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Abstract: This paper presents two practical methods for computing the closest approach distance
of two ellipsoids in their inter-center direction. The closest approach distance is crucial for collision
handling in the dynamic simulation of rigid and deformable bodies approximated with ellipsoids.
To find the closest approach distance, we formulate a set of equations for two ellipsoids contacting
each other externally in terms of the inter-center distance, contact point, and normal vector.
The equations are solved robustly and efficiently using a hybrid of the fixed-point iteration method
and bisection method with root bracketing, and a hybrid of Newton’s method and the bisection
method. In addition to a stopping criterion expressed with the progress of the solution, we introduce
a novel criterion expressed in terms of the error in distance. This criterion can be effectively employed
in real-time applications such as computer games by allowing an unnoticeable error. Experimental
results demonstrate the robustness and efficiency of the proposed methods in various experiments.

Keywords: ellipsoid; closest approach distance; inter-center direction; collision handling; physics-based
dynamic simulation

1. Introduction

Recently, several techniques have been proposed to increase the speed of physics-based dynamic
simulation by approximating rigid and deformable bodies with ellipsoids for interactive applications
such as computer games [1–3]. Computing the closest approach distance between two ellipsoids in
their inter-center direction is a key technique for collision handling among ellipsoids.

Given the positions and orientations of two ellipsoids, their overlap can be determined in a
relatively easy manner by examining the signs of the solutions of their quartic characteristic equation
without obtaining the actual solutions [4–7]. However, it is not easy to separate two overlapping
ellipsoids. Position-based dynamics with ellipsoids [1] takes an approach that translates two ellipsoids
outward along their inter-center direction by the closest approach distance to make them contact each
other externally. To find the closest approach distance, a set of equations is formulated intuitively in
terms of the inter-center distance, contact point, and contact normal vector. However, there is an error
in the derivation of this solution; consequently, the solution is correct only for two spheres. In this
paper, we rectify this error to find the closest approach distance correctly and intuitively. In [2,3],
the method to compute the closest approach distance is not described.

The closest approach distance between two ellipsoids also plays important roles in the simulation
of liquid crystals and colloidal systems [8–12]. In [10], an indirect formulation was introduced with
the optimization of the elliptic contact function proposed in [8,9]. However, the derivation was
complicated, and the numerical solution method was not addressed. In the method proposed in [12],
the golden section search is employed with an analytic method [11] that computes the closest approach
distance between two ellipses formed by the cross-section of two ellipsoids with a plane rotating about
the line joining their centers. However, this method is considerably slow.
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This paper presents two robust and efficient methods for computing the closest approach distance
between two ellipsoids within a user-specified tolerance. The proposed methods are based on the
intuitive approach introduced in position-based dynamics with ellipsoids [1]. We formulate the
problem with a set of conditions in terms of the inter-center distance, contact point, and contact
normal vector of two externally-contacting ellipsoids. The resulting equations are solved robustly
and efficiently using a hybrid of the fixed-point iteration method and bisection method with root
bracketing, and a hybrid of Newton’s method and the bisection method. In addition to a stopping
criterion expressed with the change of the solution in a single solver iteration, we introduce a novel
criterion expressed in terms of the actual error in distance. This can be effectively employed to increase
the efficiency of the proposed methods in real-time applications such as computer games by allowing
unnoticeable interferences between ellipsoids.

2. Method

2.1. Problem

Two ellipsoids can contact each other externally at a point by moving the center of one ellipsoid
along their inter-center direction. The inter-center distance d in this circumstance is the closest approach
distance of the two ellipsoids in their inter-center direction. The objective of the study was to develop
a method that computes the distance d efficiently.

To formulate the closest approach distance, we first describe the shapes of two ellipsoids: e1 and e2.
Each ellipsoid ei has three pairwise perpendicular unit axes of symmetry denoted by ea

i , eb
i , and ec

i ,
and the corresponding principal radii denoted by ai, bi, and ci in decreasing order. For convenience of
derivation, we introduce the following quadratic functions for the ellipsoids:

e1(x) = xTE1x and e2(x) = xTE2x, (1)

where Ei = Ridiag(a−2
i , b−2

i , c−2
i )RT

i is a symmetric matrix and Ri = [ea
i |eb

i |ec
i ] is a 3× 3 rotation matrix.

Thus, the shape of the ellipsoid ei centered at the origin can be described by the point x that satisfies
xEixT = 1.

The closest approach distance of two ellipsoids in their inter-center direction is invariant under
translation. Given two ellipsoids, we displace both ellipsoids at the same time such that one ellipsoid is
centered at the origin and the other ellipsoid maintains its relative direction and distance. We assume
that e1 is centered at the origin and n is the unit direction vector from the center of e1 to the center
of e2. When the two ellipsoids touch each other externally at a contact point x by approaching in the
direction n with the inter-center distance d, the center of e2 is apart from the center of e1 by dn. At this
moment, x should be a point on e1 and e2. Thus, x and d should satisfy the following two conditions
represented using the quadratic functions given in Equation (1):

e1(x) = 1, (2)

e2(x− dn) = 1. (3)

In addition, for the two ellipsoids to contact each other externally at x, the tangent planes of e1 and e2

at x should be parallel with opposite normal directions. That is, the gradient vectors of e1 and e2 at
x should be parallel with opposite directions. Thus, the following condition for the gradient vectors
should also be satisfied:

∇e1(x) =
(

u
u− 1

)
∇e2(x− dn), for u ∈ [0, 1), (4)

where ∇ denotes the spatial derivative with respect to x, and u/(u− 1) ∈ (−∞, 0] makes the gradient
vectors have opposite directions. Here, u/(u− 1) was adopted, unlike λ ∈ (−∞, 0] in [1], to make
the range of u finite, such that a bracketing method can be employed for root finding. Finally, the
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computation of the closest approach distance d requires the determination of u and x that satisfies all
three conditions given in Equations (2)–(4).

2.2. Solution Method

The substitution of the gradient vectors of the quadratic functions given in Equation (1) into
Equation (4) yields

E1x =

(
u

u− 1

)
E2(x− dn). (5)

Manipulating Equation (5) for x, we can obtain

x = udw(u), (6)

where w(u) is introduced for compact representation of x:

w(u) =
[
(1− u)E1 + uE2

]−1E2n. (7)

In Equation (6), x is dependent on u and d. However, we consider x as a function of only u for the
moment with the assumption that d is known. As illustrated in Figure 1, x(u) moves along a curve
that starts from the origin (the center of e1) to dn (the center of e2) as u varies from 0 to 1. Along this
curve, the gradient vector ∇e1(x) is parallel to ∇e2(x− dn) in the opposite direction.

Figure 1. Two contacting ellipsoids e1(x) = 1 and e2(x− dn) = 1 with the closest approach distance d
in the inter-center direction n and their concentric ellipsoids (with the same aspect ratios) contacting
along the curve x(u) where the gradient vectors ∇e1(x) and ∇e2(x− dn) are parallel.

The contact point should be on both ellipsoids. The substitution of Equation (6) into Equations (2)
and (3) yields

u2w(u)TE1w(u) = 1/d2, (8)

(1− u)2w(u)T[E1E−1
2 E1

]
w(u) = 1/d2. (9)

Here, to derive Equation (9) in a compact form, Equation (5) was rearranged as
(x− dn) = (u− 1)/uE−1

2 E1x and then applied to Equation (3) with the property ET
i = Ei.

By subtracting each side of Equation (9) from Equation (8), we can eliminate d, and thus we no
longer need the assumption that d is known. This results in the following sextic equation of u ∈ (0, 1]:

f (u) = u2w(u)TE1w(u)− (1− u)2w(u)T[E1E−1
2 E1

]
w(u) = 0. (10)

Once u is computed, w can be obtained from Equation (7), d from Equations (8) and (9), and finally x
from Equation (6).
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To solve Equation (10) for u, we propose two methods based on fixed-point iteration and Newton’s
method. The former is easy to implement, but converges slowly for an accurate solution. The latter
requires the derivative f ′(u) as well as the function value f (u), but converges quickly in general.
However, when applied to real-time applications with an actual error tolerance that allows a relatively
large but unnoticeable error as suggested in Section 2.3, the former converges as quickly as the latter.

A fixed-point iteration method can be obtained by manipulating Equation (10) with respect to u
and exploiting w(u) at the previous iteration:

ui+1 = g(ui) =

1 +

(
w(ui)

TE1w(ui)

w(ui)T
[
E1E−1

2 E1
]
w(ui)

) 1
2
−1

. (11)

In addition, the root bracketing property of the bisection method can be adopted because u ∈ [0, 1).
Consequently, we can employ a hybrid of the fixed-point iteration and the bisection method as
in Newton’s method [13] to guarantee the convergence. In contrast to our derivation, a similarity
transform was incorrectly applied in [1] to an equation, corresponding to Equation (10) but formulated
with λ = u/(u − 1), so that it became quadratic and could be solved analytically. However, this
condition is true only for the case of two spheres. In [2,3], this mistake was rectified, and fixed-point
iteration was employed to address the case of two ellipsoids. However, it was not described because
collision detection between two ellipsoids was not the major concern. Furthermore, the formulation
with λ does not allow root bracketing; therefore, a hybrid approach with the bisection method cannot
be employed.

To obtain an accurate solution of Equation (10), Brent’s method [13] can be employed with the
function value f (u) only, as suggested in [9]. However, for better convergence, we employ a hybrid of
Newton’s method and the bisection method with root bracketing [13], which exploits the derivative
f ′(u) as well as the function value f (u). To this end, we need an analytic form of f ′(u). By employing
the differentiation rule ∂(A−1) = −A−1(∂A)A−1 [14], we obtain

f ′(u) = 2uwT[I− uE21E−1
u
]
E1w + 2(1− u)wT[I + (1− u)E21E−1

u
]
E1E−1

2 E1w, (12)

where E21 = (E2 − E1) and Eu =
[
(1− u)E1 + uE2

]
.

2.3. Initial Guess and Stopping Criteria

A good initial guess is considerably important in reducing the number of solver iterations.
From Figure 1, u = 0.5 is a good initial guess because it is the exact solution when two ellipsoids are
actually spheres with the same radius. For two spheres with different radii a1 and a2, u = a1/(a1 + a2)

is the exact solution, and thus it becomes a good initial guess for more general cases. This initial guess
was employed in all the experiments.

For a stopping criterion, we can simply adopt the following popular one:

|ui − ui−1| < εu. (13)

This determines whether the change of u in the i-th iteration is less than a user-specified tolerance
εu. To reduce the number of iterations further, we introduce an additional actual error tolerance as a
stopping criterion. The closest approach distance d can be obtained from u using Equations (8) and (9).
Here, d should be positive when the two ellipsoids touch each other externally in the direction n. Let d1

and d2 be the distances computed using Equations (8) and (9), respectively. Note that d1 and d2 can be
different because of the numerical error in u. The contact points x1 and x2 on the two ellipsoids can be
obtained by substituting u, d1, and d2 into Equation (6). Thus, we can employ a stopping criterion that
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determines whether the distance between the two contact points is within a user-specified tolerance at
the i-th iteration:

‖x(i)1 − x(i)2 ‖ < εxrmin, (14)

where rmin is the minimum radius of the two ellipsoids. In real-time applications such as
computer games, users generally do not notice interferences between ellipsoids with εx less than 1%.
Consequently, the criterion given in Equation (14) is effective in reducing the number of iterations
while allowing an unnoticeable numerical error with slight additional computation.

3. Experimental Results

We propose two methods to compute the closest approach distance of two ellipsoids. One
method employs a hybrid of the bisection method with Newton’s method, and the other with
fixed-point iteration. We call the former hybrid Newton’s method and the latter the hybrid fixed-point
iteration method. In this section, we describe a performance comparison of four methods: (1) hybrid
Newton’s method, (2) hybrid fixed-point iteration method, (3) Brent’s method with the elliptic contact
potential [9], and (4) cross-section search [12] in various examples. The proposed methods were
implemented using C++ and the Eigen library (eigen.tuxfamily.org) to perform the vector and matrix
operations. All of the experiments were performed using a workstation equipped with a 2.3 GHz
18-core Intel Xeon W processor and 128 GB 2666 MHz DDR4 RAM.

The first experiment was conducted to test the number of solver iterations and the computation
times for 10 million pairs of randomly generated ellipsoids. The ratio between the maximum and
minimum radii of each ellipsoid was restricted to less than γ, and the ratio between the maximum radii
in a pair of ellipsoids was restricted to less than Γ. The orientation of an ellipsoid and the inter-center
direction between a pair of ellipsoids were generated randomly without any restriction. For robustness
of physics-based simulation, γ = 2 was used in [1] and γ = 5 in [2,3]. Figure 2 shows the distributions
of the numbers of solver iterations required for εu = 10−8 for the four methods with γ = 3 and Γ = 3.
The average and maximum number of solver iterations and the average computation time are listed
in Table 1. The computation time was measured using a single core in this experiment. The hybrid
Newton’s method performed better than the others in all aspects.

Figure 2. Distributions of the number of solver iterations with εu = 10−8 for 10 million pairs of
ellipsoids generated randomly with γ = 3 and Γ = 3.



Symmetry 2020, 12, 1302 6 of 9

Table 1. Maximum and average number of solver iterations and average computation time in ns.
t1 and t18 are times in nanoseconds using a single core with a single thread and 18 cores with
36 threads, respectively.

Figure 2 Figure 6

|ui− ui−1| < 10−8 |ui− ui−1| < 10−8 ‖x(i)
1 − x(i)

2 ‖ < 10−2rmin

# Solver Iters. Time # Solver Iters. Time # Solver Iters. Time

Max. Avg. t1 Max. Avg. t1 t18 Max. Avg. t1 t18

Hybrid Newton’s Method 14 4.30 310 14 3.87 285 12.7 13 2.46 205 9.4
Hybrid Fixed-Point Iteration Method 28 7.37 491 28 6.07 433 16.9 10 2.43 189 8.7
Brent’s Method 28 11.62 578 29 11.21 553 22.0 12 4.99 487 20.8
Cross-Section Search 41 40.34 16,914 - - - - - - - -

The error in the analytic method for the closest approach distance of two ellipses increased as γ

increased [11]. Correspondingly, the error in the cross-section search [12] also increased, regardless
of the number of solver iterations in the golden section search that found the angle of the cross
section resulting in the closest approach distance of two ellipsoids. In contrast, the other methods
computed the closest approach distance within a user-specified tolerance even with a large γ. However,
the number of solver iterations increased as γ increased. This result was verified with the second
experiment, in which the closest approach distances were computed for each of the 1 million pairs
of ellipsoids generated randomly with γ increasing from 1 to 200 and Γ fixed at 3. For the stopping
criterion, we employed Equation (13) with εu = 10−8 and the maximum number of solver iterations
set to 100. Figure 3 shows the maximum and average number of solver iterations. In the traditional
fixed-point iteration method, the number of solver iterations exceeded 100 when γ became larger than
7. However, the hybrid fixed-point iteration method was robust, even when γ reached 200, with an
average of 11.3 solver iterations. The hybrid Newton’s and Brent’s methods were also robust and
reached γ = 200 with an average of 5.6 and 13.0 solver iterations, respectively. γ = 200 implied the
maximum radius could be 200 times larger than the minimum in a single ellipsoid, and thus it was
sufficient for physics-based simulation with ellipsoids.

Figure 3. Maximum and average number of solver iterations for 1 million samples generated for each
γ value from 1 to 200.

The number of solver iterations was almost insensitive to Γ in contrast to γ. Figure 4 shows the
maximum and average number of solver iterations required to compute the closest approach distances
for each of the 1 million pairs of ellipsoids generated randomly, with Γ increasing from 1 to 200 and



Symmetry 2020, 12, 1302 7 of 9

γ fixed at 3. We can observe that the computation time was almost insensitive to Γ, the proportion
between the gross sizes of the ellipsoids. Consequently, the proposed methods could be effectively
used for simulating ellipsoids with various sizes.

Figure 4. Maximum and average number of solver iterations for 1 million samples generated for each
Γ value from 1 to 200.

The next experiment was conducted to test the number of solver iterations with respect to the
error tolerance. Figure 5 shows the average number of solver iterations required to compute the
closest approach distances for 1 million pairs of random ellipsoids with γ = 3 (solid lines) and
γ = 6 (dashed lines) when εu decreases from 1 to 10−8. Γ was fixed at 3. The hybrid Newton’s and
Brent’s methods exhibited quadratic convergence, whereas the hybrid fixed-point iteration method
exhibited linear convergence. However, when γ was small and the error tolerance was large, the hybrid
fixed-point iteration method performed better than the others. This observation can be effectively
exploited with the actual error tolerance given in Equation (14) as illustrated in the final experiment.

Figure 5. Average number of solver iterations for 1 million samples when εu decreases from 1 to 10−8.
The solid lines are for γ = 3, and the dashed lines are for γ = 6.

The final experiment demonstrated the effectiveness of the proposed methods in real-time
as-rigid-as-possible dynamic simulation of deformable bodies approximated with ellipsoids [3].
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Figure 6 shows the simulation result of 180 deformable bodies approximated with 4404 ellipsoids.
A spatial subdivision technique [15] was employed to reduce the number of collision tests between a
pair of ellipsoids, and 49,716,944 collision tests were performed during 60 s of simulation. The ratios γ

and Γ between radii were 4.86 and 2.55, respectively. Table 1 lists the average and maximum number
of solver iterations and the average computation time required to satisfy the stopping criterion given
in Equation (13) with εu = 10−8. The computation time was measured in two different manners that
exploited (1) a single core and (2) all 18 cores with a simple parallelization using OpenMP. In both
cases, the hybrid Newton’s method was the most efficient.

Figure 6. Real-time simulation of 180 deformable models (top) with 4404 ellipsoidal particles (bottom)
using the as-rigid-as-possible solid simulation technique presented in [3].

In real-time applications such as computer games, computational efficiency has higher priority
over simulation accuracy. Moreover, the interference between ellipsoids was scarcely noticeable even
when the interference was 1% of the minimum radius. Thus, the actual error tolerance given in
Equation (14) was adequate as a stopping criterion. Table 1 lists the average and maximum number of
solver iterations and the average computation time when εx = 10−2. With the actual error tolerance,
the hybrid fixed-point iteration method was shown to be the most efficient. From this experiment,
we can conclude that the hybrid Newton’s method is a good choice when the accuracy is important,
and the hybrid fixed-point iteration method is a good choice in real-time applications.

4. Conclusions

The computation of the closest approach distance of two ellipsoids in their inter-center direction
is crucial for collision handling among ellipsoids that approximate rigid and deformable bodies
in physics-based dynamics simulation [1–3] and also plays important roles in the simulation of
liquid crystals and colloidal systems [8–12]. We proposed two intuitive and efficient methods to
compute the closest approach distance of two ellipsoids. Based on the intuitive approach introduced
in position-based dynamics with ellipsoids [1], we formulated a set of equations for two ellipsoids
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contacting each other externally with the inter-center distance, contact point, and normal vector.
The equations can be solved accurately and efficiently using a hybrid of Newton’s method and
bisection method with root bracketing. In addition, we introduced a novel criterion expressed in terms
of the error in distance. Our experimental results demonstrate that this criterion can be effectively
employed in real-time applications such as computer games by allowing an unnoticeable error with a
hybrid of the fixed-point iteration method and bisection method. Currently, our methods deal with
only static ellipsoids. We plan to extend our methods to cope with moving ellipsoids.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
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Conflicts of Interest: The author declares no conflict of interest.

References

1. Müller, M.; Chentanez, N. Solid Simulation with Oriented Particles. ACM Trans. Graph. 2011, 30, 92.
[CrossRef]

2. Choi, M.G. Real-Time Simulation of Ductile Fracture with Oriented Particles. Comput. Anim. Virtual Worlds
2014, 25, 455–463. [CrossRef]

3. Choi, M.G.; Lee, J. As-Rigid-As-Possible Solid Simulation with Oriented Particles. Comput. Graph. 2018,
70, 1–7. [CrossRef]

4. Wang, W.; Wang, J.; Kim, M.S. An Algebraic Condition for the Separation of Two Ellipsoids.
Comput. Aided Geom. Des. 2001, 18, 531–539. [CrossRef]

5. Choi, Y.K.; Chang, J.W.; Wang, W.; Kim, M.S.; Elber, G. Continuous collision detection for ellipsoids.
IEEE Trans. Vis. Comput. Graph. 2009, 15, 311–324. [CrossRef] [PubMed]

6. Jia, X.; Choi, Y.K.; Mourrain, B.; Wang, W. An algebraic approach to continuous collision detection
for ellipsoids. Comput. Aided Geom. Des. 2011, 28, 164–176. [CrossRef]

7. Gonzalez-Vega, L.; Mainar, E. Solving the separation problem for two ellipsoids involving only the
evaluation of six polynomials. In Proceedings of the Milestones in Computer Algebra, London, ON,
Canada, 1–3 May 2008; pp. 201–208.

8. Perram, J.W.; Wertheim, M.S. Statistical Mechanics of Hard Ellipsoids. I. Overlap Algorithm and the
Contact Function. J. Comput. Phys. 1985, 58, 409–416. [CrossRef]

9. Perram, J.W.; Rasmussen, J.; Præstgaard, E.; Lebowitz, J.L. Ellipsoid contact potential: Theory and relation to
overlap potentials. Phys. Rev. E 1996, 54, 6565–6572. [CrossRef] [PubMed]

10. Paramonov, L.; Yaliraki, S.N. The directional contact distance of two ellipsoids: Coarse-grained potentials
for anisotropic interactions. J. Chem. Phys. 2005, 123, 194111. [CrossRef] [PubMed]

11. Zheng, X.; Palffy-Muhoray, P. Distance of closest approach of two arbitrary hard ellipses in two dimensions.
Phys. Rev. E 2007, 75, 061709. [CrossRef] [PubMed]

12. Zheng, X.; Iglesias, W.; Palffy-Muhoray, P. Distance of Closest Approach of Two Arbitrary Hard Ellipsoids.
Phys. Rev. E 2009, 79, 057702. [CrossRef] [PubMed]

13. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing,
3rd ed.; Cambridge University: Cambridge, UK, 2007.

14. Petersen, K.B.; Pedersen, M.S. The Matrix Cookbook; Technical University of Denmark: Kongens Lyngby,
Denmark, 2012.

15. Teschner, M.; Heidelberger, B.; Müller, M.; Pomeranets, D.; Gross, M. Optimized spatial hashing for collision
detection of deformable objects. In Proceedings of the 8th Workshop on Vision, Modeling, and Visualization,
Munich, Germany, 19–21 November 2003; pp. 47–54.

c© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2010324.1964987
http://dx.doi.org/10.1002/cav.1601
http://dx.doi.org/10.1016/j.cag.2017.07.027
http://dx.doi.org/10.1016/S0167-8396(01)00049-8
http://dx.doi.org/10.1109/TVCG.2008.80
http://www.ncbi.nlm.nih.gov/pubmed/19147893
http://dx.doi.org/10.1016/j.cagd.2011.01.004
http://dx.doi.org/10.1016/0021-9991(85)90171-8
http://dx.doi.org/10.1103/PhysRevE.54.6565
http://www.ncbi.nlm.nih.gov/pubmed/9965881
http://dx.doi.org/10.1063/1.2102897
http://www.ncbi.nlm.nih.gov/pubmed/16321080
http://dx.doi.org/10.1103/PhysRevE.75.061709
http://www.ncbi.nlm.nih.gov/pubmed/17677285
http://dx.doi.org/10.1103/PhysRevE.79.057702
http://www.ncbi.nlm.nih.gov/pubmed/19518604
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Method
	Problem
	Solution Method
	Initial Guess and Stopping Criteria

	Experimental Results
	Conclusions
	References

