugarte et al. in the paper [14] was to propose different possibilities of
modeling the space–time interaction using one dimensional, two-dimensional and three dimensional
B-splines. In [15] Groselj and Knez introduced the notion of a balanced 10-split for the construction
of non-negative basis functions for the space of C1 quadratic splines and showed that the considered
split has potential to be used for the construction of C2 splines.

The aim of our paper is to consider a new approach in spline approximation in the two-dimensional
case, based on a two-dimensional version of Schoenberg operators. The two-dimensional Schoenberg type
operators are constructed by generalization of the one-dimensional Schoenberg operators. As a result of this
generalization we reach a particular form of tensor-product B-splines. The subject of the tensor-product
B-splines is treated in several papers, for example in [12].

2. Two-Dimensional Schoenberg Type Operators on Arbitrary Nodes

We define two-dimensional Schoenberg type operators as follows.
Let us consider the knot sequence ∆n,h

0 = α−h = α−h+1 = ... = α0 < α1 < α2 < ... < αn = αn+1 = ... = αn+h = 1, (1)

where n > 0, h > 0 and the knot sequence ∆m,k

0 = β−k = β−k+1 = ... = β0 < β1 < β2 < ... < βm = βm+1 = ... = βm+k = 1, (2)

where m > 0, k > 0.
The Greville abscissas associated with knot sequence ∆n,h are

ξi,h :=
αi+1 + αi+2 + ... + αi+h

h
, with − h ≤ i ≤ n− 1, (3)

and the Greville abscissas associated with knot sequence ∆m,k are

ζ j,k :=
β j+1 + β j+2 + ... + β j+k

k
, with − k ≤ j ≤ m− 1. (4)

The B-splines Ni,h(α) depending on ∆n,h are defined in the following mode:

Ni,h(α) = (αi+h+1 − αi)[αi, αi+1, ..., αi+h+1](· − α)h
+, −h ≤ i ≤ n− 1, (5)

and the B-splines Nj,k(β) depending on ∆m,k, by:

Nj,k(β) = (β j+k+1 − β j)[β j, β j+1, ..., β j+k+1](· − β)k
+, −k ≤ j ≤ m− 1. (6)

Remark 1. If α ∈ [αq, αq+1] and β ∈ [βr, βr+1] with 0 ≤ q ≤ n− 1, 0 ≤ r ≤ m− 1, then

Ni,h(α) = 0, for i < q− h or i ≥ q + 1, and Ni,h(α) ≥ 0, for q− h ≤ i ≤ q,

and
Nj,k(β) = 0, for j < r− k or j ≥ r + 1, and Nj,k(α) ≥ 0, for r− k ≤ j ≤ r.
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The following relations are well known:

n−1

∑
i=−h

Ni,h(α) = 1,
n−1

∑
i=−h

ξi,hNi,h(α) = α, for α ∈ [0, 1]. (7)

Analogous relations are fulfilled for Nj,k.
This notation—∆1 = ∆n,h, ∆2 = ∆m,k, ∆̃ = ∆1 × ∆2—is used; i.e.,

∆̃ := ∆̃h,k
n,m = {(αi, β j),−h ≤ i ≤ n + h,−k ≤ j ≤ m + k}. (8)

Definition 1. Two-dimensional Schoenberg type operator associated with ∆̃ has the form

(
S∆̃ ϕ

)
(α, β) =

n−1

∑
i=−h

m−1

∑
j=−k

Ni,h(α)Nj,k(β)ϕ(ξi,h, ζ j,k), (9)

where ϕ : [0, 1]× [0, 1]→ R, (α, β) ∈ [0, 1]2.

Remark 2. By taking into account Remark 1 it follows that if α ∈ [αq, αq+1], with 0 ≤ q ≤ n − 1 and
β ∈ [βr, βr+1] with 0 ≤ r ≤ m− 1, then

(
S∆̃ ϕ

)
(α, β) =

q

∑
i=q−h

r

∑
j=r−k

Ni,h(α)Nj,k(β)ϕ(ξi,h, ζ j,k).

Remark 3. Two-dimensional Schoenberg type operators are linear and positive like one-dimensional Schoenberg
operators. This follows immediately from the linearity and from the positivity of one-dimensional Schoenberg
operators. Additionally, obviously, S∆̃ is a polynomial of degree at most h in the variable α and with degree
at most k in variable β, on each rectangle [αi−1, αi]× [β j−1, β j], with 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m− 1.
Moreover S∆̃ is a B-spline in each variable.

Two-dimensional Schoenberg type operators admit partial continuous derivatives on [0, 1]× [0, 1], since(
∂i+j

∂αi∂βj (S∆̃ ϕ)

)
(α, β) =

n−1

∑
i=−h

∂i

∂αi Ni,h(α)
m−1

∑
j=−k

∂j

∂βj Nj,k(β)ϕ(ξi,h, ζ j,k), i, j ≥ 0.

Further, the functions e0, π1, π2 ∈ C([0, 1]2), defined by e0(α, β) = 1, π1(α, β) = α, π2(α, β) = β,
for (α, β) ∈ [0, 1]2 are considered. The following propositions result directly from Definition 1 and
relations (7).

Proposition 1. For (α, β) ∈ [0, 1]2 we have

(i) (S∆̃e0)(α, β) = 1;
(ii) (S∆̃π1)(α, β) = α; (S∆̃π2)(α, β) = β;
(iii) S∆̃(π1 · π2)(α, β) = αβ.

In the next proposition the notation e1(t) = t, t ∈ [0, 1] is used, and e0 denotes the constant
function equal to 1, on the both sets [0, 1] and [0, 1]2.

Proposition 2. For (α, β) ∈ [0, 1]2 we have

(i) (S∆̃(π1 − αe0))(α, β) = 0 (S∆̃(π2 − βe0))(α, β) = 0;
(ii) (S∆̃(π1 − αe0)(π2 − βe0))(α, β) = 0;
(iii) (S∆̃(π1 − αe0)

2)(α, β) = (S∆1(e1 − αe0)
2)(α);

(iv) (S∆̃(π2 − βe0)
2)(α, β) = (S∆2(e1 − βe0)

2)(β).
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Theorem 1. For the two-dimensional Schoenberg type operators

(S∆̃ ϕ)(α, β) =
n−1

∑
i=−h

m−1

∑
j=−k

Ni,h(α)Nj,k(β)ϕ(ξi,h, ζ j,k)

to converge uniformly on [0, 1]× [0, 1] to continuous function ϕ it is sufficient that for any η > 0

∑ ∑‖(ξi,h ,ζ j,k)−(α,β)‖<η
Ni,h(α)Nj,k(β)→ 1, (10)

uniformly for 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 when n→ ∞ and m→ ∞.

Proof. We assume that condition (10) is fulfilled. Since ϕ is continuous on [0, 1]× [0, 1], for ∀ε > 0,
∃ηε > 0 such that for any (α1, β1) ∈ [0, 1] × [0, 1] and (α2, β2) ∈ [0, 1] × [0, 1] with ‖(α2, β2) −
(α1, β1)‖ < ηε one has |ϕ(α2, β2)− ϕ(α1, β1)| < ε

2 . Additionally ∃M > 0 such that |ϕ(α, β)| ≤ M,
(α, β) ∈ [0, 1]2.

Let nε, mε ∈ N such that:

0 < 1−∑ ∑‖(ξi,h ,ζ j,k)−(α,β)‖<ηε
Ni,h(α)Nj,k(β) <

ε

4M
, for n ≥ nε, m ≥ mε.

Then, for such n and m, we have

|(S∆̃ ϕ)(α, β)− ϕ(α, β)|

=
∣∣∣∑ ∑‖(ξi,h ,ζ j,k)−(α,β)‖<ηε

(ϕ(ξi,h, ζ j,k)− ϕ(α, β))

+∑ ∑‖(ξi,h ,ζ j,k)−(α,β)‖≥ηε
(ϕ(ξi,h, ζ j,k)− ϕ(α, β))

∣∣∣
≤ ε

2∑ ∑‖(ξi,h ,ζ j,k)−(α,β)‖<ηε
+ 2M∑ ∑‖(ξi,h ,ζ j,k)−(α,β)‖≥ηε

<
ε

2
+ 2M

ε

4M
= ε.

The norm of the knot sequence ∆̃ is given by

‖∆̃‖ := ‖∆1‖+ ‖∆2‖, (11)

where ‖∆1‖ = maxi(αi+1 − αi) and ‖∆2‖ = maxi(βi+1 − βi).
A quantitative version of the degree of approximation can be given using the first order modulus

of continuity, defined as follows:

ω1(ϕ, ρ) := sup{|ϕ(u1, u2)− ϕ(v1, v2)|, (u1, u2), (v1, v2) ∈ [0, 1]2,

‖(u1 − v1, u2 − v2)‖ ≤ ρ}, (12)

where ϕ ∈ C([0, 1]2), ρ > 0.

Theorem 2. For any ϕ ∈ C([0, 1]2), operators S∆̃ given in (9) satisfy inequality

‖(S∆̃ ϕ)− ϕ‖ ≤ `ω1(ϕ, ‖∆̃‖), (13)

where ` = 1
2 max{h + 1, k + 1}.

Proof. Let the continuous function ϕ and let (α, β) ∈ [0, 1]2. There exist q ∈ {0, 1, ..., n − 1} and
r ∈ {0, 1, ..., m− 1} so that (α, β) ∈ [αq, αq+1]× [βr, βr+1].
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Let q− h ≤ i ≤ q and r− k ≤ j ≤ r. Then

α− ξi,h ≤ αq+1 −
αi+1 + . . . + αi+h

h
≤ αq+1 −

αq−h+1 + . . . + αq

h

≤ 1
h
(h + (h− 1) + . . . + 1)‖∆1‖ =

h + 1
2
‖∆1‖,

and

α− ξi,h ≥ αq −
αi+1 + . . . + αi+h

h
≥ αq −

αq+1 + . . . + αq+h

h

≥ −1
h
(1 + 2 + . . . + h)‖∆1‖ = −

h + 1
2
‖∆1‖.

Therefore |α− ξi,h| ≤ h+1
2 ‖∆1‖. Similarly |β− ζ j,k| ≤ k+1

2 ‖∆2‖. Then

‖(α, β)− (ξi,h, ζ j,k)‖ ≤ |α− ξi,h|+ |β− ζ j,k| ≤
h + 1

2
‖∆1‖+

k + 1
2
‖∆2‖ ≤ `‖∆̃‖.

From Remark 2 it results

|(S∆̃ ϕ)(α, β)− ϕ(α, β)| =

∣∣∣∣∣ q

∑
i=q−h

r

∑
j=r−k

Ni,h(α)Nj,k(β)ϕ(ξi,h, ζ j,k)− ϕ(α, β)

∣∣∣∣∣
≤

q

∑
i=q−h

r

∑
j=r−k

Ni,h(α)Nj,k(β)|ϕ(ξi,h, ζ j,k)− ϕ(α, β)|

≤
q

∑
i=q−h

r

∑
j=r−k

Ni,h(α)Nj,k(β)ω1(ϕ, ‖(α, β)− (ξi,h, ζ j,k)‖)

≤ ω1(ϕ, `‖∆̃‖)
≤ `ω1(ϕ, ‖∆̃‖).

Corollary 1. If

‖∆̃‖ → 0,

then two-dimensional Schoenberg type operators

(S∆̃ ϕ)(α, β) =
n−1

∑
i=−h

m−1

∑
j=−k

Ni,h(α)Nj,k(β)ϕ(ξi,h, ζ j,k)

converge uniformly on [0, 1]× [0, 1] to ϕ, for any continuous function ϕ.

In [16], the subject of the second moment of variation-diminishing splines is approached.
The second moment of the second degree Schoenberg one-dimensional operators was established
in [17] and of the third degree Schoenberg one-dimensional operators in [18]. Further on, the form of
second moment of two-dimensional Schoenberg type operators with h = k = 3 is presented.
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Theorem 3. The second moment of the two-dimensional Schoenberg type operators S∆̃ for h = k = 3, is(
S∆̃
(
(π1 − αe0)

2 + (π2 − βe0)
2))(α, β)

=
1
9

[αq+3 − αq−1

αq+2 − αq
·
(α− αq)3

αq+1 − αq
−

αq+2 − αq−2

αq+1 − αq−1
·
(α− αq+1)

3

αq+1 − αq

− ∑
q−1≤i<j≤q+2

(α− αi)(α− αj) +
βr+3 − βr−1

βr+2 − βr
· (β− βr)3

βr+1 − βr

− βr+2 − βr−2

βr+1 − βr−1
· (β− βr+1)

3

βr+1 − βr
− ∑

r−1≤i<j≤r+2
(β− βi)(β− β j)

]
(14)

where (α, β) ∈ [αq, αq+1]× [βr, βr+1] with 0 ≤ q ≤ n− 1 and 0 ≤ r ≤ m− 1.

Proof. By applying the linearity, Proposition 2(iii) and (iv) follow and the result given in [18].

3. Two-Dimensional Schoenberg Type Operators with Equidistant Knots

Now the case h = k = 3, m = n and equidistant knots is analyzed. More precisely,
the equidistant knots are αi = i

n , 0 ≤ i ≤ n, and the extra-knots are α−3 = α−2 = α−1 = 0 and
αn+1 = αn+2 = αn+3 = 1, respectively β j =

j
n , 0 ≤ j ≤ n, with extra-knots β−3 = β−2 = β−1 = 0 and

βn+1 = βn+2 = βn+3 = 1.
The Greville abscissas are in this case

ξi,3 :=
αi+1 + αi+2 + αi+3

3
=


αi+2, i ∈ {−3, . . . , n− 1} \ {−2, n− 2}

1
3n , i = −2,

3n−1
3n i = n− 2

(15)

respectively

ζ j,3 :=
β j+1 + β j+2 + β j+3

3
=


β j+2, j ∈ {−3, . . . , n− 1} \ {−2, n− 2}

1
3n , j = −2,

3n−1
3n j = n− 2.

(16)

The B-splines are

Ni,3(α) = (αi+4 − αi)[αi, αi+1, αi+2, αi+3, αi+4](· − α)3
+, (17)

respectively

Nj,3(β) = (β j+4 − β j)[β j, β j+1, β j+2, β j+3, β j+4](· − β)3
+. (18)

Two-dimensional Schoenberg type operators, with h = k = 3 and m = n, with equidistant knots
is denoted by S̃n,3:

(S̃n,3 ϕ)(α, β) =
n−1

∑
i=−3

n−1

∑
j=−3

Ni,3(α)Nj,3(β)ϕ(ξi,3, ζ j,3), (19)

and the one-dimensional k degree Schoenberg operators with equidistant knots are denoted by Sn,k.

Lemma 1. The second moment of the two-dimensional Schoenberg type operators S̃n,3, with n ≥ 5 and
(α, β) ∈ [0, 1]× [0, 1], verifies the relation

(
S̃n,3

(
(π1 − αe0)

2)(α, β) ≤ 1
3n2 . (20)



Symmetry 2020, 12, 1364 7 of 12

Moreover,

(
S̃n,3

(
(π1 − αe0)

2)(α, β) =
1

3n2 , (21)

for α ∈
[ 2

n , n−2
n
]

and β ∈ [0, 1].
Similar relations are true for

(
S̃n,3

(
(π2 − βe0)

2)(α, β).

Proof. The exact form of the second moment of the one-dimensional Schoenberg operators was
established in [18]. We have the next cases:

(i) For χ ∈ [0, 1
n ] we have (Sn,3(e1 − χe0)

2)(χ) = − χ3n
18 + χ

3n with the maximum 2
√

2
9n2 ≤ 1

3n2 ;

(ii) For χ ∈ [ 1
n , 2

n ] we have (Sn,3(e1 − χe0)
2)(χ) = χ3n

18 −
χ2

3 + 2χ
3n −

1
9n2 , which is an increasing

function on [ 1
n , 2

n ] with the maximum 1
3n2 ;

(iii) For χ ∈ [ 2
n , n−2

n ] we have (Sn,3(e1 − χe0)
2)(χ) = 1

3n2 .

By symmetry, the inequality (Sn,3(e1 − χe0)
2)(χ) ≤ 1

3n2 is also obtained for α ∈ [ n−2
n , 1].

Finally Proposition 2-(iii) can be applied. In the case of
(
S̃n,3

(
(π2 − βe0)

2)(α, β) Proposition 2-(iv)
can be applied .

Lemma 2. For n ≥ 5 one has

(
S̃n,3

(
(π1 − αe0)

4 + (π2 − βe0)
4))(α, β) ≤ 8

3n4 . (22)

Proof. From [3] we have

(Sn,k(e1 − αe0)
4)(α) ≤

( k + 1
2n

)2
(Sn,k(e1 − αe0)

2)(α).

Therefore, (
S̃n,3

(
(π1 − αe0)

4 + (π2 − βe0)
4))(α, β)

≤
( 2

n

)2(
S̃n,3

(
(π1 − αe0)

2 + (π2 − βe0)
2))(α, β) ≤ 2 · 4

n2 ·
1

3n2 =
8

3n4 .

The Voronovskaja type theorems are a main topic in studying the convergence properties of the
sequences of linear operators. We mention only [3,19–22]. For two-dimensional Schoenberg type
operators S̃n,3, we obtain the following Voronovskaja type theorem.

Theorem 4. The following limit is true:

lim
n→∞

n2((S̃n,3 ϕ)(α, β)− ϕ(α, β)
)
=

1
6

[∂2 ϕ

∂α2 (α, β) +
∂2 ϕ

∂β2 (α, β)
]
. (23)

for any ϕ ∈ C2([0, 1]2), (α, β) ∈ (0, 1)2.
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Proof. From Taylor’s formula, for any (γ, θ) ∈ [0, 1]× [0, 1] it follows that

ϕ(θ, γ) = ϕ(α, β) +
∂ϕ

∂α
(α, β)(θ − α) +

∂ϕ

∂β
(α, β)(γ− β)

+
1
2

∂2 ϕ

∂α2 (α, β)(θ − α)2 +
∂2 ϕ

∂α∂β
(α, β)(θ − α)(γ− β)

+
1
2

∂2 ϕ

∂β2 (α, β)(γ− β)2 + R((θ, γ), (α, β)), (24)

with the remainder

R((θ, γ), (α, β)) = ‖(θ − α, γ− β)‖2g(θ, γ), (25)

where g(θ, γ)→ 0 when (θ, γ)→ (α, β).
Applying operator S̃n,3 in relation (24) and taking into account Proposition 2 results in

(S̃n,3 ϕ)(θ, γ) = ϕ(α, β)

+
1
2

∂2 ϕ

∂α2 (α, β)(S̃n,3((π1 − αe0)
2)(α, β) +

1
2

∂2 ϕ

∂β2 (α, β)(S̃n,3(π2 − βe0)
2)(α, β)

+
(
S̃n,3(R((θ, γ), (α, β)))

)
(α, β). (26)

Let ε > 0. Then there is η > 0 so that |g(θ, γ)| < ε if ‖(θ − α, γ− β)‖ < η.

It takes place that

|g(θ, γ)| ≤ ε +
M
η2 ‖(θ − α, γ− β)‖2, (27)

where (θ, γ) ∈ [0, 1]× [0, 1], when M = ‖g‖.

We have ‖(θ − α, γ− β)‖2 = (θ − α)2 + (γ− β)2 and ‖(θ − α, γ− β)‖4 ≤ 2(θ − α)4 + 2(γ− β)4.
Then,

|R((θ, γ), (α, β))| ≤ ε
(
(θ − α)2 + (γ− β)2)+ 2M

η2

(
(θ − α)4 + (γ− β)4).

(28)

From the relation (28) it follows that∣∣(S̃n,3
(

R((θ, γ), (α, β))
))
(α, β)

∣∣ ≤ (S̃n,3
(∣∣R((θ, γ), (α, β))

∣∣))(α, β)

< ε
((

S̃n,3(π1 − αe0)
2)(α, β) +

(
S̃n,3(π2 − βe0)

2)(α, β)
)

+
2M
η2

((
S̃n,3(π1 − αe0)

4)(α, β) +
(
S̃n,3(π2 − βe0)

4)(α, β)
)

. (29)

From Lemmas 1 and 2 applied in (29), one has

|
(
S̃n,3

(
R((θ, γ), (α, β))

))
(α, β)| ≤ ε

2
3n2 +

2M
η2 ·

8
3n4 .

Therefore,

lim
n→∞

n2(S̃n,3
(

R((θ, γ), (α, β))
))
(α, β) = 0. (30)
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Since (α, β) ∈ (0, 1)2, for sufficiently great n we have α, β ∈
[ 2

n , n−2
n
]
. Then, for such n from

Lemma 1 it follows that (S̃n,3((π1 − αe0)
2)(α, β) = (S̃n,3((π2 − βe0)

2)(α, β) = 1
3n2 . Replacing these

in (26) and taking into account relation (30), Equation (23) is immediate.

Moduli of continuity are a powerful tool in evaluating the approximation order. To evaluate
the approximation order through the operators S̃n,3 we use general evaluations, expressed with
second-order moduli of continuity, demonstrated in [23]. These give a finer evaluation than the
evaluations with the first order modulus. For this we introduce the following notation. Let (X, ‖ · ‖X)

be a normed space and D ⊂ X be a compact and convex set. Let e0 : X → R, e0(t) = 1, t ∈ D.
If ϕ ∈ C(X,R) and h > 0, then the usual second-order modulus of a function ϕ ∈ C(X,R) is

defined by

ω̃2(ϕ, h) := sup
{∣∣∣ϕ(u)− 2 f

(u + v
2

)
+ ϕ(v)

∣∣∣, u, v ∈ D, ‖u− v‖X ≤ 2h
}

. (31)

With these elements, a particular version of a more general result given in [23] can be expressed
in the form:

Theorem 5. Let L : C(X,R) → C(X,R) be a positive linear operator. Suppose that X is finite dimensional
space with dim X = p. Let x ∈ X. Suppose also that

(Lψ)(x) = ψ(x), for all affine functions ψ : X → R.

then
|(Lϕ)(x)− ϕ(x)| ≤

(
p(Le0)(x) +

1
2h2 (L‖ · −x‖2

X)(x)
)

ω̃2(ϕ, h), (32)

for any ϕ ∈ C(D,R), h > 0.

In the case of operators S̃n,3 we get:

Theorem 6.

|(S̃n,3 ϕ)(α, β)− ϕ(α, β)| ≤
(

2 +
1

3h2n2

)
ω̃2(ϕ, h), (33)

where ϕ ∈ C([0, 1]2), h > 0, (α, β) ∈ [0, 1]2, n ∈ N, n ≥ 5.
Consequently:

‖(S̃n,3 ϕ)− ϕ‖ ≤ 7
3

ω̃2

(
ϕ,

1
n

)
, ϕ ∈ C([0, 1]2), n ∈ N, n ≥ 5. (34)

Proof. We take X = R2, p = 2, D = [0, 1]× [0, 1]. Therefore

|(S̃n,3 ϕ)(α, β)− ϕ(α, β)|

≤
(

2(Sn,3e0)(α, β) +
1

2h2 (Sn,3((π1 − αe0)
2 + (π2 − βe0)

2))(α, β)
)

ω̃2(ϕ, h)

=
(

2 +
1

3h2n2

)
ω̃2(ϕ, h),

where h > 0, (α, β) ∈ [0, 1]× [0, 1].
The particular case is obtained if h = 1

n is chosen.
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In [23] an other second-order global continuity modulus is defined:

ω̃?
2 (ϕ, h) = sup

{∣∣∣ n

∑
i=1

λi f (αi)− ϕ(α)
∣∣∣, α ∈ D, αi ∈ D, ‖αi − α‖X ≤ h,

λi ∈ (0, 1), 0 ≤ i ≤ n, λ1 + ... + λn = 1
}

, (35)

where ϕ ∈ C(D,R), D ⊂ X is a compact and convex set in the normed space X and h > 0.
For a more general result given in [23], in a particular case we have the next estimate, which does

not depend on the dimension of the space X.

Theorem 7. Let L : C(X,R) → C(X,R) be a positive linear operator. Suppose that X is finite dimensional
space. Let x ∈ X. Suppose also that

(Lψ)(x) = ψ(x), for all affine functions ψ : X → R,

then
|(Lϕ)(x)− ϕ(x)| ≤

(
(Le0)(x) +

1
h2 (L‖ · −x‖2

X)(x)
)

ω̃?
2 (ϕ, h), (36)

for any ϕ ∈ C(D,R), h > 0.

Applying this theorem to operators S̃n,3 we get:

Theorem 8. For a function ϕ continue on [0, 1]× [0, 1] and h > 0 we have

|(S̃n,3 ϕ)(α, β)− ϕ(α, β)| ≤
(

1 +
2

3n2h2

)
ω̃?

2 (ϕ, h).

Consequently

‖(S̃n,3 ϕ)− ϕ‖ ≤ 5
3

ω̃?
2

(
ϕ,

1
n

)
, ϕ ∈ C([0, 1]× [0, 1]), n ∈ N. (37)

Proof. The proof is similar to the proof of Theorem 6.

Remark 4. We can make a comparison between the order of approximation reached by the two-dimensional
Schoenberg type operators S̃n,3 and that obtained by the two-dimensional Bernstein operators of degree n,
which are given by

(Bn ϕ)(α, β) =
n

∑
i=0

n

∑
j=0

ϕ

(
i
n

,
j
n

)
pn,i(α)pn,j(β), ϕ : [0, 1]2 → R, (α, β) ∈ [0, 1]2, n ∈ N, (38)

where pn,i(t) = (n
i )t

i(1− t)n−i, for t = α, β. These operators are the most common approximation polynomial
operators.

For these, the following relation is well known:

(Bn((π1 − α)2 + (π2 − β)2))(α, β) =
α(1− α)

n
+

β(1− β)

n
≤ 1

2n
, (α, β) ∈ [0, 1]2, n ∈ N.
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Thus, if for a function ϕ : [0, 1]2 → R, its values at (n + 1)2 knots
(

i
n , j

n

)
, 0 ≤ i, j ≤ n are known,

then applying two-dimensional Bernstein operators we get:

‖(Bn ϕ)− ϕ‖ ≤ 5
2

ω̃2

(
ϕ,

1√
2n

)
, ϕ ∈ C([0, 1]2), n ∈ N, (39)

‖(Bn ϕ)− ϕ‖ ≤ 3
2

ω̃?
2

(
ϕ,

1√
2n

)
, ϕ ∈ C([0, 1]2), n ∈ N. (40)

On the other hand, if the values of function ϕ are known at (n + 3)2 knots (ξi, ζ j), −3 ≤ i, j ≤ n− 1,

where ξi, ζ j ∈
{

0, 1
3n , 1

n , 2
n , . . . , n−1

n , 3n−1
3n , 1

}
(see (15) and (16)), then applying two-dimensional Schoenberg

operators S̃n,3 given in (19) it results relations (34) and (37). Thus, when using the same tools of measuring
for the order of approximations, the advantage is clearly in the favor of Schoenberg operators. Additionally,
the volume of computations and the rounding errors are higher in the case of Bernstein operators. Only the
smoothness of the image (Bn ϕ) is better than the smoothness of (S̃n,3 ϕ). However, for practical applications,
the fact that (S̃n,3 ϕ) has continuous partial derivatives of degree 2 offers a sufficient order of smoothness.

4. Conclusions

In this study, a definition of two-dimensional Schoenberg type operators and their properties
has been established. The definition was obtained by generalizing the one-dimensional Schoenberg
operators’ formula. The exact forms of the second moment of two-dimensional Schoenberg type
operators on arbitrary knots, and on equidistant knots, respectively, alongside a Voronovskaja type
theorem, are given. The study presented here also contains estimates with moduli of continuity.

The extension of the Schoenberg operators to the two-dimensional case increases significantly the
applicability area of the Schoenberg approximation method. The two-dimensional Schoenberg type
operators S̃n,3 generate sufficient smooth surfaces for practical applications and also offer a very good
order of approximation of functions. An important advantage of the definition of two-dimensional
Schoenberg type operators established in this study consists of the fact that they have a simple form,
and this can lead to their easy application in practice.
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