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Abstract: Automatic anomaly detection for time-series is critical in a variety of real-world domains
such as fraud detection, fault diagnosis, and patient monitoring. Current anomaly detection methods
detect the remarkably low proportion of the actual abnormalities correctly. Furthermore, most of
the datasets do not provide data labels, and require unsupervised approaches. By focusing on
these problems, we propose a novel deep learning-based unsupervised anomaly detection approach
(RE-ADTS) for time-series data, which can be applicable to batch and real-time anomaly detections.
RE-ADTS consists of two modules including the time-series reconstructor and anomaly detector.
The time-series reconstructor module uses the autoregressive (AR) model to find an optimal window
width and prepares the subsequences for further analysis according to the width. Then, it uses a
deep autoencoder (AE) model to learn the data distribution, which is then used to reconstruct a
time-series close to the normal. For anomalies, their reconstruction error (RE) was higher than that of
the normal data. As a result of this module, RE and compressed representation of the subsequences
were estimated. Later, the anomaly detector module defines the corresponding time-series as normal
or an anomaly using a RE based anomaly threshold. For batch anomaly detection, the combination of
the density-based clustering technique and anomaly threshold is employed. In the case of real-time
anomaly detection, only the anomaly threshold is used without the clustering process. We conducted
two types of experiments on a total of 52 publicly available time-series benchmark datasets for the
batch and real-time anomaly detections. Experimental results show that the proposed RE-ADTS
outperformed the state-of-the-art publicly available anomaly detection methods in most cases.

Keywords: anomaly detection; density-based clustering; deep autoencoder; reconstruction error;
unsupervised technique

1. Introduction

As a result of the rapid development of computer hardware and software nowadays,
time-dependent data (time-series) is being generated every minute and second. Time-series is the
sequence of data points stored in timing order; each point is measured at fixed time intervals
during a particular period. It is possible to extract valuable information hidden in the time-series by
efficient analyses.
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Anomaly detection in time-series is a significant task across many industries. An abnormal
pattern that is not compatible with most of the dataset is named a novelty, outlier, or anomaly, as
described in [1]. It can be caused by several reasons such as data from various classes, natural variation,
data measurement, or collection errors [2]. Although anomalies can be produced through some
mistakes, sometimes it indicates events like extreme weather or a considerable number of transactions.
In recent years, the machine learning-based approaches have been widely used to detect unusual
patterns for many application domains, for instance, the detection of malicious software and intrusions
in network security systems, fault detection in manufacturing, fraud detection in finance, and disease
detection in medical diagnosis.

Typically, machine-learning techniques are divided into three categories: supervised,
semi-supervised, and unsupervised. If a dataset provides labels that indicate normal or abnormal,
supervised techniques are used and it builds a classification model from the labeled dataset for
predicting the output label of unknown data. The semi-supervised techniques use a dataset labeled as
only normal or abnormal to build a classification model. However, the model may not predict correctly
when the training dataset contains abnormal and normal data together. In practice, most datasets do
not include labels, and unsupervised approaches are employed. The anomaly detection in time-series
is the task of unsupervised learning. Currently, unsupervised anomaly detection approaches tend to
detect a small number of true anomaly and a large number of false normal.

In this study, we have proposed the Reconstruction error based anomaly detection in time-series
(RE-ADTS), which is the unsupervised anomaly detection approach based on the RE of the deep
autoencoder model for time-series data. AE is one kind of neural network that learns to represent its
input to output as the same as possible. Typically, it is used to reduce data dimensionality or to denoise
noisy data. However, we additionally used the RE measurement, which is a difference between the
input and its reconstructed output on the deep AE model for two purposes: measuring the anomaly
and as a new feature. RE-ADTS can be summarized as follows. Foremost, it prepares subsequences
based on the optimal window width that is selected using the AR model. After that, the prepared
subsequences are compressed into 2-dimensional space by the deep AE model. In the anomaly detector
module, first, the RE based anomaly threshold is calculated from the reconstruction errors in the
compressed dataset. For batch anomaly detection, the compressed subsequences are grouped by the
density-based spatial clustering of applications with noise (DBSCAN) algorithm, and the RE of each
subsequence in a cluster is compared with the anomaly threshold. If most of the subsequences exceed
the anomaly threshold, the cluster is considered as the anomaly. For real-time anomaly detection,
the RE of the subsequence is directly compared with the anomaly threshold without the clustering
process. The main contributions of this research are as follows:

1. We propose the novel RE-ADTS method to detect anomalies in time-series by the unsupervised mode.
2. RE-ADTS can be used in both batch and real-time anomaly detections.
3. By automatically determining the window width, the RE-ADTS can be directly applied in various

domains without manual configuration.
4. We evaluated 10 publicly available state-of-the-art outlier detection methods on 52 benchmark

time-series datasets. The RE-ADTS gave a higher performance than the compared methods in
most cases.

The rest of the paper is arranged as follows. Section 2 provides an overview of related studies.
The proposed approach is described in Section 3. The experimental setup is presented in Section 4.
The evaluation results of the proposed method and performance comparison are provided in Section 5.
The discussion part is presented in Section 6. The whole study is concluded in Section 7.

2. Related Work

Anomaly detection in time series is one of the most challenging problems in data science.
As above-mentioned, we can use three different techniques for anomaly detection based on the
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availability of the data label. If we have a labeled dataset, it is feasible to build an accurate model using
classification techniques. However, most datasets are not labeled, and the labeling process requires
domain experts. Moreover, it is very time-consuming and expensive to make labels manually for the
massive datasets. In this section, we introduce unsupervised anomaly detection approaches.

Distance-based techniques are widely used to detect anomalies by the unsupervised mode [3].
Ramaswamy et al. proposed an anomaly detection approach based on the k-nearest neighbor (KNN),
which calculates an anomaly score for each data point by a distance between the point and the k-th
nearest neighbor and orders them according to their anomaly score [4]. The first n data points from this
ranking are viewed as an anomaly. Breuing et al. presented the local outlier factor (LOF) algorithm [5];
it assigns the degree of the outlier to each object depending on how they are isolated from their
surrounding neighborhoods. This algorithm assumes the data distribution is spherical. However, if the
data distribution is linear, the local density estimation will be incorrect [3]. He et al. [6] introduced a
cluster-based local outlier factor (CBLOF) approach, where the degree of the outlier was based on the
clustering technique instead of KNN. Gao et al. [7] combined the KNN with a clustering technique
to detect anomalies in unlabeled telemetry data. The proposed approach initially selected a dataset
near to normality using the KNN algorithm, where a point is assumed as an anomaly when its nearest
neighbors in data space are far. Then, it builds a model by the single-linkage clustering algorithm
from the selected dataset. For new data, it calculates the distances between the data and clusters and
picks the minimum distance. If this distance is longer than the threshold, it is regarded as an anomaly.
Jiang et al. [8] presented a clustering-based unsupervised intrusion detection (CBUID) algorithm that
groups dataset into clusters with almost the same radius using a novel incremental clustering algorithm.
These clusters are labeled as ‘normal’ or ‘attack’ based on the ratio of data points included and total
points. For new data, it uses the labeled clusters as a model.

Principal component analysis (PCA) is a data transformation technique. It is commonly employed
for reducing data dimension [9], but it can be used to detect anomalies. Rousseeuw et al. [10] introduced
the PCA based anomaly detection approach using an orthogonal distance from the data point to the
PCA subspace and score distance based on Mahalanobis distance. For normal data, both orthogonal
and score distances were small. Hoffmann et al. [11] proposed a kernel-PCA for novelty detection,
which is a non-linear extension of PCA. First, they mapped the input data into higher-dimensional
space using the Gaussian kernel function. Then, they extracted the principal components of the data
distribution, and the squared distance to the corresponding PCA subspace is used to measure novelties.
Kwitt et al. proposed a robust PCA for anomaly detection and used the correlation matrix instead of
the covariance matrix to calculate the principal component scores [12].

There are semi-supervised and unsupervised approaches based on the one class support vector
machine (OC-SVM) proposed to detect anomalies. The unsupervised OC-SVM was first introduced
by Schölkopf et al. [13] for novelty detection purposes, where the whole dataset is used to train the
OC-SVM model. If the training set contains an anomaly, the learned model does not work well because
the decision boundary of OC-SVM shifts toward anomalies. Amer et al. [14] presented an enhanced
OC-SVM consisting of the robust OC-SVM and the eta-SVM for eliminating the previous problem.
The basic idea is that anomalies contribute to the decision boundary less than normal instances.

The previously mentioned methods are also used for detecting anomalies in time-series data.
Ma et al. [15] introduced OC-SVM for time-series novelty detection. In the beginning, it converts
time-series into a set of vectors using the time-delay embedding process [16] and then applies the
OC-SVM on these vectors. Hu et al. [17] proposed the meta-feature based OC-SVM for anomaly
detection (MFAD) from time-series datasets. For the multivariate time-series, its dimension is reduced
to 1-dimensional sequences using PCA or SVD techniques. Then, it extracts six meta-features from the
1-dimensional dataset and recognizes anomalies using the OC-SVM from the 6-dimensional dataset.
The KNN based approach was suggested by Basu et al. [18] for cleaning noisy data from sensor signals.
This method uses the median value of k number of neighborhoods of a data point and compares
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a difference between the median and data point to a specified threshold. However, configuring an
appropriate threshold value requires knowledge about the signal.

Recently, a deep learning-based anomaly detection method for multidimensional time-series was
proposed by Kieu et al. [19]. First, they presented two versions of the proposed method based on a
2-D convolutional AE and a long short term memory AE. Before detecting anomalies, it enriches the
features by the statistical aspect. The difference between the enriched time-series and a reconstructed
variant of this enrichment is used as an anomaly indicator. They considered the top α% (e.g., 5%)
of the reconstruction error based vectors as outliers. Mohsin et al. presented a deep learning-based
DeepAnT method for unsupervised anomaly detection in time-series [20]. The DeepAnT consists of
two modules including a time-series predictor and anomaly detector. The time-series predictor uses
a deep convolutional neural network for the time-series regression problem; the anomaly detector
uses the Euclidean distance to calculate the anomaly score from the actual value and predicted value.
In this research, we addressed the problem of how to detect anomalies automatically from a univariate
time-series dataset without domain knowledge.

According to time-series characteristics, there are several anomaly detection techniques that
are publicly available. Skyline [21] is a real-time anomaly detection system, implemented by Etsy
Inc. It consists of the Horizon agent, which is responsible for collecting, cleaning, and formatting
new data points and the Analyzer agent, which is responsible for analyzing every metric for the
anomalies. It can be used in a large amount in a high-resolution time-series dataset because of a simple
divide-and-conquer strategy.

Extensible generic anomaly detection system (EGADS) is a general time-series anomaly detection
framework implemented at Yahoo [22]. This framework consists of two main components, and each of
them includes several algorithms: the time-series modeling module (TMM), and the anomaly detection
module (ADM). The TMM builds a model on given time-series and produces an expected value that is
later consumed in the ADM to compute the anomaly score. It provides a simple mechanism to plugin
new models and algorithms into the system.

Twitter Inc. introduced the AnomalyDetection open-source R package in 2015 [23]. The underlying
algorithm is a seasonal hybrid ESD (S-H-ESD), which is based on the generalized extreme
studentized deviate test [24] for anomalies. The Twitter anomaly detection algorithm detects anomalies
from a statistical viewpoint. They implemented two variants of the anomaly detection function.
The AnomalyDetectionVec is used in univariate time-series where an input is a series of values.
However, if the input is a series of pairs of timestamp and value, the AnomalyDetectionTS is employed.

The Numenta anomaly detection benchmark (NAB) is an open-source framework that provides
real-world time-series benchmark datasets with labeled anomalies and anomaly detectors. Numenta is
the proposed anomaly detection method based on hierarchical temporal memory (HTM) in the NAB [25].
The HTM model predicts the value of the next timestamp of a given timestamp. Then, prediction
error is calculated through a comparison of the predicted value and actual value. For each timestamp,
it produces the likelihood, which defines how anomalous the current state is based on the prediction
history of the HTM model.

3. Proposed Method

Nowadays, the usage of a deep neural network is dramatically increased in many domains such
as object recognition, emotion recognition, financial anomaly detection, financial time-series prediction,
and disease prediction [26–28]. We propose the deep learning-based anomaly detection method by
extending the unsupervised novelty detection approach in [29] for time-series data. In the previous
approach, the input of the deep AE model did not depend on its previous values. Moreover, the deep
AE model was trained on the subset that is close to normal instead of the whole dataset. Therefore,
it is not possible to use this method in time-series analysis directly, because the dataset must be in the
timing order without gaps in time. The proposed approach in this study was designed to handle these
problems and consists of time-series reconstructor and anomaly detector modules, as shown in Figure 1.
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In the time-series reconstructor module, we combined the AR model and deep AE model. AE is one
type of neural network that projects its input to a lower-dimensional space and then reconstructs back
it into the output. We used this characteristic of the AE model for the RE-based anomaly evaluation.
In other words, when the AE model learns from the whole subsequences, the model fits more for
normals than anomalies because a small ratio of the total data are anomalies. In the anomaly detector
module, the density-based clustering technique with the RE based anomaly threshold was employed
for batch anomaly detection. For real-time anomaly detection, only the RE based anomaly threshold
was used without a clustering technique.
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For example, suppose we have a thousand series of observations in timing order. The optimal
length of subsequence derived from the AR model is 15, and the number of prepared subsequences
is 986. We transformed these subsequences into 2-dimensional space consisting of a latent variable
(the compressed representation of subsequence) and RE (the difference between subsequence and
its reconstruction) from the 15-dimensions using the deep AE model. Then, the anomaly threshold
is estimated through the REs of all subsequences. For batch anomaly detection, the 2-dimensional
representations of 986 subsequences are grouped based on density. As a result, assume that a total of
three groups were created with subsequences of 100, 500, and 350, respectively, and 36 subsequences
were not grouped. We will consider 36 unclustered subsequences as one cluster, and a total number
of four clusters will be checked, whether there is an anomaly or not. Cluster 1 consisted of 100
subsequences, but the RE of 89 subsequences was higher than the anomaly threshold. For others,
5–15% of subsequences exceeded the anomaly threshold. Therefore, only subsequences in cluster 1
were tagged as anomalies. In real-time anomaly detection, the RE of each subsequence was compared
with the anomaly threshold one by one without the clustering process, and all subsequences with a
higher RE than the threshold were marked as an anomaly. For instance, a total of 89 subsequences will
be considered as anomalies from the subsequences in cluster 1.

3.1. Autoregressive Based Deep Autoencoder Model for Time-Series Reconstruction

In this manuscript, we addressed the problem of how to detect anomalies automatically from the
time-series data without domain knowledge. Therefore, the parameter configuration of our proposed
model is fully automatic. The performance of time-series analysis depends on how sub-sequences
are adjusted. In other words, it is critical to choose an optimal length of subsequences to obtain a
higher performance in time-series analysis. However, there is no general and fixed window width for
time-series data, and each time-series has its characteristics. The selection of window width is not
an easy task. If the width is too large, it will increase the computation complexity and time delay by
requiring more historical data for analysis. If it is too small, a time-series pattern might be lost [30].
In our proposed method, the reconstruction error of subsequences was used for anomaly detection
and the subsequence consists of the value of a particular timestamp and its previous values. In other
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words, to determine whether a particular timestamp is an anomaly or not, we used its previous values
in a subsequence. However, it requires the user to specify optimal periodicity. It is expensive to try all
efficient periods one by one.

In most anomaly detection approaches, the user-defined length is used and it is not applicable when
changing the dataset. The selection of window width can be solved by the approach of determining
the order of the AR model. The AR model is the most successful, flexible, and easy-to-use model for
the analysis of time-series. RE-ADTS prepares subsequences from the whole time-series by the sliding
window method using the optimal window width. The length of the subsequence is determined
through the AR model. It specifies the output value that depends linearly on its prior values. In other
words, the value at the time t is dependent on values at its previous p periods, where the p is called the
order. The AR model of order p can be written as [31]:

yt = c + ϕ1yt−1 + ϕ2yt−2 + . . .+ ϕpyt−p + εt (1)

where εt is white noise; c is a constant, ϕ1–ϕp are the model parameters; and yt−1–yt−p are the past
series values. The AR process has degrees of uncertainty; model selection methods were employed to
determine the optimal window width (order p). A considerable number of model selection methods
have been proposed such as cross-validation (CV), Akaike’s information criterion (AIC), Bayesian
information criterion (BIC), and based on last lag (T-STAT), etc. For example, CV first randomly splits
the original data into training and testing sets without overlap. Then, each candidate model is trained
from the training set, and then its loss is measured from the testing set. After this procedure has been
done several times, a model with the smallest loss is selected. To select the most proper window
width, the commonly used approach is to fit the AR (p) model with a different number of orders p = 0.
n, and choose the value of p, which minimizes some of the model selection criteria. We used several
information criteria such as CV, AIC, BIC, and T-STAT [32] for the order selection.

In T-STAT, the model starts with maxlag, which is (round (12 * (number of observations/100) **
(1/4)) [33] and drops the lag until the highest lag has a t-value that is significant at the 95% level. AIC is
a model selection approach proposed by Akaike [34]:

AICp = n log êp + 2p (2)

where p is the number of order; êp is the average prediction error based on the quadratic loss; and n is
the number of the sample.

BIC is another popular model selection criteria. The only difference from AIC is that the constant 2
in the AIC penalty is replaced with the logarithm of the dataset size. It selects the model that minimizes:

BICp = n log êp + p log n (3)

where p is the number of order; êp is the average prediction error based on the quadratic loss; and n is
the number of the sample. The presented approach has an automated window width selection process,
and it can adapt to various characteristics of time-series. Table A1 in Appendix A shows the comparison
of the average f-measure on each domain using the fixed and optimal window width.

The prepared subsequences were reconstructed by the deep AE model for retrieving the
reconstruction error. AE is the unsupervised learning algorithm for learning to copy its input
(x1 . . . xn) to its output (y1 . . . yn) as close (xi = yi) as possible by reducing the distinction between
inputs and outputs [35]. The architecture of AE consists of the encoder and decoder parts; both of them
contain several layers with neurons. Each neuron receives an output of the activation function that
converts the weighted summation of neurons in the previous layer. AE learns by changing the weights
of each neuron to reduce the difference between input and its reconstructed output. The encoder part
takes an input vector x and projects it into a compressed representation h called latent space. After that,
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the latent space is generated back to a reconstructed vector x’ in the decoder part. The following
equation describes AE:

h = a(wx + b)
x′ = a′(w′h + b′)

(4)

where a and a’ are the activation functions; w and w’ are the weight matrices; and b and b’ are the
bias vectors.

The deep AE model in RE-ADTS consists of an input layer, three hidden layers, and an output
layer. The number of neurons in the input and output layers are determined by the selected window
width, and neurons of hidden layers will vary for each time-series dataset, depending on the number
of neurons in the input layer. If the input layer has n neurons, the three hidden layers consist of n/2,
1, and n/2 neurons, respectively. The AE model reduces the dimension from n features to 1, and it is
reconstructed back to the output. The layers of the encoding part use the sigmoid activation function,
and the layers of the decoding part use the tanh activation function. The output of the deep AE model
can be written in the vectorized form:

x′ = tan h
(
w4tan h

(
w3sigmoid

(
w2sigmoid

(
w1x + b1

)
+ b2

)
+ b3

)
+ b4

)
(5)

where tanh and sigmoid are the activation functions; w and b are the weight matrix and the bias vector
for each layer, respectively; and x is the input vector.

Generally, AE is used for dimensionality reduction or data denoising purposes. If using AE for
dimensionality reduction, the encoder part is employed and the decoder part is used to regenerate
any corrupted or noisy inputs. In the RE-ADTS, a new feature is extracted using a reconstruction
error that occurs to reconstruct the subsequence on the deep AE model. RE can be used to identify
anomalies because some data that are different from most data give a higher RE than regular data.
The RE is calculated through the mean of the squared difference between the input features and
reconstructed features:

RE =
1
n

n∑
i=1

‖xi − x′i‖
2
2 (6)

where n is the number of input features; xi is the i-th feature; and xi’ is the reconstruction of the i-th
feature. As a result of the time-series reconstructor module, there are two kinds of data generated from
the subsequences using the deep AE model, and reconstruction errors and compressed representations
of the subsequences are passed to the anomaly detector module for further analysis.

3.2. Reconstruction Error Based Anomaly Identification

We used the DBSCAN clustering technique with the anomaly threshold based on RE for batch
anomaly detection. Before the clustering process, we reduced the dimension of subsequences into
latent space using the AE model. The latent space is a compressed representation of the subsequence.
Then, we added one more feature based on RE. Figure A1 in Appendix B shows the average f-measure
on each domain. First, we used only latent space and RE in clustering, separately. Both the latent space
and REs were not enough to use in clustering. Therefore, we combined them in the proposed method.
Ester et al. introduced the DBSCAN algorithm in 1996, which separates high-density regions from one
another depending on location [36]. The main advantage is that it can find arbitrarily shaped groups
without requiring the number of clusters to be specified. For the unlabeled dataset, knowledge of the
group quantity is unavailable. Moreover, a relatively small percentage of the total data is anomalous,
and may be scattered in different locations. DBSCAN works efficiently on these arbitrary shaped
clusters. There are two parameters in the DBSCAN, eps, which determines a maximum radius of the
neighborhood, and minPts, which defines a minimum number of points in the specified eps radius.
To discover an optimal value of the eps parameter, we applied the k-dist function that was introduced
in [36]. It calculates distances from each point to its k-th nearest neighbor and sorts these distances.
Then, a value that is the first sharp decreasing point is picked. For the proposed method, we fitted the
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eps parameter by the value of the index of 98 hundredths of the sorted list. Additionally, the DBSCAN
does not provide the anomaly score as it considers unclustered points as anomalies [37]. In contrast,
the RE-ADTS makes a group of the unclustered points and uses the RE-based threshold obtained from
the deep AE model to identify anomalies. The commonly used Otsu [38] thresholding technique is
employed to estimate the anomaly threshold from the reconstruction errors of subsequences on the
deep AE model, which finds the optimal value from the distribution histogram of the data points.
After the clustering process, each group is checked, whether it is an anomaly or normal. If the RE of
most instances exceeds the anomaly threshold, all members in the cluster are identified as anomalies.
For the real-time anomaly detection, we only used the RE based threshold on each subsequence without
grouping them by the DBSCAN.

4. Experimental Study

We evaluated the RE-ADTS on the six different domains including 52 time-series benchmarks.
Then, the results were compared to 10 anomaly detection methods. We conducted two types of
experiments for the batch and real-time anomaly detections. Training of the AE model does not
require any label and learns the data distribution, which reconstructs the time-series close to normal.
Anomaly detection is one case of the class imbalance problem. Abnormal samples are usually smaller
than normal ones. Therefore, the AE model is more adapted to a normal dataset than an abnormal
dataset. In other words, the proposed method detects anomalies based on the data distribution of
most common dataset using the AE model. Therefore, in batch anomaly detection, all the compared
algorithms evaluated without the train and test split. However, real-time anomaly detection used 40%
of the dataset for training and the rest of the dataset for testing.

4.1. Evaluation Metrics

The confusion matrix is used to evaluate the performance of prediction models when the data
labels are available. It represents the total number of correct and incorrect predictions, and most
evaluation metrics are derived from the matrix. The accuracy is the proportion of correct classifications
among all classifications, which is commonly used to give an overview of classification models.
However, it is not a valid measurement of performance when data are imbalanced. For the anomaly
detection task, the small fraction of the total dataset is the anomaly, leading to the class imbalance
problem. Therefore, we assessed the RE-ADTS and other compared methods in precision, recall,
F-measure, and area under the receiver operating characteristic curve (AUC). The precision returned a
positive predictive rate, and the recall gave a true positive rate. These can be defined as:

precision =
number o f true positive prediction
total number o f positive prediction

(7)

recall =
number o f true positive prediction

total number o f actual positives
(8)

F-measure is a combination of precision and recall, and gives the harmonic mean of them. It can
be defined by:

F−measure =
2 ∗ precision ∗ recall
precision + recall

(9)

The AUC represents how much the model is capable of distinguishing between classes, and a high
AUC indicates a good result. A receiver operating characteristic (ROC) curve is created by plotting the
true positive rate (TPR) against the false positive rate (FPR). The AUC score is the area of the ROC
curve that represents the probability that a randomly selected positive instance will score higher than a
randomly selected negative instance [39].
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4.2. Experimental Dataset

Anomalies have a distinct behavior depending on their domain. Therefore, it is significant
to evaluate anomaly detection methods on many domains. The Numenta Anomaly Benchmark
(NAB) is a publicly available streaming anomaly detection benchmark published by Numenta [40].
NAB consists of a variety of domains such as server network utilization, temperature sensors on
industrial machines, social media activity, and contains 58 streaming files, each with 1.000–22.000
observations. All streaming files were labeled by the known root causes of the anomalies from the data
provider or as a result of the well-defined NAB labeling procedure [25]. Each of the files includes pairs
of timestamps and actual values, but anomaly labels are in a separate file.

4.3. Parameter Tuning for RE-ADTS

In the beginning, we selected an optimal window width using the AR model for each time-series
file. The AR process has degrees of uncertainty; order selection criteria were employed to determine
the optimal window width (order p). We used several information criteria such as CV, AIC, BIC, and
T-STAT for the order selection. Table 1 gives the average value of the selected window width for
each domain.

Table 1. The average value of the selected window width for each domain using different order
selection criteria on the autoregressive model.

Time-Series CV AIC BIC T-STAT

Artificial With Anomaly 21 21 11 27
realAdExchange 23 18 14 20

realAWSCloudwatch 19 22 14 25
realKnownCause 21 24 28 33

realTraffic 19 9 4 21
realTweets 18 29 17 34

The window width can be different on each file. Table 1 simply shows the average value of each
domain. For CV, we used a 5-fold time-series cross-validation approach to select the best window width
for the AR model. First, several candidate AR models with different window widths between two and
30 were trained from the training set, and then the loss of these models was measured from the testing
set by the root mean squared error (RMSE) measurement. After this procedure had been conducted
five times, a model with the smallest average loss was selected. Belonging to the selected window
width, we prepared the subsequences, and the deep AE model was trained on them to extract features
to be used in the anomaly detection. The deep AE model was optimized by the Adam algorithm [41],
and the learning rate was 0.001 to minimize the mean squared error. The batch size and the number
of epochs were 32 and 1000, respectively. From the deep AE model, the compressed subsequences
that consist of the latent space and RE are retrieved. For batch anomaly detection, these compressed
subsequences were clustered by the DBSCAN algorithm; the parameter minPts was configured by
three. If at least 80 percent of the subsequences exceeds the anomaly threshold, the cluster was labeled
as the anomaly. For real-time anomaly detection, RE of the subsequence was compared with the
anomaly threshold directly without clustering.

4.4. Parameter Tuning for the Compared Algorithms

For the Twitter anomaly detection method, we used the AnomalyDetectionVec function on
benchmark datasets. This function detects one or more statistically significant anomalies from a vector
of observations. We used all default parameters of this function except alpha, direction, and period.
The alpha parameter defines the level of statistical significance in which to accept or reject anomalies,
and it was configured at 0.05 and 0.1. The direction parameter sets the directionality of the anomalies
to be detected, and we configured using the ‘both’ option in our experiment. The period parameter
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specifies the number of observations in the subsequence and was configured by the optimal window
width from the AR model, the same as the proposed approach for each file.

For Yahoo EGADS, we ran the Olympic model and SimpleThresholdModel for time-series
modeling and anomaly detection, respectively. The default values of all parameters were used except
for the window size. It was configured the same as the proposed method. EGADS estimates the
threshold itself and returns the timestamps of the anomaly dataset as an output.

NAB provides us with time-series benchmark datasets and anomaly detectors. The results of the
implemented anomaly detection algorithms were presented in [40], who introduced their NAB score
measurement for performance evaluation. However, we evaluated the anomaly detectors in the NAB
framework by precision, recall, and F-measure because the NAB score does not show the real true and
false detections of anomalies. We evaluated the Numenta, Skyline, Bayes ChangePoint [42], Relative
Entropy [43], and Windowed Gaussian, DeepAnt algorithms with the same settings in [20,25] as they
performed extensive parameter configuration for each algorithm and used the optimal values.

5. Experimental Results

We conducted two types of experiments. In the first experiment, we applied a total of eight
anomaly detection algorithms on 52 time-series datasets from various domains. The precision and recall
are shown in Table 2. The average performances of each domain from the results on the time-series
datasets are reported in Tables 3 and 4.
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Table 2. The evaluation of the state-of-the-art algorithms and the RE-ADTS on 52 Numenta anomaly detection benchmark (NAB) time-series datasets (%). Precision
and recall are described in this table.
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h
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art_daily_flatmiddle 0.0 0.0 9.4 9.4 9.4 9.4 0.0 0.0 13.3 0.50 7.4 0.50 37.5 2.23 0.0 0.00 10.0 0.74 7.84 4.0 0.0 0.0 8.8 0.7
art_daily_jumpsdown 0.0 0.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.00 8.0 0.50 16.7 0.74 0.0 0.00 7.79 4.71 3.7 2.0 3.7 1.7 8.3 3.7

art_daily_jumpsup 0.0 0.0 28.8 28.8 28.8 28.8 95.2 14.6 30.0 1.49 8.0 0.50 47.8 2.73 0.0 0.00 38.4 33.0 49.2 31.0 86.0 27.5 71.0 32.8
art_daily_nojump 0.0 0.0 1.7 1.7 1.7 1.7 0.0 0.0 0.0 0.00 3.8 0.25 0.0 0.00 0.0 0.00 7.78 3.47 0.0 0.0 0.0 0.0 8.0 5.0

art_increase_spike_density 0.0 0.0 11.7 11.7 11.7 11.7 100 0.2 6.1 0.50 10.0 0.99 0.0 0.00 0.0 0.00 12.5 7.94 11.8 23.8 11.3 26.1 11.3 26.1
art_load_balancer_spikes 65.5 4.7 26.3 26.3 26.3 26.3 0.0 0.0 25.0 3.97 12.5 0.25 27.3 0.74 42.9 4.47 35.6 45.6 75.3 53.8 35.6 48.9 76.1 54.6

Average 10.9 0.8 13.3 13.3 13.3 13.3 32.5 2.5 12.4 1.08 8.3 0.50 21.5 1.08 7.1 0.74 18.7 15.9 24.6 19.1 22.8 17.4 30.6 20.5

re
al

A
dE

xc
ha

ng
e exchange-2_cpc 7.7 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.4 1.23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

exchange-2_cpm 37.5 1.9 9.8 6.8 9.8 6.8 0.0 0.0 13.3 2.5 40.0 1.2 0.0 0.0 0.0 0.0 50.0 0.62 20.4 6.17 20.4 6.17 20.4 6.17
exchange-3_cpc 36.4 5.2 21.3 8.5 21.3 8.5 0.0 0.0 12.5 2 50.0 1.3 42.9 1.96 55.6 3.27 59.5 49.0 39.5 11.1 39.5 11.1 60.2 48.4
exchange-3_cpm 11.1 0.7 2.3 0.7 2.3 0.7 0.0 0.0 8.3 1.3 20.0 0.7 33.3 1.31 25.0 0.65 32.0 16.3 28.2 15.7 28.2 15.7 27.9 15.7
exchange-4_cpc 30.8 2.4 28.6 4.8 28.6 4.8 0.0 0.0 21.4 1.8 16.7 1.2 75.0 1.82 33.3 1.82 51.4 32.7 33.3 12.1 33.3 12.1 34.9 32.1
exchange-4_cpm 46.2 3.7 18.5 3 18.5 3.0 60.0 1.8 33.3 3.7 22.2 1.2 66.7 1.22 44.4 2.44 37.0 6.10 35.9 14.0 35.9 14.0 36.5 14.0

Average 28.3 2.4 13.4 3.8 13.4 4.1 10.0 0.3 14.8 1.9 24.8 0.9 38.9 1.3 26.4 1.4 38.3 17.4 26.2 9.9 26.2 9.9 30.0 19.4

re
al

A
W

SC
lo

ud
w

at
ch

ec2_cpu_utilization_5f5533 50.0 0.5 100 0.2 100 0.2 100 0.2 43.8 1.7 50.0 0.2 77.8 1.74 0.0 0.0 96.6 14.1 86.2 20.1 86.2 20.1 86.5 20.6
ec2_cpu_utilization_24ae8d 31.8 1.7 10.4 10.4 10.4 10.4 40.0 0.5 23.5 1 23.5 1.0 33.3 0.25 11.8 0.5 18.7 9.70 28.9 3.23 28.9 3.23 28.9 3.23
ec2_cpu_utilization_53ea38 37.1 3.2 38.9 3.5 44.4 5.0 0.0 0.0 14.3 1 18.8 0.7 50 0.75 28.6 0.5 84.3 6.72 19.2 27.1 19.2 27.1 19.2 27.1
ec2_cpu_utilization_77c1ca 0.0 0.0 17.4 17.4 17.4 17.4 60 1.5 11.5 1.5 0.0 0.0 11.1 0.5 0.0 0.0 0.0 0.0 14.3 37.5 16.4 31.5 18.8 14.6
ec2_cpu_utilization_825cc2 0.0 0.0 79.1 30.9 79.1 30.9 100 8.7 52.2 3.5 50.0 0.6 88.9 2.33 97.3 10.5 74.0 33.2 69.9 37.3 73.9 33.8 69.3 38.2
ec2_cpu_utilization_ac20cd 0.0 0.0 46.2 46.2 46.2 46.2 71.4 5.0 27.3 1.5 50.0 0.2 31.6 1.49 78.1 6.2 32.7 48.6 30.4 43.7 31.4 45.7 30.4 43.7
ec2_cpu_utilization_fe7f93_ 27.0 2.5 15.4 15.3 15.4 15.3 42.1 5.9 13.5 1.2 20.0 0.5 33.3 0.74 54.5 1.48 15.3 13.0 23.4 15.8 9.52 17.8 31.5 18.5

ec2_disk_write_bytes_1ef3de 13.9 1.1 13.3 13.3 13.3 13.3 20.9 1.9 15.4 1.3 11.8 0.4 27.3 0.63 12.9 1.9 17.1 10.7 14.2 6.98 15.1 13.5 14.4 16.7
ec2_disk_write_bytes_c0d644 24.0 1.5 18.4 18.3 18.4 18.3 75.0 1.5 29.8 3.5 0.0 0.0 50.0 1.73 38.2 3.21 35.2 4.44 38.5 13.6 24.1 16 37.8 11.9

ec2_network_in_5abac7 41.0 3.0 21.6 21.5 21.6 21.5 29.2 1.5 30.6 2.3 5.3 0.2 0.0 0.0 80.0 0.99 38.3 24.0 37.8 29.1 0.0 0.0 38.4 29.7
ec2_network_in_257a54 100 1.5 18.9 18.9 18.9 18.9 100 1.2 60.0 1.5 0.0 0.0 75.0 0.74 23.8 4.01 0.0 0.0 0.0 0.0 21.2 32.7 0.0 0.0

elb_request_count_8c0756 39.0 2.0 32.1 2.2 26.3 2.5 80.0 1.0 17.4 1 16.7 0.7 20.0 0.3 50.0 0.25 62.2 15.1 40.2 17.9 27.1 9.0 50.0 17.4
grok_asg_anomaly 17.0 0 8.4 8.4 8.4 8.4 40.0 3.4 34.6 1.9 27.3 0.6 62.5 1.1 92.0 14.8 7.42 13.5 5.7 10.1 6.1 10.8 5.6 10.0

iio_us-east-1_i-a2eb1cd9 0.0 0.0 32.3 15.9 32.3 16.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.5 4.0 35.1 15.9 37.1 10.3
rds_cpu_utilization_cc0c53 100 0.0 32.8 32.8 32.8 32.8 100 10.9 37.5 1.5 20.0 0.2 77.8 1.8 98.0 12.4 31.5 74.8 31.7 74.9 31.8 74.9 31.7 74.9
rds_cpu_utilization_e47b3b 22.0 0.0 7.2 7.2 7.2 7.2 100 5.7 36.4 1 50.0 0.5 87.5 1.8 66.7 0.5 71.6 13.1 56.4 13.2 0.0 0.0 57.1 14.9

Average 31.4 1.2 30.8 16.4 30.7 16.6 59.9 3.1 28.0 1.6 22.9 0.4 45.4 0.1 45.7 3.6 36.6 17.6 32.2 22.2 26.6 22.0 34.8 22.0
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Table 2. Cont.
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re
al

K
no

w
nC

au
se

ambient_temperature_system_failure 89.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 20.5 1.1 0.0 0.0 11.1 0.41 0.0 0.0 48.1 14.3 40.4 20.4 43.0 19.1 40.4 20.4
cpu_utilization_asg_misconfiguration 0.0 0.0 23.4 28.2 23.4 28.2 0.0 0.0 38.9 0.9 7.3 0.5 66.7 0.8 0.0 0.0 43.1 2.74 35.4 25.4 47.8 76.1 39.2 79.5
ec2_request_latency_system_failure 38.0 5.0 93.3 4.0 93.3 4.0 100 1.4 47.6 2.9 28.6 0.6 100 1.45 88.9 2.4 97.0 9.54 35.6 19.9 47.8 9.6 45.6 19.7

machine_ temperature_system_failure 100 5.0 80.0 40.4 76.2 42.0 97.0 1.4 0.0 0.0 20.0 0.0 64.3 0.79 0.0 0.0 83.4 39.2 82.5 26.4 66.6 46.4 74.8 36.6
nyc_taxi_labeled_5 89.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 21.2 0.7 0.0 0.0 76.9 0.97 0.0 0.0 68.5 3.57 62.3 15.7 65.2 19.2 67.3 17.3

rogue_agent_key_hold 17.0 1.0 13.3 13.2 13.3 13.2 0.0 0.0 5.26 0.5 25.0 1.1 8.33 0.53 0.0 0.0 3.43 3.68 13.8 9.0 8.6 4.8 5.8 7.4
rogue_agent_key_updown 18.0 1.0 8.5 8.5 8.5 8.5 0.0 0.0 5.56 0.2 11.8 0.4 0.0 0.0 5.3 0.2 16.9 4.53 9.5 6.3 9.7 6.5 7.1 4.6

Average 50.1 3.5 31.2 13.5 30.7 13.7 28.1 0.4 19.9 0.9 13.2 0.4 46.8 0.7 13.5 0.4 51.5 11.1 39.9 17.6 41.3 25.9 40.0 26.5

re
al

Tr
affi

c

occupancy_6005 12.5 0.0 14.3 1.3 15.4 1.7 50.0 0.4 6.25 0.4 0.0 0.0 4.6 0.42 0.0 0.0 25.5 10.4 14.4 13 14.6 7.5 13.6 15.5
occupancy_t4013 58.3 6.0 78.6 4.4 73.3 4.4 100 4.0 26.3 2.0 0.0 0.0 57.1 3.2 75.0 1.2 64.9 25.2 34.5 11.6 35.5 10.8 38.7 26.8

speed_6005 17.6 3.0 60.0 1.3 60.0 1.3 100 1.3 17.4 1.7 33.3 0.4 28.6 0.8 50.0 0.4 16.2 5.86 27.8 8.4 26.7 8.4 30.1 14.2
speed_7578 88.9 7.0 62.0 26.7 58.6 29.3 82.6 16.4 26.9 6.0 75.0 2.6 44.4 3.5 84.6 9.5 61.8 51.7 80.0 44.8 83.9 22.4 79.7 44.0
speed_t4013 53.3 6.0 55.1 10.8 50.8 12.0 94.4 6.8 34.5 4.0 75.0 1.2 54.5 2.4 87.5 5.6 56.5 41.6 57.1 16.0 36.6 18.0 58.3 38.0

TravelTime_387 28.0 3.0 24.8 24.9 24.8 24.9 50.0 7.2 14.8 1.6 0.0 0.0 50.0 1.2 8.3 0.4 30.3 9.64 32.4 14.1 30.4 9.6 32.4 14.1
TravelTime_451 22.2 1.8 17.1 17.1 17.1 17.1 0.0 0.0 7.4 0.9 16.7 0.5 12.5 0.5 0.0 0.0 33.7 12.9 20.2 8.3 20.2 8.3 24.2 13.8

Average 40.1 3.8 44.6 12.3 42.9 12.9 68.2 5.2 19.1 2.4 28.6 0.7 36.0 1.7 43.6 2.4 41.3 22.4 38.1 16.6 35.4 12.1 39.6 23.8

re
al

Tw
ee

ts

Twitter_volume_AAPL 49.3 4.2 39.4 24.2 38.8 25.0 66.4 4.7 47.1 1 12.8 0.3 100 0.31 58.3 2.6 40.5 9.95 31.6 13.9 35.7 10.7 38.7 14.5
Twitter_volume_AMZN 38.7 2.9 38.8 2.5 37.6 2.8 32.6 0.9 30.8 0.5 18.2 0.3 100 0.25 31.3 0.6 38.5 10.1 32.3 18.5 35.1 16.4 31.5 23.0
Twitter_volume_CRM 68.7 3.6 53.9 8.6 52.2 9.7 73.5 1.6 50 0.5 6.38 0.2 100 0.19 83.3 0.6 55.0 18.5 38.6 24.4 41.4 22.9 40.2 24.3
Twitter_volume_CVS 37.5 2.4 11.6 12.1 11.6 12.1 55.6 0.7 48 0.8 0.0 0.0 100 0.26 51.2 1.4 38.2 13.3 36.2 12.6 21.5 12.8 37.1 17.9
Twitter_volume_FB 9.6 0.8 10.8 3.0 10.6 3.3 17.9 0.4 26.3 0.3 15 0.4 75.0 0.19 22.2 0.4 12.3 2.78 15.3 11.7 15.3 8.7 16.1 12.7

Twitter_volume_GOOG 28.7 5.4 33.7 9.1 31.6 10.1 59.7 2.8 30.3 0.7 10.8 0.3 80.0 0.28 65.7 1.6 49.4 13.4 35.5 24.0 34.2 18.4 32.5 23.1
Twitter_volume_IBM 25.7 1.6 18.1 3.6 17.8 3.7 22.4 1.1 41.7 0.6 13 0.4 62.5 0.31 34.1 0.9 18.4 4.59 18.7 16.0 18.2 14.2 18.6 16.0
Twitter_volume_KO 33.6 2.3 22.0 6.9 21.8 7.6 42.5 2.3 28.6 0.4 2.22 0.1 50.0 0.06 36.1 1.4 18.8 5.99 17.7 9.33 17.3 7.3 17.6 9.5
Twitter_volume_PFE 30.9 2.9 17.7 17.7 17.7 17.7 100 0.3 44.4 0.5 0.0 0.0 100 0.19 33.3 0.4 32.3 6.99 28.2 21.0 26.6 16.6 28.3 20.7
Twitter_volume_UPS 22.5 1.5 22.6 14.5 22.6 14.5 34.3 4.4 52.7 1.8 2.17 0.1 100 0.57 47.1 3.6 23.8 5.74 23.1 19.6 23.6 9.7 21.8 26.2

Average 34.5 2.8 26.9 10.2 26.3 10.6 50.5 1.9 40.0 0.7 8.1 0.2 86.8 0.3 46.3 1.4 32.7 9.15 27.7 17.1 26.9 13.8 28.2 18.8
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Table 3. F-measure of the compared algorithms on different domains of the NAB benchmark (%).
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artificialWithAnomaly 1.5 13.3 13.3 4.3 1.9 0.9 2 1.3 16.2 20.7 16.8 22.8
realAdExchange 4.4 5.8 5.8 0.6 3.3 1.8 2.4 2.6 21.1 14.2 14.2 22.8

realAWSCloudwatch 2.2 17.9 18.1 5.7 3 0.8 1.9 6.4 18.7 22 20.3 23.2
realKnownCause 6.4 15.5 15.6 0.8 1.7 0.7 1.4 0.7 16.5 23.7 28.5 27.9

realTraffic 6.9 15.8 16.3 9.1 4.2 1.3 3.2 4.5 28.1 22.5 17.9 29.3
realTweets 5.1 13.2 13.7 3.6 1.4 0.4 0.5 2.6 14.2 20.8 18 22.1

Table 4. AUC score of the compared algorithms on different domains of the NAB benchmark (%).
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artificialWithAnomaly 50.4 51.8 55.0 51.3 50.4 50.1 50.5 50.3 52.6 57.5 56.0 57.3
realAdExchange 50.9 51.2 51.3 50.1 50.6 50.3 50.5 50.6 54.7 56.7 53.7 56.7

realAWSCloudwatch 47.2 55.3 55.3 51.4 50.6 50.2 50.5 51.6 56.3 51.0 50.5 51.6
realKnownCause 51.6 55.0 55.1 50.2 50.4 50.1 50.3 50.2 53.9 62.0 61.6 60.4

realTraffic 51.8 54.9 54.9 52.9 50.9 50.3 50.9 51.3 60.7 57.2 46.3 60.5
realTweets 51.1 53.3 53.3 50.8 50.3 50.1 50.1 50.6 52.3 55.5 54.7 56.1

Table 2 shows how the anomaly was detected by precision and recall measurements. From Table 2,
it can be seen that most anomaly detection methods tended to detect a small proportion of the total
number of anomalies, even though the precision was high. Therefore, we show a ratio between
average precision and recall in each domain in Figure 2. The comparisons of average precision, recall,
and AUC measurements of the compared algorithms in each domain are illustrated in Figures A2–A4
in Appendix C, respectively.
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2, it can be seen that most anomaly detection methods tended to detect a small proportion of the total 
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average precision and recall in each domain in Figure 2. The comparisons of average precision, recall, 
and AUC measurements of the compared algorithms in each domain are illustrated in Figures A2–
A4 in Appendix C, respectively. 
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Figure 2. The proportion of precision and recall on different domains for each of the compared algorithms.

The recall is a fraction of the “true positive” predictions over the total number of the positive
dataset, while the precision is a fraction of the “true positive” predictions among all positive predictions.
The improvement in the recall typically degrades the precision and vice versa. It is hard to compare
models with low precision along with high recall, and high precision along with low recall. Therefore,
F-measure is used to evaluate recall and precision at the same time, where the highest F-measure
indicates a good result. Tables 3 and 4 show the average values of the F-measure and AUC score of the
compared algorithms on six different domains in the NAB benchmark framework, and the best results
are highlighted in bold.

For anomaly detection in real-time, we conducted the second experiment. In this experiment,
we only used the threshold for anomaly identification without the clustering process. First, we trained
the deep AE model on 40% of the whole time-series, and the rest of the dataset was used for testing;
the model structure was the same as the previous experiment. We estimated the anomaly threshold
from the reconstruction errors of the training dataset. For each subsequence in time-series, its RE was
obtained from the trained deep AE model. Then, it was used to determine whether the subsequence
was an anomaly or normal. We compared the precision, recall, and F-measure of the RE-ADTS to the
evaluation of six algorithms on 20 time-series datasets in [20]. The comparison results are presented in
Table 5, and the best results of F-measure are highlighted in bold.
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Table 5. AUC score of the compared algorithms on different domains of the NAB benchmark.
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ge exchange-2_cpc 0.500 0.006 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.330 0.055 0.000 0.000 0.000

exchange-3_cpc 0.750 0.020 0.039 1.000 0.013 0.026 1.000 0.007 0.014 0.000 0.000 0.000 1.000 0.020 0.039 0.710 0.030 0.058 0.487 0.725 0.583
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ch ec2_cpu_utilization_5f5533 1.000 0.005 0.010 1.000 0.007 0.014 1.000 0.010 0.020 1.000 0.002 0.004 1.000 0.002 0.004 1.000 0.010 0.020 0.086 0.960 0.158
rds_cpu_utilization_cc0c53 1.000 0.005 0.010 1.000 0.002 0.004 1.000 0.002 0.004 1.000 0.100 0.182 0.620 0.012 0.024 1.000 0.030 0.058 0.317 0.749 0.445
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speed_7578 0.570 0.030 0.057 0.660 0.030 0.057 0.600 0.020 0.039 0.860 0.160 0.270 1.000 0.010 0.020 1.000 0.070 0.131 0.413 0.713 0.523
speed_t4013 1.000 0.008 0.016 1.000 0.010 0.020 0.800 0.010 0.020 1.000 0.060 0.113 1.000 0.010 0.020 1.000 0.080 0.148 0.396 0.624 0.484

TravelTime_387 0.600 0.010 0.020 0.250 0.004 0.008 0.330 0.004 0.008 0.620 0.070 0.126 0.200 0.004 0.008 1.000 0.004 0.008 0.221 0.245 0.233
TravelTime_451 1.000 0.005 0.010 1.000 0.005 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.009 0.018 0.000 0.000 0.000
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ts Twitter_volume_GOOG 0.750 0.002 0.004 0.360 0.003 0.006 0.380 0.005 0.010 0.590 0.020 0.039 0.810 0.010 0.020 0.750 0.010 0.020 0.228 0.377 0.284

Twitter_volume_IBM 0.370 0.002 0.004 0.150 0.002 0.004 0.220 0.005 0.010 0.220 0.010 0.019 0.500 0.009 0.018 0.500 0.005 0.010 0.196 0.269 0.227
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6. Analysis and Discussion

Table 4 shows the average AUC scores of the compared algorithms on six different domains.
The algorithm with a higher AUC score could distinguish anomalies and normals well. For anomaly
detection problems, datasets tend to have an imbalance between the positive (anomaly) and negative
(normal) samples. As we can see from Table 4, the proposed RE-ADTS gave a higher AUC score in
most of the domains, but the AUC scores were very close to each other. In other words, the AUC score
was insensitive to biased domains. For F-measure in the anomaly detection method, the minority
class was more important than the majority class. Therefore, we assessed the experimented anomaly
detection methods by precision, recall, and f-measure.

Table 2 shows the precision and recall of the compared eight algorithms on a total of 52 benchmark
datasets of six domains. From the results of Table 2, we can see that the high precision was followed
by the low recall. For example, the average precision of Yahoo EGADS, Skyline, Numenta, Bayes
ChangePoint, Relative Entropy, and Windowed Gaussian algorithms on all six domains was between
17.6% and 45.9%; but the recall was 0.5–2.4%, 13.58–46 times lower than the precision. In consideration
of the Twitter anomaly detection, the average precision in all six domains was 26.2% when the alpha
parameter was 0.1, and its average recall was 11.7%. The proposed RE-ADTS presented 33.9% average
precision, while the average recall was 21.8%, and was 1.55 times lower than the precision.

It can be seen from Figure 2 that the compared algorithms, except for the Twitter anomaly detection
and RE-ADTS methods, showed a relatively small recall compared to their precision. In other words,
most of the compared algorithms tended to detect a large number of false normals with an extremely
low proportion of actual anomalies correctly. However, the RE-ADTS increased the number of true
detections of anomalies.

The F-measure considers both precision and recall and provides the chance to evaluate them at
the same time. Figure 3 presents the average F-measure of the analyzed algorithms on the domains
of artificialWithAnomaly, realAdExchange, realTraffic, realAWSCloudwatch, realKnownCause,
and realTweets. It can be regarded from Figure 3 that the proposed RE-ADTS presented the highest
F-measure in all domains and was approximately 1.6–3.9 times better than the best performing
algorithms in these domains. For Twitter anomaly detection, the alpha parameter did not influence the
performance and showed better results than the other compared algorithms except for the RE-ADTS.
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In real-time anomaly detection, we used only 40% of the dataset to train the deep AE model for
estimation of the reconstruction error based anomaly threshold. Although the proposed anomaly
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detection approach was based on deep learning, it is not data-hungry. In Table 4, the average precision
of the compared algorithms was between 0.48 and 0.7, but the average recall was 0.006–0.062, whereas
the proposed RE-ADTS reached better recall with the precision of 0.241, and its F-measure outperformed
in 16 of 20 datasets.

7. Conclusions

In this study, we proposed the unsupervised RE-ADTS approach based on deep learning for
detecting anomalies in time-series datasets. The RE-ADTS can adapt to different domains because it
automatically adjusts the optimal values of used parameters such as the window width for subsequence
preparation using the AR model, RE based anomaly threshold using the Otsu thresholding method,
and the maximum radius of the neighborhood (eps) of the DBSCAN using the k-dist function. Moreover,
it is available to detect batch and real-time anomalies. For batch anomaly detection, we combined
(1) the AR model for the optimal window width; (2) deep AE model for the anomaly threshold and
dimensionality reduction; and (3) DBSCAN clustering algorithm. Clustering techniques divide the
dataset into groups by their similarity. Accordingly, if most of the subsequences in the same cluster
are an anomaly, all subsequences in this cluster are expressed equally as anomalies. We conducted
two types of experiments for batch and real-time anomaly detections. In batch anomaly detection,
we evaluated eight anomaly detection algorithms on 52 time-series datasets from six domains of
the NAB benchmark framework. The experimental results showed that the RE-ADTS outperformed
the compared methods by F-measure and AUC score in most domains. For the real-time anomaly
detection, we only applied the anomaly threshold from the deep AE model without cluster analysis.
We used 40% of the dataset for training and 60% for testing. Based on precision, recall, and F-measure,
the proposed approach outperformed in 16 of 20 benchmark datasets. The anomaly detection problem
is one kind of class imbalance problem. In our experimental study, the imbalance ratio of our datasets
was between 8 and 10. Even though we trained the proposed AE model from the all data, it learnt
more normals than anomalies, and its results outperformed the compared algorithms. In this research,
we leave the problem of imbalance ratio as future work.
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Appendix A

We conducted an additional experiment on all benchmark datasets to compare the fixed and
optimal window width. As a result, the average values of f-measure on each domain are shown in
Table A1.

Table A1. The average f-measure on each domain based on a fixed and optimal window width.

Time-Series Window = 5 Window = 35
Optimal
Window

(CV)

Optimal
Window

(AIC)

Optimal
Window

(BIC)

Optimal
Window
(T-STAT)

artificialWithAnomaly 0.167091 0.209617 0.162341 0.207444 0.16837 0.227983
realAdExchange 0.126176 0.2148 0.211831 0.141578 0.141578 0.228147

realAWSCloudwatch 0.178616 0.243467 0.187829 0.219898 0.203431 0.231805
realKnownCause 0.203928 0.207285 0.165002 0.236576 0.284842 0.279474

realTraffic 0.199751 0.338372 0.281897 0.225306 0.178785 0.293361
realTweets 0.140052 0.182146 0.142444 0.195971 0.179773 0.220609
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