
symmetryS S

Article

A Modified Median String Algorithm for Gene
Regulatory Motif Classification

Mohammad Shibli Kaysar * and Mohammad Ibrahim Khan

Department of Computer Science and Engineering, Chittagong University of Engineering and Technology,
Chittagong 4349, Bangladesh; muhammad_ikhan@cuet.ac.bd
* Correspondence: shibli@iub.edu.bd

Received: 25 July 2020; Accepted: 12 August 2020; Published: 14 August 2020
����������
�������

Abstract: Consensus string is a significant feature of a deoxyribonucleic acid (DNA) sequence.
The median string is one of the most popular exact algorithms to find DNA consensus. A DNA
sequence is represented using the alphabet Σ= {a, c, g, t}. The algorithm generates a set of all the 4l

possible motifs or l-mers from the alphabet to search a motif of length l. Out of all possible l-mers,
it finds the consensus. This algorithm guarantees to return the consensus but this is NP-complete
and runtime increases with the increase in l-mer size. Using transitional probability from the Markov
chain, the proposed algorithm symmetrically generates four subsets of l-mers. Each of the subsets
contains a few l-mers starting with a particular letter. We used these reduced sets of l-mers instead of
using 4l l-mers. The experimental result shows that the proposed algorithm produces a much lower
number of l-mers and takes less time to execute. In the case of l-mer of length 7, the proposed system is
48 times faster than the median string algorithm. For l-mer of size 7, the proposed algorithm produces
only 2.5% l-mer in comparison with the median string algorithm. While compared with the recently
proposed voting algorithm, our proposed algorithm is found to be 4.4 times faster for a longer l-mer
size like 9.

Keywords: DNA consensus; markov chain; median string algorithm; pattern recognition

1. Introduction

Within the gene, there are short DNA sequences that control the organic phenomenon. These short
DNA sequences are known as gene regulatory binding motifs. It is very difficult to identify those short
motifs. Those are solely 6–15 nucleotide pairs long. Regulatory motifs don’t have any specific point to
begin and stop. These motifs can start from and stop anywhere within the sequence. A restrictive
motif is indistinguishable from an equivalent random sequence. It is a specific pattern that happens
more often than expected beneath the background sequence. The location of such a pattern may differ
from one sample to another. In addition, the frequency of a particular pattern may differ from one
sequence to another. Discovery of such a regulatory motif from a DNA sequence therefore involves
finding such a continuation of the pattern [1]; this can be illustrated in Figure 1.

DNA sequences are composed of the nitrogen bases adenine, cytosine, thiamin, and guanine.
These four bases are represented by four symbols a, c, g, and t. Finding a specific motif from a DNA
sequence incurs a search for a short pattern over the alphabet Σ = {a, c, g, t}. The motif search process
emphasizes two points: (a) a way to figure out the sequence motif by the application of a proper model;
(b) an efficient way to formulate an algorithm for motif finding. The foremost unremarkably used
models for motif representation are position weight matrices (PWM) [2] and consensus sequences [3].
The position weight metrics system generally takes a shorter time to report. These metrics use statistical
methods but there is no guarantee about finding a global optimum [4–6]. The exact algorithms,
which use consensus sequences to represent motifs, are sure to report all (l, d) motifs by traversing the

Symmetry 2020, 12, 1363; doi:10.3390/sym12081363 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/12/8/1363?type=check_update&version=1
http://dx.doi.org/10.3390/sym12081363
http://www.mdpi.com/journal/symmetry

Symmetry 2020, 12, 1363 2 of 15

full search area. Most of the exact algorithms are driven by patterns. In the case of pattern-driven
algorithms, the search space is O(|Σ|l). It rises dramatically with the increment of |Σ|. As a consequence,
most of the existing exact algorithms have been designed only for looking for motifs in deoxyribonucleic
acid sequences wherever |Σ|=4, and that they cannot search low-conserved motifs within a reasonable
time within the data sets over larger alphabets, like the protein data sets wherever |Σ| = 20.

Symmetry 2020, 12, x FOR PEER REVIEW 2 of 15

driven algorithms, the search space is O(|Σ|l). It rises dramatically with the increment of |Σ|. As a
consequence, most of the existing exact algorithms have been designed only for looking for motifs in
deoxyribonucleic acid sequences wherever |Σ|=4, and that they cannot search low-conserved motifs
within a reasonable time within the data sets over larger alphabets, like the protein data sets wherever
|Σ|=20.

(a)

(b)

Figure 1. Illustration of consensus string: (a) Aligning the DNA sequences; (b) The most common and
most frequent sequence is the consensus string.

To increase the capability of the exact algorithms for larger alphabets, Ref. [7] proposed the idea
of the motif stem within the field of motif search. The consensus is a representative string of a given
set S of strings. This is sometimes called the closest string or center string. In the case of multiple
string comparison, the consensus is one of the major issues. It has been explored elaborately [8–15] to
address several questions arising from computational biology. Though finding the consensus
sequence is an NP-complete problem, researchers even have developed fixed-parameter algorithms
[10,16–18], approximation algorithms [13,17,19–23] and algorithms for a short range of strings
[10,24,25]. All the fixed-parameter algorithm shows how to solve an NP-complete problem in linear
time in the case of consensus search. Given k sequences of equal length and a positive integer d, find
a “closest string” s such that none of the given sequences has a hamming distance longer than d from
s. The closest string is one of the prime obstacles in consensus analysis. Solving the closest string is
an NP-complete problem. The authors of [10] and [16] proposed an algorithm to solve this problem
in polynomial time. In addition, the authors of [17] proposed an exact algorithm to solve the closest
string problem with time complexity O(n|Σ| O(d)), where Σ is the alphabet. The 1-mismatch problem
is the determination of all the maximal sections from an alignment where there exists a “center”
string. The inside of the section alignment rows are within Hamming distance 1 from the center.
Solving the center string is also NP-complete. The authors of [18] introduced a polynomial-time
algorithm to solve the center string problem. In [13], an application of a genetic algorithm to solve the
closest string problem was proposed. A polynomial-time approximation algorithm was proposed in [19].
An approximation algorithm for solving center string problem was introduced in [20]. An approximation
scheme for the hamming clustering problem was proposed in [21]. A comprehensive study of all recent
research in the field of motif search is summarized in [25]. Some new algorithms have been proposed.
Among them, oligonucleotide analysis [26], SLI-REST [7], MCES [27], Pruner [28] and Voting [29]
algorithms are the most recent.

Among all the algorithms, the median string algorithm provides the highest level of guarantee that
it must find the consensus. That is because the median string is a brute force algorithm. The only thing it

Figure 1. Illustration of consensus string: (a) Aligning the DNA sequences; (b) The most common and
most frequent sequence is the consensus string.

To increase the capability of the exact algorithms for larger alphabets, Ref. [7] proposed the idea
of the motif stem within the field of motif search. The consensus is a representative string of a given
set S of strings. This is sometimes called the closest string or center string. In the case of multiple
string comparison, the consensus is one of the major issues. It has been explored elaborately [8–15] to
address several questions arising from computational biology. Though finding the consensus sequence
is an NP-complete problem, researchers even have developed fixed-parameter algorithms [10,16–18],
approximation algorithms [13,17,19–23] and algorithms for a short range of strings [10,24,25]. All the
fixed-parameter algorithm shows how to solve an NP-complete problem in linear time in the case of
consensus search. Given k sequences of equal length and a positive integer d, find a “closest string”
s such that none of the given sequences has a hamming distance longer than d from s. The closest
string is one of the prime obstacles in consensus analysis. Solving the closest string is an NP-complete
problem. The authors of [10] and [16] proposed an algorithm to solve this problem in polynomial time.
In addition, the authors of [17] proposed an exact algorithm to solve the closest string problem with
time complexity O(n|Σ| O(d)), where Σ is the alphabet. The 1-mismatch problem is the determination
of all the maximal sections from an alignment where there exists a “center” string. The inside of the
section alignment rows are within Hamming distance 1 from the center. Solving the center string is
also NP-complete. The authors of [18] introduced a polynomial-time algorithm to solve the center
string problem. In [13], an application of a genetic algorithm to solve the closest string problem was
proposed. A polynomial-time approximation algorithm was proposed in [19]. An approximation
algorithm for solving center string problem was introduced in [20]. An approximation scheme for the
hamming clustering problem was proposed in [21]. A comprehensive study of all recent research in the
field of motif search is summarized in [25]. Some new algorithms have been proposed. Among them,
oligonucleotide analysis [26], SLI-REST [7], MCES [27], Pruner [28] and Voting [29] algorithms are the
most recent.

Among all the algorithms, the median string algorithm provides the highest level of guarantee
that it must find the consensus. That is because the median string is a brute force algorithm. The only
thing it lacks is that it takes a long time to execute. The median string algorithm searches all the |Σ|l

l-mers. As the l-mer size grows, the execution time grows exponentially. As the size of the alphabet and
l-mer size both grow, the execution time makes the median sting an inferior algorithm. In this paper,

Symmetry 2020, 12, 1363 3 of 15

we used a Markov chain to reduce the search space. As a result, the execution time reduces dramatically.
We combined the statistical method to reduce the search space of an exact algorithm. We got the same
output within a shorter period. Experiments indicate our proposed algorithm executes faster than
the median string algorithm. Furthermore, the paper includes mathematical proof about why this
method will produce the same output as that of the brute force algorithm. Finally, we compared the
execution time of our proposed algorithm with the execution time of the voting algorithm for motif
search. We found our proposed algorithm is faster than the voting algorithm for longer l-mer size.

2. Background Information

2.1. Median String Algorithm for Consensus Sequence

The input parameters of the median string algorithm are a set of DNA sequences, number of
sequences, number of nucleotides in each sequence, and the length of the motif to be searched. A set
of t number of DNA sequences of length n and the length of the motif to be searched l are included.
The algorithm produces all possible motifs of length l. Since DNA sequences are composed of four
types of nucleotides, the number of all possible l-mers is 4l. It then takes one l-mer, compares the
nucleotides of the l-mer with the l nucleotide starting from the first nucleotide of the first sequence,
and calculates the distance. After that, it shifts one nucleotide right, places the l-mer, and calculates the
distance. The process continues up to the end of the sequence. The minimum distance is the score
for the l-mer with the sequence. In this way, scores for the l-mer with all the sequences are calculated.
The sum of scores is the score for the l-mer with the set of DNA sequences. The scores for all the
l-mers are calculated using the same process. The l-mer with the lowest score is the consensus string.
The algorithm is listed below:

Algorithm 1: Median String Search

{
inputs: DNA,t,n,l
output: bestFit_Motif
procedure:
MedianStringSearch (DNA, t, n, l)

bestFit_Motif← AAA . . . A
bestFit_Score←∞
for each l-mer s from AAA . . . A to TTT . . . T

if TotalFit_Score(s, DNA) < bestFit_Score
bestFit_Score← TotalFit_Score(s, DNA)
bestFit_Motif← s

return bestFit_Motif
}

The median string algorithm examines all the 4l combinations of l-mers. Consequently, the number
of candidate l-mers, as well as execution time, grows exponentially with the rise of l; however,
a significant amount of the generated 4l l-mers, will not be the consensus. Even some of them can be
absent in a particular sequence. Those motifs were generated as we were interested in generating
all possible combinations. For those motifs too, the median string still performs the calculation and
contributes to the time complexity. In this paper, we introduced the Markov chain to exclude infrequent
candidate motifs. The exclusion of those unnecessary candidate motifs leads to a smaller search space
and reduces the time complexity of the median string algorithm.

2.2. Markov Chain

In the case of a series of chance experiments, all the outcomes of the previous experiment could
influence the result of the next experiment. The Markov chain can answer questions regarding the

Symmetry 2020, 12, 1363 4 of 15

probability of these types of chance experiments. Let S be a set of states where S = {s1, ss, . . . , sr}.
The process can start from any one of the states and can proceed successively from one position to
another. Markov defined these moves as steps. If the current position of the chain is in position si and
it proceeds to position sj in the next move, then the probability of this move is expressed by Pij. Pij is
called transition probability. The chain can reside in the same position as probability Pii. If we plot the
probabilities for all possible moves in a matrix, that matrix is called a transition matrix.

In bioinformatics, DNA sequences can be modeled using Markov chains. A DNA sequence is a
series of four-letter alphabet

∑
= {a, c, g, t}. In the case of DNA sequences, a Markov chain is defined

by
∑

and a probability for transition Pij. The transition probabilities are stored in a transition matrix.
A sequence defined by the trajectory of the process through the state space. The scenario is depicted in
Figure 2. The diagram exhibits that the sequence can start from any nucleotide and the probability
of the next nucleotide is dependent on the current nucleotide. If we start from the state a, the next
nucleotide can be any one of a, c, g, t, and the probability is given by Paa, Pac, Pag, and Pat. Starting
from another nucleotide will incur another set of transition probabilities. If we start from state g,
then the probabilities would be Pga, Pgc, Pgg, and Pgt. DNA sequences are defined by Markov Chain
in this manner. All the transition probabilities are listed in the transition matrix T and the start state
probabilities are given by a vector Π = (Πa, Πc, Πg,Πt).

Symmetry 2020, 12, x FOR PEER REVIEW 4 of 15

infrequent candidate motifs. The exclusion of those unnecessary candidate motifs leads to a smaller
search space and reduces the time complexity of the median string algorithm.

2.2. Markov Chain

In the case of a series of chance experiments, all the outcomes of the previous experiment could
influence the result of the next experiment. The Markov chain can answer questions regarding the
probability of these types of chance experiments. Let S be a set of states where S = {s1, ss,…,sr}. The
process can start from any one of the states and can proceed successively from one position to
another. Markov defined these moves as steps. If the current position of the chain is in position si and
it proceeds to position sj in the next move, then the probability of this move is expressed by Pij. Pij is
called transition probability. The chain can reside in the same position as probability Pii. If we plot the
probabilities for all possible moves in a matrix, that matrix is called a transition matrix.

In bioinformatics, DNA sequences can be modeled using Markov chains. A DNA sequence is a
series of four-letter alphabet ∑ = {a, c, g, t}. In the case of DNA sequences, a Markov chain is defined
by ∑ and a probability for transition Pij. The transition probabilities are stored in a transition matrix.
A sequence defined by the trajectory of the process through the state space. The scenario is depicted
in Figure 2. The diagram exhibits that the sequence can start from any nucleotide and the probability
of the next nucleotide is dependent on the current nucleotide. If we start from the state a, the next
nucleotide can be any one of a, c, g, t, and the probability is given by Paa, Pac, Pag, and Pat. Starting from
another nucleotide will incur another set of transition probabilities. If we start from state g, then the
probabilities would be Pga, Pgc, Pgg, and Pgt. DNA sequences are defined by Markov Chain in this
manner. All the transition probabilities are listed in the transition matrix T and the start state
probabilities are given by a vector Π = (Πa, Πc, Πg,Πt).

(a)

(b)

Figure 2. Markov chain and transition probability: (a) Markov chain; (b) Transition probability matrix
along with start probability vector.

The mathematical definition of entries in the transition matrix is as follows: 𝑃 = 𝑝(𝑠 = 𝑦|𝑠 = 𝑥) (1)

Figure 2. Markov chain and transition probability: (a) Markov chain; (b) Transition probability matrix
along with start probability vector.

The mathematical definition of entries in the transition matrix is as follows:

Pxy = p(si+1 = y
∣∣∣si = x) (1)

This means that the probability of moving from state x to state y is equal to the conditional
probability of having state y given that the previous state was x. The probability of the entire sequence
can be expressed as a joint probability:

P(s) = P(s1, s2, . . . sn) (2)

Symmetry 2020, 12, 1363 5 of 15

Simplification of calculation of this probability can be made by factorizing it:

P(s) = P(sn|sn−1)P(sn−1|sn−2)P(s2
∣∣∣s1)Π(s1) (3)

Or

P(s) = Π(s1)
n∏

i=2

P(si|si−1) = Π(s1)
n∏

i=2

Psi−1si (4)

where Π(s1 = x) means the probability of having x in location s1. As a result, we can conclude that the
probability of a symbol occurring is dependent only on the previous symbol to simplify the calculation
of the joint probability of the entire sequence.

3. Proposed Markov Chain Based Median String Algorithm

Let us consider a database with 10 sample DNA sequences (S1, S2, . . . , S10). Each sample is composed
of 80 nucleotides as in Table 1. Samples are different from each other. The problem is to find whether
there is any common motif that exists among the sequences.

Table 1. Sample DNA sequence database.

SID Sample

S1 tagtggtcttttgagtgtagatctggagggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat
S2 cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagttggatccgaaactggagtttaatcggagtcctt
S3 gttacttgtgagcctggttagacccgaaatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt
S4 aacatcaggctttgattaaacaatttaagcacgtaaatccgaattgacctggtgacaatacggaacatgccggctccggg
S5 accaccggataggctggttattaggtccaaaaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac
S6 tagattcgaatcgatcgtgtttctccctctggtggttaacgaggggtccgaccttgctcgcatgtgccgaacttgtaccc
S7 gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgcagatccgaacgtctctggaggggtcgtgcgcta
S8 atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactggtgtgatccgta
S9 ttcttacacccttctttagatccaaacctgttggcgccatcttcttttcgagtccttgtacctccatttgctctggtgac
S10 ctacctatgtaaaacaacatctactaacgtagtccggtctttcctggtctgccctaacctacaggtcgatccgaaattcg

From this database, we will extract the consensus string using the proposed system. A schematic
layout of the proposed system is given in Figure 3.

Symmetry 2020, 12, x FOR PEER REVIEW 5 of 15

This means that the probability of moving from state x to state y is equal to the conditional
probability of having state y given that the previous state was x. The probability of the entire sequence
can be expressed as a joint probability: 𝑃(𝑠) = 𝑃(𝑠 , 𝑠 , . . . 𝑠) (2)

Simplification of calculation of this probability can be made by factorizing it: 𝑃(𝑠) = 𝑃(𝑠 |𝑠)𝑃(𝑠 |𝑠) … … . . 𝑃(𝑠 |𝑠)𝛱(𝑠) (3)

Or

𝑃(𝑠) = 𝛱(𝑠) 𝑃(𝑠 |𝑠) = 𝛱(𝑠) 𝑃 (4)

where Π(s1 =x) means the probability of having x in location s1.As a result, we can conclude that the
probability of a symbol occurring is dependent only on the previous symbol to simplify the
calculation of the joint probability of the entire sequence.

3. Proposed Markov Chain Based Median String Algorithm

Let us consider a database with 10 sample DNA sequences (S1, S2,…, S10). Each sample is composed
of 80 nucleotides as in Table 1. Samples are different from each other. The problem is to find whether
there is any common motif that exists among the sequences.

Table 1. Sample DNA sequence database.

SID Sample
S1 tagtggtcttttgagtgtagatctggagggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat
S2 cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagttggatccgaaactggagtttaatcggagtcctt
S3 gttacttgtgagcctggttagacccgaaatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt
S4 aacatcaggctttgattaaacaatttaagcacgtaaatccgaattgacctggtgacaatacggaacatgccggctccggg
S5 accaccggataggctggttattaggtccaaaaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac
S6 tagattcgaatcgatcgtgtttctccctctggtggttaacgaggggtccgaccttgctcgcatgtgccgaacttgtaccc
S7 gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgcagatccgaacgtctctggaggggtcgtgcgcta
S8 atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactggtgtgatccgta
S9 ttcttacacccttctttagatccaaacctgttggcgccatcttcttttcgagtccttgtacctccatttgctctggtgac
S10 ctacctatgtaaaacaacatctactaacgtagtccggtctttcctggtctgccctaacctacaggtcgatccgaaattcg

From this database, we will extract the consensus string using the proposed system. A schematic
layout of the proposed system is given in Figure 3.

Figure 3. Schematic layout of the proposed system.
Figure 3. Schematic layout of the proposed system.

3.1. Markov Chain Generation

In the database, there are 10 sequences. Each sequence contains 80 nucleotides. There are 42 = 16
possible two-nucleotide sequences i.e., aa,ac,ag,at,ca,cc,cg,ct,ga,gc,gg,gt,ta,tc,tg, and tt. We first count the
frequencies of the occurrence of two-nucleotide sequences in the database. From the counts of the two
nucleotide sequences, we constructed a Markov chain, which is depicted in Figure 4. According to the

Symmetry 2020, 12, 1363 6 of 15

following Markov chain, the frequency of aa is 49, cc is 46, etc., in the database. Now, we have the
counts of 16 possible two nucleotide sequences or di-grams in the database.

Symmetry 2020, 12, x FOR PEER REVIEW 6 of 15

3.1. Markov Chain Generation

In the database, there are 10 sequences. Each sequence contains 80 nucleotides. There are 42 =16
possible two-nucleotide sequences i.e., aa,ac,ag,at,ca,cc,cg,ct,ga,gc,gg,gt,ta,tc,tg, and tt. We first count
the frequencies of the occurrence of two-nucleotide sequences in the database. From the counts of the
two nucleotide sequences, we constructed a Markov chain, which is depicted in Figure 4. According
to the following Markov chain, the frequency of aa is 49, cc is 46, etc., in the database. Now, we have
the counts of 16 possible two nucleotide sequences or di-grams in the database.

Figure 4. Markov chain generated using data in Table 1.

3.2. Transaction Matrix Creation

We now construct a transition matrix from the Markov chain as in Figure 5.Rows in the matrix
indicate the first nucleotide and columns in the matrix indicate the second nucleotide of the two-
nucleotide sequences. The first row is for sequences starting with a. The first element in this row
indicates the counts of aa in the database. The second element indicates the counts of ac, etc. The next
row is for sequences starting with the nucleotide c, the third row is for sequences starting with the
nucleotide g, etc. The transition matrix contains counts for all the 16 two nucleotide sequences in the
database.

Figure 5. Transaction matrix using Markov chain.

This matrix helps to infer about the next nucleotide given the staring nucleotide. For example, if
we start from nucleotide a, then we can infer P(t|a) > P(a|a) > P(g|a) > P(c|a).

Figure 4. Markov chain generated using data in Table 1.

3.2. Transaction Matrix Creation

We now construct a transition matrix from the Markov chain as in Figure 5. Rows in the matrix
indicate the first nucleotide and columns in the matrix indicate the second nucleotide of the two-
nucleotide sequences. The first row is for sequences starting with a. The first element in this row
indicates the counts of aa in the database. The second element indicates the counts of ac, etc. The next
row is for sequences starting with the nucleotide c, the third row is for sequences starting with the
nucleotide g, etc. The transition matrix contains counts for all the 16 two nucleotide sequences in
the database.

Symmetry 2020, 12, x FOR PEER REVIEW 6 of 15

3.1. Markov Chain Generation

In the database, there are 10 sequences. Each sequence contains 80 nucleotides. There are 42 =16
possible two-nucleotide sequences i.e., aa,ac,ag,at,ca,cc,cg,ct,ga,gc,gg,gt,ta,tc,tg, and tt. We first count
the frequencies of the occurrence of two-nucleotide sequences in the database. From the counts of the
two nucleotide sequences, we constructed a Markov chain, which is depicted in Figure 4. According
to the following Markov chain, the frequency of aa is 49, cc is 46, etc., in the database. Now, we have
the counts of 16 possible two nucleotide sequences or di-grams in the database.

Figure 4. Markov chain generated using data in Table 1.

3.2. Transaction Matrix Creation

We now construct a transition matrix from the Markov chain as in Figure 5.Rows in the matrix
indicate the first nucleotide and columns in the matrix indicate the second nucleotide of the two-
nucleotide sequences. The first row is for sequences starting with a. The first element in this row
indicates the counts of aa in the database. The second element indicates the counts of ac, etc. The next
row is for sequences starting with the nucleotide c, the third row is for sequences starting with the
nucleotide g, etc. The transition matrix contains counts for all the 16 two nucleotide sequences in the
database.

Figure 5. Transaction matrix using Markov chain.

This matrix helps to infer about the next nucleotide given the staring nucleotide. For example, if
we start from nucleotide a, then we can infer P(t|a) > P(a|a) > P(g|a) > P(c|a).

Figure 5. Transaction matrix using Markov chain.

This matrix helps to infer about the next nucleotide given the staring nucleotide. For example,
if we start from nucleotide a, then we can infer P(t|a) > P(a|a) > P(g|a) > P(c|a).

3.3. Rule Generation

In this stage, we tried to find the most frequent transitions as well as the most probable transitions.
For this purpose, we sum up all the counts in the transaction matrix. The sum of all the elements of the
transaction matrix is 790. To cover 50% of elements, we set the threshold as 790/2 = 395. We start with
the highest value in the matrix. The highest value is 59, which represents P(t|t). This element value is

Symmetry 2020, 12, 1363 7 of 15

less than the threshold value. We select this element and set the threshold as 395 − 59 = 336. The next
highest value in the matrix is 58, which represents P(g|g). This value is less than the threshold value.
We select this element and set the threshold as 336 − 58 = 278. The process continues until the element
value is greater than the threshold value. This process produces the seven most frequent transitions
representing the following probabilities P(t|t),P(g|g),P(c|t),P(t|g),P(t|c),P(g|t),P(a|t). At the end of the
process, we will have a matrix with some encircled values as in Figure 6.

Symmetry 2020, 12, x FOR PEER REVIEW 7 of 15

3.3. Rule Generation

In this stage, we tried to find the most frequent transitions as well as the most probable
transitions. For this purpose, we sum up all the counts in the transaction matrix. The sum of all the
elements of the transaction matrix is 790. To cover 50% of elements, we set the threshold as 790/2 =
395. We start with the highest value in the matrix. The highest value is 59, which represents P(t|t).
This element value is less than the threshold value. We select this element and set the threshold as
395 − 59 = 336. The next highest value in the matrix is 58, which represents P(g|g). This value is less
than the threshold value. We select this element and set the threshold as 336 − 58 = 278. The process
continues until the element value is greater than the threshold value. This process produces the seven
most frequent transitions representing the following probabilities
P(t|t),P(g|g),P(c|t),P(t|g),P(t|c),P(g|t),P(a|t). At the end of the process, we will have a matrix with
some encircled values as in Figure 6.

Figure 6. Identification of significant elements in the transition matrix.

The encircled elements are significant; that is, two-nucleotide sequences (tt,ct,gg,gt,tc,tg,at) are
significant. If we randomly pick any two-nucleotide sequence from the database, there is a more than
50% probability that the sequence will be in the set of (tt, ct, gg, gt, tc, tg, at). We now generate rules
from this significant combination as in Table 2.

Table 2. Rule generation.

First (l1) Second (l2) Count Rule
t t 59 t→t
g g 58 g→g
t g 56 t→g
c t 56 c→t
t c 55 t→c
g t 53 g→t
a t 50 a→t

3.4. Reduced l-mer Set Generation

According to the rules, we will now generate l-mers. For example, let us suppose l = 4, then we
will generate 4-mers according to these rules. 4-mers can start with any nucleotide at the beginning.
If it starts from a, we will have a tree generating all the possible 4-mers starting with a that follow the
rules in Table 2, as in Figure 7. According to rules recorded in Table 2, the next nucleotide after a will
be t; i.e., a two-nucleotide sequence starting with a is at. After at, the next nucleotide can be t or c or
g, according to the rules. As a result, we will have 3 three-nucleotide sequences (att, atc, atg), which
start with nucleotide a and follow the rules. After atc, the next nucleotide can be t or c or g, which
produces the 4-mers attt, attc, and attg. Symmetrically, from atc we have the 4-mer atct and from atg
we have the 4-mers atgg and atgt. 4-mers also can start with the other three nucleotides c,g, and t.
Symmetrically, we will have three other trees for 4-mers starting with c,g, and t. From these trees, we

Figure 6. Identification of significant elements in the transition matrix.

The encircled elements are significant; that is, two-nucleotide sequences (tt,ct,gg,gt,tc,tg,at) are
significant. If we randomly pick any two-nucleotide sequence from the database, there is a more than
50% probability that the sequence will be in the set of (tt, ct, gg, gt, tc, tg, at). We now generate rules
from this significant combination as in Table 2.

Table 2. Rule generation.

First (l1) Second (l2) Count Rule

t t 59 t→t
g g 58 g→g
t g 56 t→g
c t 56 c→t
t c 55 t→c
g t 53 g→t
a t 50 a→t

3.4. Reduced l-mer Set Generation

According to the rules, we will now generate l-mers. For example, let us suppose l = 4, then we
will generate 4-mers according to these rules. 4-mers can start with any nucleotide at the beginning.
If it starts from a, we will have a tree generating all the possible 4-mers starting with a that follow the
rules in Table 2, as in Figure 7. According to rules recorded in Table 2, the next nucleotide after a will
be t; i.e., a two-nucleotide sequence starting with a is at. After at, the next nucleotide can be t or c or g,
according to the rules. As a result, we will have 3 three-nucleotide sequences (att, atc, atg), which start
with nucleotide a and follow the rules. After atc, the next nucleotide can be t or c or g, which produces
the 4-mers attt, attc, and attg. Symmetrically, from atc we have the 4-mer atct and from atg we have the
4-mers atgg and atgt. 4-mers also can start with the other three nucleotides c,g, and t. Symmetrically,
we will have three other trees for 4-mers starting with c,g, and t. From these trees, we will have all the
4-mers that follow the rules. These are the motifs that we will use instead of all possible 4l numbers
of motifs.

Symmetry 2020, 12, 1363 8 of 15

Symmetry 2020, 12, x FOR PEER REVIEW 8 of 15

will have all the 4-mers that follow the rules. These are the motifs that we will use instead of all
possible 4l numbers of motifs.

Figure 7. Motif generation tree.

3.5. Proposed Algorithm

Algorithm 2: Markov chain based median string algorithm(DNA,l).
{ input:DNA,l
Output: consensus sequence

Modified_Median_String (DNA,l)
{
bestFit_Motif ←AAA…A
bestFit_Score ←∞
reduced_motif_set = Reduced_Motif_Set_Generator(DNA,l)
for each l-mer in reduced_motif_set

if TotalFit_Score(s, DNA) < bestFit_Score
 bestFit_Score←TotalFit_Score(s, DNA)
 bestFit_Motif ← s
return bestFit_Motif
}
Transaction_Matrix_Generator(DNA)
{input:DNA
output:Transition_Matrix
ngram_dict←new dictionary()
i←1
for each sequence in DNA

for each character in sequence up to sequence length-1
 if character not in ngram_dict.keys()
 ngram_dict[character]←Null
 NextCharacter←Sequence[i + 1]
 ngram_dict[character].append(NextCharacter)
 I ←i + 1

TM←empty matrix

Figure 7. Motif generation tree.

3.5. Proposed Algorithm

Algorithm 2: Markow chain based median string algorithm(DNA,l)

{ input:DNA,l
Output: consensus sequence

Modified_Median_String (DNA,l)
{
bestFit_Motif←AAA . . . A
bestFit_Score←∞
reduced_motif_set = Reduced_Motif_Set_Generator(DNA,l)
for each l-mer in reduced_motif_set

if TotalFit_Score(s, DNA) < bestFit_Score
bestFit_Score←TotalFit_Score(s, DNA)
bestFit_Motif← s

return bestFit_Motif
}
Transaction_Matrix_Generator(DNA)
{input:DNA
output:Transition_Matrix
ngram_dict←new dictionary()
i←1
for each sequence in DNA

for each character in sequence up to sequence length-1
if character not in ngram_dict.keys()

ngram_dict[character]←Null
NextCharacter←Sequence[i + 1]
ngram_dict[character].append(NextCharacter)
←i + 1

TM←empty matrix
for each key in ngram_dict

TM← Counter(ngram_dict(key))
Return TM
}

Symmetry 2020, 12, 1363 9 of 15

Rule_Generator(Transition_Matrix)
{input:Transition_Matrix
output:rule_list
total= ΣTransition_matrixij
s← 0
rule_list← empty list()

for each element in Transition_Matrix in descending order
s← s+ Transition_matrix element
if s < total/2

append a rule in rule_list
else

break
return rule_list

}
Reduced_Motif_Set_Generator(DNA, l)
{input:DNA, length of l-mer
output:Reduced_Motif_Set
TM← Transition_Matrix_Generator(DNA)
rules← Rule_Generator(TM)
S1,tmp,tmp2← empty list
For each character in {‘a’, ‘c’, ‘g’, ‘t’}

if rules.key ==character
S1← character + rules.value

tmp← S1
for i = 1 to length of l-mer-2

for element in tmp
if rules.key ==last character of element

tmp2← element + rules.value
tmp← tmp2
tmp2← null

return tmp
}

4. Result and Discussion

In this section, we have analyzed the performance of the proposed method and compared it
with state-of-the-art methods in terms of Jupyter Notebook as a Python programming language.
We developed the existing method using Algorithm 1. and the proposed method using Algorithm 2.
We compared the performance of the proposed system with that of the median string algorithm and
voting algorithm. The system configuration is

• Processor: Intel Core i5 CPU
• Clock rate:2.6 GHz
• HardDisk:1000GB
• RAM:4GB

4.1. Comparison with Median String Algorithm

In comparison with the median string algorithm, the proposed algorithm expedites the whole
process easier and faster. In this illustration, we have analyzed the number of motifs generated by the
Markov chain-based median string algorithm and the median string algorithm for different l-mer sizes.
A comparison between the proposed algorithm and median string algorithm in terms of the number of
generated motifs is listed in Table 3.

Symmetry 2020, 12, 1363 10 of 15

Table 3. Comparative interpretation between the proposed algorithm with the median string algorithm
in terms of motif generation.

l-mer Size Proposed Method Median String Ratio of Number of
Produced Motifs

2 7 16 0.4375
3 17 64 0.2656
4 37 256 0.1445
5 84 1024 0.0820
6 188 4096 0.0458
7 427 16,784 0.0254

The table reports the results of both of the techniques adopted in this paper. In the case of l-mer
size 2, the proposed method forms 7 motifs whereas the existing algorithm produces 16 motifs. In this
case, the number of motifs generated by the proposed algorithm is 43.75% of that of the existing
algorithm. The last row depicts that the introduced algorithm produces 427 and the existing algorithm
returns 16,784 motifs of length 7. In this case, the proposed algorithm yields only 2.5% motifs while
contrasted with that of the existing algorithm. Hence, our proposed algorithm originates fewer motifs
in relation to the existing algorithm, which is depicted in Figure 8a. As a result, we claim that our
proposed algorithm can reduce the search space significantly.

Symmetry 2020, 12, x FOR PEER REVIEW 10 of 15

4.1. Comparison with Median String Algorithm

In comparison with the median string algorithm, the proposed algorithm expedites the whole
process easier and faster. In this illustration, we have analyzed the number of motifs generated by
the Markov chain-based median string algorithm and the median string algorithm for differentl-
mersizes. A comparison between the proposed algorithm and median string algorithm in terms of the
number of generated motifs is listed in Table 3.

Table 3. Comparative interpretation between the proposed algorithm with the median string
algorithm in terms of motif generation.

l-merSize Proposed
Method

Median String

Ratio of
Number of
Produced

Motifs
2 7 16 0.4375
3 17 64 0.2656
4 37 256 0.1445
5 84 1024 0.0820
6 188 4096 0.0458
7 427 16,784 0.0254

The table reports the results of both of the techniques adopted in this paper. In the case ofl-
mersize 2, the proposed method forms 7 motifs whereas the existing algorithm produces 16 motifs.
In this case, the number of motifs generated by the proposed algorithm is 43.75% of that of the existing
algorithm. The last row depicts that the introduced algorithm produces 427 and the existing
algorithm returns 16,784 motifs of length 7.In this case, the proposed algorithm yields only 2.5%
motifs while contrasted with that of the existing algorithm. Hence, our proposed algorithm originates
fewer motifs in relation to the existing algorithm, which is depicted in Figure 8a. As a result, we claim
that our proposed algorithm can reduce the search space significantly.

(a)

(b)

Figure 8. Comparison in terms of motif generation: (a) Number of motifs generated by both
algorithms; (b) The ratio of the number of generated motifs between the proposed algorithm and
median string algorithms.

Furthermore, with the increase in l-mer size, the proposed algorithm appears to be superior to
the median string algorithm in terms of the number of motifs produced. The ratio of the number of
produced motifs between the proposed and the existing algorithm for various l-mer lengths is
recorded in the rightmost column of Table 3.In the case of the l-mer of length 2, the ratio is 0.4375 and

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000
18,000

2 3 4 5 6 7

Nu
m

be
r o

f g
en

er
at

ed
 m

ot
ifs

l-mer size

Median String

Proposed algorithm

0

0.1

0.2

0.3

0.4

0.5

2 3 4 5 6 7

Ra
tio

l-mer size

Ratio of the
number of
generated motifs

Figure 8. Comparison in terms of motif generation: (a) Number of motifs generated by both
algorithms; (b) The ratio of the number of generated motifs between the proposed algorithm and
median string algorithms.

Furthermore, with the increase in l-mer size, the proposed algorithm appears to be superior to
the median string algorithm in terms of the number of motifs produced. The ratio of the number of
produced motifs between the proposed and the existing algorithm for various l-mer lengths is recorded
in the rightmost column of Table 3. In the case of the l-mer of length 2, the ratio is 0.4375 and for l-mer
of length 7, the ratio is 0.0254. This indicates, with the increase in l-mer size, that the ratio is gradually
decreasing, which is depicted in Figure 8b. This finding means that the proposed algorithm produces
fewer motifs than the existing algorithm. This lower number dramatically reduces with the increase in
l-mer size (See Appendix A).

We have investigated every level of time consumed by both methods. The introduced approach
necessitates a huge time for DNA consensus. The time consumed by these two approaches betokens
the robustness of our proposed algorithm. The execution time of both algorithms for different l-mer
size is listed in Table 4.

Symmetry 2020, 12, 1363 11 of 15

Table 4. Comparative interpretation between the proposed algorithm and median string algorithm in
terms of execution time.

l-mer Size Proposed Method
Time(ms)

Median String
Time(ms)

Ratio of Execution
Time

2 10.20 16.10 0.6300
3 21.36 66.6 0.3207
4 44.84 296 0.1514
5 100.18 1160 0.0863
6 228.16 4880 0.0467
7 587.44 24,400 0.0240

Every row of the table demonstrates that the proposed algorithm spent less time than the existing
orientation. In connection with the l-mer of length 2, the difference in execution time is (16.10 − 10.20) ms
= 5.90 ms. It implies that for l-mer size 2, the execution time of the proposed method is only 63% of
that of the existing algorithm. The time differences have been increased as the l-mer length increased.
From the last tuple, we notice that for l-mer of length 7, the proposed algorithm consumed 587.44 ms,
whereas the existing algorithm spent 24,400 ms. In this case, the proposed algorithm’s execution time
is only 2.4% of the execution time of the median string algorithm. Now, we can claim our proposed
algorithm to be faster than the median string algorithm, which is depicted in Figure 9a.

Symmetry 2020, 12, x FOR PEER REVIEW 11 of 15

for l-mer of length 7, the ratio is 0.0254. This indicates, with the increase in l-mer size, that the ratio is
gradually decreasing, which is depicted in Figure 8b. This finding means that the proposed algorithm
produces fewer motifs than the existing algorithm. This lower number dramatically reduces with the
increase in l-mer size. (See Appendix A)

We have investigated every level of time consumed by both methods. The introduced approach
necessitates a huge time for DNA consensus.The time consumed by these two approaches betokens
the robustness of our proposed algorithm. The execution time of both algorithms for different l-mer
size is listed in Table4.

Table 4. Comparative interpretation between the proposed algorithm and median string algorithm
in terms of execution time.

l-merSize
Proposed
Method

Time(ms)

Median
String

Time(ms)

Ratio of
Execution

Time
2 10.20 16.10 0.6300
3 21.36 66.6 0.3207
4 44.84 296 0.1514
5 100.18 1160 0.0863
6 228.16 4880 0.0467
7 587.44 24,400 0.0240

Every row of the table demonstrates that the proposed algorithm spent less time than the
existing orientation. In connection with the l-mer of length 2, the difference in execution time is (16.10-
10.20)ms = 5.90 ms. It implies that for l-mer size 2, the execution time of the proposed method is only
63% of that of the existing algorithm. The time differences have been increased as thel-mer
lengthincreased. From the last tuple, we notice that for l-mer of length 7, the proposed algorithm
consumed 587.44 ms, whereas the existing algorithm spent 24,400 ms. In this case, the proposed
algorithm’s execution time is only 2.4% of the execution time of the median string algorithm. Now,
we can claim our proposed algorithm to be faster than the median string algorithm, which is depicted
in Figure 9a.

(a)

(b)

Figure 9.Illustration in terms of execution time (a) Comparative illustration of execution time between
the proposed algorithm and median string algorithm; (b) The ratio of execution time between the
proposed algorithm and median string algorithm.

0

5,000

10,000

15,000

20,000

25,000

30,000

2 3 4 5 6 7

Ex
ec

ut
io

n
tim

e
(m

s)

l-mer size

Proposed Method
Time(ms)
Median String Time(ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 3 4 5 6 7

Ra
tio

 o
f e

xe
cu

tio
n

tim
e

l-mer size

Ratio of Execution
Time

Figure 9. Illustration in terms of execution time (a) Comparative illustration of execution time between
the proposed algorithm and median string algorithm; (b) The ratio of execution time between the
proposed algorithm and median string algorithm.

With the increase in the length of l-mer, the introduced algorithm appears to be superior to the
existing algorithm. The ratios of execution time between the proposed and the existing algorithm for
l-mer of different lengths are listed in the rightmost column of Table 4. In the case of the l-mer of length
2, the ratio is 0.63 and for l-mer of length 7, the ratio is 0.024. The ratio is gradually decreasing with the
increase in l-mer size, which is depicted in Figure 9b. This finding means that the proposed algorithm
is faster than the median string algorithm. Besides that, it also proves that the fastness of the proposed
algorithm rises dramatically with the increase in l-mer size.

Symmetry 2020, 12, 1363 12 of 15

4.2. Comparison with the Voting Algorithm

Finally, we compared the execution time of our proposed algorithm with the execution time of
the voting algorithm for l-mer of different lengths. The execution times for both algorithms, and their
ratios, are given in Table 5.

Table 5. Comparative illustration between the proposed algorithm and voting algorithm in terms of
execution time.

l-mer Size Proposed Method
Time (ms)

Voting Algorithm
Time (ms)

Ratio of Execution
Time

2 10.20 1.95 5.23
3 21.36 4.50 4.74
4 44.84 15.00 2.98
5 100.18 56.00 1.78
6 228.16 236.00 0.96
7 587.44 903.00 0.65
8 1310.00 3630.00 0.37
9 3150.00 13,900.00 0.22

From the table above, we can see for l-mer size 2, the execution time of our proposed algorithm is
5.23 times that of the voting algorithm. Though the ratio of execution time is gradually decreasing, it is
still above 1 for l-mer size 5. This means that, up to l-mer size 5, the proposed algorithm remains slower
than the voting algorithm;however, from l-mer size 6 upward, the execution time ratio becomes less
than 1. From this finding, we can claim that our proposed algorithm is faster than the voting algorithm
for longer l-mer sizes, which is depicted in Figure 10a.

Symmetry 2020, 12, x FOR PEER REVIEW 12 of 15

With the increase in the length of l-mer, the introduced algorithm appears to be superior to the
existing algorithm. The ratios of execution time between the proposed and the existing algorithm for
l-mer of different lengths are listed in the rightmost column of Table 4. In the case of the l-mer of length
2, the ratio is 0.63 and for l-mer of length 7, the ratio is 0.024. The ratio is gradually decreasing with
the increase in l-mer size, which is depicted in Figure 9b. This finding means that the proposed
algorithm is faster than the median string algorithm. Besides that, it also proves that the fastness of
the proposed algorithm rises dramatically with the increase in l-mer size.

4.2. Comparison With The Voting Algorithm

Finally, we compared the execution time of our proposed algorithm with the execution time of
the voting algorithm for l-mer of different lengths. The execution times for both algorithms, and their
ratios, are given in Table 5.

Table 5. Comparative illustration between the proposed algorithm and voting algorithm in terms of
execution time.

l-mer Size
Proposed
Method

Time(ms)

Voting
Algorithm
Time(ms)

Ratio of
Execution

Time
2 10.20 1.95 5.23
3 21.36 4.50 4.74
4 44.84 15.00 2.98
5 100.18 56.00 1.78
6 228.16 236.00 0.96
7 587.44 903.00 0.65
8 1310.00 3630.00 0.37
9 3150.00 13,900.00 0.22

From the table above, we can see for l-mer size 2, the execution time of our proposed algorithm
is 5.23 times that of the voting algorithm. Though the ratio of execution time is gradually decreasing,
it is still above 1 for l-mer size 5. This means that, up to l-mer size 5, the proposed algorithm remains
slower than the voting algorithm;however, from l-mer size 6 upward, the execution time ratio
becomes less than 1. From this finding, we can claim that our proposed algorithm is faster than the
voting algorithm for longer l-mer sizes, which is depicted in Figure 10a.

(a)

(b)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

2 3 4 5 6 7 8 9

Ex
ec

ut
io

n
tim

e(
m

s)

l-mer size

Proposed Method
Time(ms)
Voting Algorithm Time(ms)

0

1

2

3

4

5

6

2 3 4 5 6 7 8 9

Ra
tio

 o
f e

xe
cu

tio
n

tim
e

l-mer size

Ratio of Execution
Time

Figure 10. Illustration in terms of execution time (a) Comparative illustration of execution time between
the proposed algorithm and voting algorithm; (b) The ratio of execution time between the proposed
algorithm and voting algorithm.

Figure 10b depicts the scenario well. The execution time ratio starts at 5.23 for l-mer size 2.
For l-mer size 6, it decreases to less than 1, actually to 0.96. From this level, our proposed algorithm
becomes faster. Decreasing gradually, the execution time ratio becomes 0.22 for l-mer size 9. From this
finding, we can claim that the fastness of the proposed algorithm rises with the increase in l-mer size.

Symmetry 2020, 12, 1363 13 of 15

5. Conclusions

The median string is an enumeration-based algorithm. The algorithm exhaustively searches the
entire search space to find the consensus sequence. As a result, it has become an exponential-time
algorithm. The number of candidate l-mers increases with the rise of the l-mer size. As a result,
the execution time also increases with l-mer size. As a result, the existing algorithm takes a long time
to detect longer l and is inefficient for longer sequences. The only advantage is that it can guarantee
that it must find the consensus. Our proposed Markov chain-based median string algorithm produces
a subset of the 4l number of l-mers, and does the same operation as the existing algorithm with a
reduced number of l-mers. Since the search has been reduced, this algorithm takes less time to execute.
We compared the proposed algorithm with the recently developed voting algorithm. This comparison
illustrates that the proposed phenomena can eradicate the inefficiency of the median string algorithm
in the case of longer l-mer. The proposed algorithm can guarantee that it must find the consensus;
however, it does not use an exhaustive search approach rather a stochastic approach. The execution
time of the proposed algorithm does not grow exponentially with the rise of l-mer length. In the field
of gene regulatory motif search, position weight metric-based algorithms take a shorter time to execute
but can not guarantee that they can certainly find consensus. Enumeration-based algorithms can
guarantee this, but take exponential time. The proposed algorithm combined both of these approaches
and eradicated both method’s disadvantages. In this research, we calculated all the samples as a whole.
In the future, however, we have the plan to execute an experiment by taking each sample’s Markov
chain and transition matrix individually, then superimpose the transition matrices one after another.
From that superimposed matrix some rules could be generated.

Author Contributions: All authors contributed equally to the conception of the idea, the design of experiments,
the analysis and interpretation of results, and the writing and improvement of the manuscript. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Mathematical Proof That the System Will Work

From the transition matrix in the Figure 8, we have seven encircled elements. There are sixteen
elements for sixteen possible transitions. The first element of the first row means there are 49 transitions
from nucleotide a to a, the second element of the first row indicates that there is 39 transitions from
nucleotide a to c. We have seven encircled transition frequencies. These are the top frequencies of
transition. Based on these top frequencies, we can generate a probability matrix as follows. Using the
encircled frequencies, we generated some transition rules. Using those rules, we generated some
motifs. Let us consider our l-mer size as 5. Then, our system generates only 84 motifs of length 5.
Let us put these motifs in set X = {set of motifs generated by the proposed system}. On the other hand,
the median string algorithm generates all the 45 = 1024 motifs of length 5. Let us put these motifs in a
set Y = {motifs generated by median string}. Now x is a subset of y. Basically,

Y = X ∪ W ∪ Z (A1)

where,

X = {set of motifs generated by the proposed system},
W = {set of motifs generated by the rules based on frequencies which are not encircled},
Z = {set of motifs generated by the rules based on frequencies both encircled and not encircled}.

Symmetry 2020, 12, 1363 14 of 15

We can calculate the probability of a particular motif of length 5 using the theory of
conditional probability

P(X|Ci) =
∏

xk

∣∣∣∣∣ci = P(x1|ci) × P(x2|ci)× P(xk|ci) (A2)

For l-mer of length 5 we can write,

P(A ∩ B ∩ C ∩ D ∩ E) = P(A) × P(B
∣∣∣A) × P(C

∣∣∣AB) × P(D
∣∣∣ACB) × P(E

∣∣∣ABCD) (A3)

Since this equation is a multiplication, and the frequencies that are not encircled are smaller than
those that are encircled, the conditional probability of occurrence of any motif from the set W must be
less than the probability of occurrence of the motif with the highest conditional probability from the
set X. In addition, the conditional probability of occurrences of any motif from the set Z will be smaller
than the probability of occurrences of the motif with highest conditional probability from the set X.
The motif with the highest conditional probability will be the consensus. Since the motifs in set X are
generated using the most frequent di-grams, the motif with the highest conditional probability will
always be found in set X.

In our test data set, we found ctggt as the consensus for l-mer size 5 using both methods.
Now, according to our claim, ctggt should have the highest conditional probability. Using Equation (2),
we found the conditional probability of ctggt as follows:

P(ctggt) = P(c) × P(t
∣∣∣c) × P(g

∣∣∣ct) × P(g
∣∣∣ctg) × P(t

∣∣∣ctgg) = 0.0000112061

This is the highest conditional probability, among all the 1024 motifs generated by the median
string algorithm. The proposed system generates only 84 motifs including the consensus motif ctggt.

References

1. Kellis, M.; Patterson, N.; Birren, B.; Berger, B.; Lander, E.S. Methods in Comparative Genomics: Genome
Correspondence, Gene Identification and Regulatory Motif Discovery. J. Comput. Boil. 2004, 11, 319–355.
[CrossRef] [PubMed]

2. Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.
Nucleic Acids Res. 1994, 22, 4673–4680. [CrossRef] [PubMed]

3. Schneider, T.D. Consensus sequence Zen. Appl. Bioinform. 2002, 1, 111–119.
4. Lawrence, C.E.; Altschul, S.F.; Boguski, M.S.; Liu, J.S.; Neuwald, A.F.; Wootton, J.C. Detecting subtle sequence

signals: A Gibbs sampling strategy for multiple alignment. Science 1993, 262, 208–214. [CrossRef] [PubMed]
5. Bailey, T.L.; Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers.

In Proceedings of the International Conference on Intelligent Systems for Molecular Biology, Stanford, CA,
USA, 14–17 August 1994; pp. 28–36.

6. Zhang, Y.; Huo, H.; Yu, Q. A heuristic cluster-based em algorithm for the planted (l, d) problem. J. Bioinform.
Comput. Boil. 2013, 11, 1350009. [CrossRef] [PubMed]

7. Kuksa, P.; Pavlovic, V. Efficient motif finding algorithms for large-alphabet inputs. BMC Bioinform. 2010, 11
(Suppl. S8), S1. [CrossRef] [PubMed]

8. Altschul, S.; Lipman, D. Trees, stars, and multiple sequence alignment. SIAM J. Appl. Math. 1989, 49, 197–209.
[CrossRef]

9. Gramm, J.; Hüffner, F.; Niedermeier, R. Closest strings, primer design, and motif search. In Proceedings of
the 6th Annual International Conference on Computational Biology(RECOMB 2002), Washington, DC, USA,
18–21 April 2002; pp. 74–75.

10. Gramm, J.; Niedermeier, R.; Rossmanith, P. Exact solutions for closest string and related problems.
In Proceedings of the 12th International Symposium on Algorithms and Computation, Christchurch,
New Zealand, 19–21 December 2001; pp. 441–453.

http://dx.doi.org/10.1089/1066527041410319
http://www.ncbi.nlm.nih.gov/pubmed/15285895
http://dx.doi.org/10.1093/nar/22.22.4673
http://www.ncbi.nlm.nih.gov/pubmed/7984417
http://dx.doi.org/10.1126/science.8211139
http://www.ncbi.nlm.nih.gov/pubmed/8211139
http://dx.doi.org/10.1142/S0219720013500091
http://www.ncbi.nlm.nih.gov/pubmed/23859273
http://dx.doi.org/10.1186/1471-2105-11-S8-S1
http://www.ncbi.nlm.nih.gov/pubmed/21034426
http://dx.doi.org/10.1137/0149012

Symmetry 2020, 12, 1363 15 of 15

11. Karp, R.M. Mapping the genome: Some combinatorial problems arising in molecular biology. In Proceedings
of the 25th Annual ACM Symposium on Theory of Computing, San Diego, CA, USA, 16–18 May 1993;
pp. 278–285.

12. Li, M.; Ma, B.; Wang, L. On the closest string and substring problems. J. ACM 2002, 49, 157–171. [CrossRef]
13. Mauch, H.; Melzer, M.J.; Hu, J.S. Genetic algorithm approach for the closest string problem. In Proceedings

of the 2nd IEEE Computer Society Bioinformatics Conference, Stanford, CA, USA, 11–14 August 2003;
pp. 560–561.

14. Meneses, C.N.; Lu, Z.; Oliveira, C.A.S.; Pardalos, P.M. Optimal Solutions for the Closest-String Problem via
Integer Programming. INFORMS J. Comput. 2004, 16, 419–429. [CrossRef]

15. Nicolas, F.; Rivals, E. Complexities of the centre and median string problems. In Proceedings of the 14th
Symposium on Combinatorial Pattern Matching, Michoacan, Mexico, 25–27 June 2003; pp. 315–327.

16. Gramm, J.; Niedermeier, R.; Rossmanith, P. Fixed-Parameter Algorithms for Closest String and Related
Problems. Algorithmica 2003, 37, 25–42. [CrossRef]

17. Ma, B.; Sun, X. More efficient algorithms for closest string and substring problems. In Proceedings of
the 12th Annual International Conference on Research in Computational Molecular Biology, Singapore,
30 March–2 April 2008; pp. 396–409.

18. Stojanovic, N.; Berman, P.; Gumucio, D.; Hardison, R.; Miller, W. A linear-time algorithm for the 1-mismatch
problem. In Proceedings of the 5th International Workshop on Algorithms and Data Structures, NS, Canada,
6–8 August 1997; pp. 126–135.

19. Ben-Dor, A.; Lancia, G.; Perone, J.; Ravi, R. Banishing bias from consensus sequences. In Proceedings of the
8th Symposium on Combinatorial Pattern Matching, Aarhus, Denmark, 30 June–2 July 1997; pp. 247–261.

20. Gasieniec, L.; Jansson, J.; Lingas, A. Efficient approximation algorithms for the Hamming center problem.
In Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD, USA, 17–19
January 1999; pp. 905–906.

21. Gąsieniec, L.; Jansson, J.; Lingas, A. Approximation algorithms for Hamming clustering problems.
J. Discret. Algorithms 2004, 2, 289–301. [CrossRef]

22. Lanctot, J.K.; Li, M.; Ma, B.; Wang, S.; Zhang, L. Distinguishing string selection problems. Inf. Comput. 2003,
185, 41–55. [CrossRef]

23. Boucher, C.; Brown, D.; Durocher, S. On the structure of small motif recognition instances. In Proceedings of
the 15th Symposium on String Processing and Information Retrieval, Melbourne, Australia, 11–12 November
2008; pp. 269–281.

24. Sze, S.; Lu, S.; Chen, J. Integrating sample-driven and pattern-driven approaches in motif finding.
In Proceedings of the 4th Workshop on Algorithms in Bioinformatics, Bargen, Norway, 17–21 September
2004; pp. 438–449.

25. Fatma, A.H.; Mai, S.M.; Walid, A.A. Review of different sequence motif finding algorithms. Avicenna J.
Med. Biotechnol. 2019, 11, 130–148.

26. Sun, H.Q.; Low, M.Y.H.; Hsu, W.J.; Tan, C.W.; Rajapakse, J.C. Tree-structured algorithm for long weak motif
discovery. Bioinformatics 2011, 27, 2641–2647. [CrossRef] [PubMed]

27. Jia, C.; Carson, M.B.; Wang, Y.; Lin, Y.; Lu, H. A New Exhaustive Method and Strategy for Finding Motifs in
ChIP-Enriched Regions. PLoS ONE 2014, 9, e86044. [CrossRef] [PubMed]

28. Bandyopadhyay, S.; Sahni, S.; Rajasekaran, S. PMS6: A fast algorithm for motif discovery. Int. J. Bioinform.
Res. Appl. 2014, 10, 369. [CrossRef] [PubMed]

29. Tanaka, S. Improved Exact Enumerative Algorithms for the Planted (l, d)-Motif Search Problem. IEEE/ACM
Trans. Comput. Boil. Bioinform. 2014, 11, 361–374. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/506147.506150
http://dx.doi.org/10.1287/ijoc.1040.0090
http://dx.doi.org/10.1007/s00453-003-1028-3
http://dx.doi.org/10.1016/S1570-8667(03)00079-0
http://dx.doi.org/10.1016/S0890-5401(03)00057-9
http://dx.doi.org/10.1093/bioinformatics/btr459
http://www.ncbi.nlm.nih.gov/pubmed/21821665
http://dx.doi.org/10.1371/journal.pone.0086044
http://www.ncbi.nlm.nih.gov/pubmed/24475069
http://dx.doi.org/10.1504/IJBRA.2014.062990
http://www.ncbi.nlm.nih.gov/pubmed/24989858
http://dx.doi.org/10.1109/TCBB.2014.2306842
http://www.ncbi.nlm.nih.gov/pubmed/26355783
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background Information
	Median String Algorithm for Consensus Sequence
	Markov Chain

	Proposed Markov Chain Based Median String Algorithm
	Markov Chain Generation
	Transaction Matrix Creation
	Rule Generation
	Reduced l-mer Set Generation
	Proposed Algorithm

	Result and Discussion
	Comparison with Median String Algorithm
	Comparison with the Voting Algorithm

	Conclusions
	Mathematical Proof That the System Will Work
	References

