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Abstract: The paper considers the problem of invariance with respect to the unknown input for
discrete-time nonlinear dynamic systems. To solve the problem, the algebraic approaches, called
algebra of functions and logic–dynamic approach, are used. Such approaches assume that description
of the system may contain non-differentiable functions. Necessary and sufficient conditions of
solvability the problem are obtained. Moreover, procedures which find the appropriate functions
and matrices are developed. Some applications of such invariance in fault detection and isolation,
disturbance decoupling problem, and fault-tolerant control are considered.

Keywords: nonlinear dynamic systems; invariance; unknown input; discrete-time systems;
algebraic approaches

1. Introduction and Problem Statement

The problem of invariance with respect (IWR) to the unknown input in nonlinear dynamic systems
is of wide theoretical and practical applications, in particular, in fault diagnosis [1–3], fault-tolerant
control [4,5] and disturbance decoupling [6–9]. The problem of invariance in these branches is
solved mainly for continuous-time systems based on the methods of linear algebra [10] and differential
geometry developed in [11]. Such tools are of limited field of application in practice since actual systems
may contain different non-differentiable function such as Coulomb friction, saturation, hysteresis and
dead zone.

It is well-known from literature that the extensions of the differential geometric tools are not
well developed for discrete-time systems in comparison with the continuous time case, see [12–14]
(disturbance decoupling problem solution), [15] (transitivity and accessibility problems), [16]
(non-interactive control). Such extensions are rather complicated and assume that systems under
consideration are described by analytical functions. For this reason, such extensions are of limited field
of application as well.

In this paper, we investigate the problem of IWR to the unknown input in discrete-time nonlinear
dynamic systems. To overcome the difficulty with the above-mentioned practical applications, it is
suggested to solve the problem of invariance based on algebra of functions and logic–dynamic
approach (LDA). The advantage of these approaches, if compared to well-known linear algebraic [10]
and differential geometric methods [10,17], is that they are applicable to non-differentiable systems.

The algebra of functions was developed in [18,19] on the basis of the pair algebra of partitions [20]
elaborated for finite automata study. The algebra of functions is intended mainly for discrete-time
nonlinear dynamic systems with non-differentiable nonlinearities. Since the algebra of functions is not
well-known and demands complex analytical calculations, the webMathematica based software was
developed [21].

The LDA was suggested in [22] for solving different problems in dynamic system theory.
The advantage of the LDA is that under some limitations on the original system and a class of
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possible solutions it uses only methods of linear algebra. Moreover, the LDA can be applied to both
continuous-time and discrete-time systems with non-differentiable nonlinearities. Shortcoming of the
LDA is that functions transforming the system under consideration are required to be linear, see the
relation ϕ(x(t)) = Φx(t) in Section 4. Such a requirement imposes definite limitations on application
of the LDA.

The contributions of this paper can be summarized as follows: (1) some relations describing the
problem of invariance with respect to the unknown input in terms of the algebra of functions and
the LDA are obtained; (2) links between the algebra of functions relations and the LDA relations are
established since such links are interesting and useful for theory and practice, but not well known.

Consider a discrete-time nonlinear dynamic system described by the equations

x(t + 1) = f (x(t), u(t), w(t)), y(t) = h(x(t)). (1)

Here x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rl are vectors of state, input and output; w(t) ∈ W ⊂ Rp is
the unknown input; f and h are nonlinear functions. Note that f may be non-differentiable function.

The problem of invariance with respect to the unknown input is stated as follows: find a vector
function x0 = ϕ(x), transforming system (1) into the system

x0(t + 1) = f0(x0(t), y(t), u(t)), y0(t) = h0(x0(t)) (2)

which does not depend on the unknown input. Here x0 ∈ Rn0 , n0 < n, is the state vector, f0 and h0 are
some functions to be determined. To solve this problem for system (1) and to develop a procedure of
transformation, the algebra of functions will be used.

2. Algebra of Functions

The main definitions and concepts used in this paper are as follows [19,23,24]. Let S be a set of
vector functions with the domain X. The elements of algebra of functions are vector functions on S
with the following relations, operations and operators: (1) relation of partial preorder ≤, (2) two binary
operations × and ⊕, (3) binary relation ∆, (4) two operators m and M.

Given α,β ∈ S, one says that α ≤ β if a function γ exists such that β(x) = γ(α(x)) for all x ∈ X.
When α ≤ β and β ≤ α, the functions α and β are called equivalent, denoted as α � β.

The relation � is reflexive, symmetric and transitive; therefore, this relation divides the set S into
the classes of equivalence. Denote by S\ � the set of all classes of equivalence; then the relation ≤
is partial order on this set. It can be shown that S\ � is a lattice where every two elements α and
β have a unique supremum (least upper bound) sup(α,β) and a unique infimum (greatest lower
bound) inf(α,β). As is customary, we will operate not with sup(α,β) and inf(α,β) but with two
binary operations ⊕ and × respectively.

In the simple cases, the definition α ⊕ β = sup(α,β) is used to compute α ⊕ β. The rule for
operation × is simple:

(α×β)(x) = (α(x) β(x))T

Note that two special vector functions 0 and 1 exist; they correspond to the identity and constant
functions, respectively, in the sense that for every vector function α ∈ S, 0 ≤ α ≤ 1.

Consider illustrative example. Let α(x) = (x1 x3 + x4)
T and β(x) = (x2 x3 x4)

T, then

(α×β)(x) = (x1 x2 x3 x4)
T = 0 , (α⊕β)(x) = x3 + x4.

Clearly, (α × β)(x) ≤ α(x) ≤ (α ⊕ β)(x) and (α × β)(x) ≤ β(x) ≤ (α ⊕ β)(x); the functions α(x) and
β(x) are incomparable.

Given α,β ∈ S, then (α,β) ∈ ∆ if a function f0 exists such that for all x, u, w ∈ X × U ×W
β( f (x, u, w)) = f0(α(x), u, w). When (α,β) ∈ ∆, one says that α and β form an ordered pair. Binary
relation ∆ is used to define the operators m and M.
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Operator m(α) is a function in S, satisfying the following conditions: (i) (α, m(α)) ∈ ∆,
(ii) if (α,β) ∈ ∆, then m(α) ≤ β.

Operator M(β) is a function in S, satisfying the following conditions: (i) (M(β),β) ∈ ∆ ∆,
(ii) if (α,β) ∈ ∆ , then α ≤M(β).

It follows from the last definitions that given α, m(α) is the minimal function, that forms a pair
with α and given β, M(β) is the maximal function, that forms a pair with β.

Lemma 1 [19,23]. Let α and β be some functions from S. Then
(i). α ≤ β⇔ α � α×β⇔ β � α⊕β ,
(ii). α ≤ β⇔M(α) ≤M(β)⇔ m(α) ≤ m(β) ,
(iii). M(α×β) � M(α) ×M(β), m(α⊕β) � m(α) ⊕m(β).

Computation of the operators m and M. It is known from [19,23] that there exists the function
γ satisfying the condition (α × u(t)) ⊕ f � γ( f ); define m(α) � γ. When β( f (x(t), u(t))) can be
transformed into the form

β( f (x(t), u(t))) =
∑d

i=1
ai(x(t))bi(u(t)),

where a1(x(t)), a2(x(t)), . . . , ad(x(t)) are arbitrary vector functions and b1(u(t)), b2(u(t)), . . . , bd(u(t))
are linearly independent functions, then M(β) = a1 × a2 × . . .× ad.

3. Problem Solution

To solve the problem of IWR to the unknown input for system (1), we at first find a vector function
ϕ0 with maximal number of functionally independent components such that the functionϕ0( f (x, u, w))

is independent of the unknown function w(t). The function ϕ0 can be obtained by heuristic methods.
Actually, this function provides some combination of the function f (x, u, w) to achieve independence
of the unknown input.

One says that the functionϕ is (h, f )-invariant ifϕ( f (x, u, w)) = f0(ϕ(x), h(x), u, w) for some vector
function f0. It is known [19,23] that ϕ is (h, f )-invariant if and only if ϕ× h ≤M(ϕ) or m(ϕ× h) ≤ ϕ.

Theorem 1. System (2) is IWR to the unknown input w(t) if and only if (h, f )-invariant function ϕ exist
such that

ϕ0 ≤ ϕ. (3)

Proof. Letϕ be (h, f )-invariant function satisfying (3). By definition of (h, f )-invariance,ϕ( f (x, u, w)) =

f0(ϕ(x), h(x), u, w). Since ϕ0 ≤ ϕ, then γ(ϕ0) = ϕ for some function γ, therefore ϕ( f (x, u, w)) =

γ(ϕ0( f (x, u, w))). By definition, ϕ0( f (x, u, w)) is independent of the unknown function w(t); as a
result, the function f0(ϕ(x), h(x), u, w) = γ(ϕ0( f (x, u, w))) is independent of w(t) as well. On the
other hand, let ϕ( f (x, u, w)) is independent of w(t). Since the function ϕ0 has the same property and
has maximal number of functionally independent components, then γ(ϕ0) = ϕ for some function γ or
ϕ0 ≤ ϕ. Since ϕ is (h, f )-invariant, then ϕ( f (x, u, w)) = f0(ϕ(x), h(x), u, w) for some function f0. �

To construct system (2) of maximal dimension, the function ϕ should be minimal in terms of the
partial preorder relation ≤. Such a function can be obtained as follows.

Theorem 2 [19,23]. Given ϕ0, compute recursively for i ≥ 0, based on the formula

ϕi+1 = ϕi ⊕m(ϕi × h), (4)

the sequence of vector functions ϕ0 ≤ ϕ1 ≤ . . . The sequence converges in a finite number of steps, since if
ϕi , ϕi−1, the number of components of the function ϕi is less than that of the function ϕi−1, i = 1, 2, . . .
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This means that there exists a finite k such that ϕk+1 � ϕk. The function ϕ := ϕk is minimal satisfying the
condition ϕ0 ≤ ϕ.

Hence, to solve the problem of IWR to the unknown input, one has to find the function ϕ0 and
then to use the recursive (4).

When the problem of fault detection and isolation is considered, one needs to generate co-called
residual r(t) as a mismatch between system (1) behavior and the model (2) behavior, based on the
outputs y(t) = h(x(t)) and y0(t) = h0(x0(t)), respectively. Such a mismatch is presented in the form
r(t) = ρ(y(t)) − y0(t) for some function ρ. When faults are absent, r(t) = 0 or ρ(y(t)) = y0(t). It can
be shown that the last equality is equivalent to the functional relation

ρ(h) = h0(ϕ) , 1. (5)

Theorem 3. If h⊕ϕ , 1, the relation (5) is true for some nontrivial functions ρ and h0.

Proof. Let h⊕ϕ , 1, then h⊕ϕ ≥ h and h⊕ϕ ≥ ϕ by the definition of operation ⊕. By definition of the
partial order relation≤, the nontrivial functions ρ and h0 exist such that ρ(h) = h ⊕ ϕ = h0(ϕ) , 1.�

Given ρ, to construct system (2) of minimal dimension, satisfying the conditions (3) and (5),
(h, f )-invariant functionϕ should be maximal in terms of the partial preorder relation ≤ Such a function
can be obtained based on the following Algorithm.

Algorithm

Step 1. Set β0 := ρ(h) and i := 0.
Step 2. Compute the function γi = M(βi).
Step 3. If the components of the vector function γi can be expressed in terms of the function h×β0 × . . .×βi,
then go to Step 5. Otherwise, go to Step 4.
Step 4. Find the vector function βi+1 with minimal number of components such that h×β0 × . . . ×βi+1 ≤ γi,
set i := i + 1 and go to Step 2.
Step 5. Define ϕ := β0 × . . .×βi.

Solution of the problem of IWR to the unknown input may be simplified significantly when the
function ϕ is sought in a class of linear functions. Actually, this restricts a set of possible solutions,
but allows to solve the problem for systems with non-differential nonlinearities by methods of linear
algebra. Note that if the problem of invariance for system (1) has a solution with linear function ϕ,
such a solution can be found by the logic–dynamic approach described below [22].

4. Logic–Dynamic Approach

To use the LDA, one has to present system (1) in the form

x(t + 1) = Fx(t) + Gu(t) + Ψ(x(t), u(t)) + Lw(t), y(t) = Hx(t), (6)

where

Ψ(x(t), u(t)) = C


ϕ1(A1x(t), u(t))

· · ·

ϕq(Aqx(t), u(t))

; (7)

matrices F and G are used to describe the linear dynamic part of the system (6); H, H∗, C and L are
constant matrices, the functionsϕ1, . . . ,ϕq may be non-differentiable, A1, . . . , Aq are constant matrices.
The model (6) can be obtained from the original system (1) by some simple transformations [22].
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Specifically, the linear part with the matrices F and G, is separated from the nonlinear part (7) containing
non-differentiable functions ϕ1, . . . , ϕq and matrices C, A1, . . . , Aq.

By analogy with (2), a system IWR to the unknown input is described by

x0(t + 1) = F0x0(t) + G0u(t) + Jy(t) + C0


ϕ1(A01z0(t), u(t))

· · ·

ϕq(A0qz0(t), u(t))

, y(t) = H0x0(t), (8)

where x0 ∈ Rn0 , z0 = (xT
0 yT)

T, n0 ≤ n, F0, G0, J, C0, A01, . . . , A0q are matrices to be determined.
Assuming initially q = 1, we construct system (8). The LDA, which is used for solving this

problem, contains three main steps [22].
Step 1. Remove the term Ψ(x(t), u(t)) from the original system (6).
Step 2. Solve the problem of IWS to the unknown input for the linear part under some linear

restriction. This restriction is necessary to find out whether or not the nonlinear term can be designed
based on the linear solution.

Step 3. Supplement the solution, obtained at Step 2, by the transformed nonlinear term.
It should be noted that the LDA can be applied to the continuous-time systems as well as to the

discrete-time ones. This is possible due to a linear nature of the solution at Step 1 and a linear nature
of the restriction at Step 2. Moreover, note that a transformation at Step 3 does not transform the
nonlinear functions ϕ1, . . . , ϕq themselves, but transforms their arguments based on the relation (9)
and the matrix C into C0.

We will assume that x0(t) = ϕ(x(t)) = Φx(t) for some matrix Φ of maximal rank satisfying the
following conditions [22]:

ΦF = F0Φ + JH, G0 = ΦG, ΦL = 0.

One can show that the relations C0 = ΦC and

A = A0

(
Φ
H

)
, (9)

corresponding to the term Ψ(x(t), u(t)), are true [22]. Clearly, the last relation is equivalent to

rank
(

Φ
H

)
= rank


Φ
H
A

. (10)

When q > 1, the matrix A in (9) and (10) is replaces by Ai, i = 1, . . . , q. Note that (10) is precisely
restriction which is checked at Step 2.

5. Solvability Conditions of Invariance

Before constructing system (8), it is worth to check whether or not such a system exists. To make
the appropriate checking, note that analog of the functionϕ0 is the matrix L0 of maximal rank satisfying
the condition L0L = 0. Analog of the condition ϕ0 ≤ ϕ is the relation ΦL = 0 which is equivalent to
Φ = NL0 for some matrix N.

Replace the matrix Φ in the equation ΦF = F0Φ + J0H by Φ = NL0 and transform the result:
NL0F− F0NL0 − J0H = 0. The obtained equation has a nontrivial solution with some matrices F0 and
J0 when the rows of the matricesL0F and (LT

0 HT)
T are linearly dependent that is equivalent to the

rank condition

rank


L0F
L0

H

 < rank(L0F) + rank
(

L0

H

)
. (11)
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Considering analogously the Equation (8), we get the necessary condition

rank
(

L0

H

)
= rank


L0

H
A

. (12)

Note that the relations (11) and (12) are necessary solvability conditions, i.e., if one of the conditions
(11) and (12) is not true, the system IWR to the unknown input does not exist.

6. Problem Solution

To design system (8), we assume that the matrices F0 and H0 are sought in the form

F0 =


0 1 0 · · · 0
0 0 1 · · · 0

· · · · · · · · ·
. . . · · ·

0 0 0 · · · 0

, H0 = ( 1 0 0 · · · 0 ).

As a result, the equation ΦF = F0Φ + JH is replaced by k equations:

ΦiF = Φi+1 + J0iH, i = 1 , . . . , n0 − 1, Φn0F = Jn0H (13)

where Φi and Ji denote the i-th rows of the matrices Φ and J, respectively, i = 1 , . . . , n0, n0 is the
number of the matrix Φ rows.

It was shown in [22] that (13) and the condition ΦL = 0 can be transformed into the single equation

(Φ1 − J1 − J2 . . .− Jk)(W(k) L(k)) = 0, k = 1, 2, . . . (14)

where

W(k) =


Fk

HFk−1

· · ·

H

, L(k) =


L FL · · · Fk−1L
0 HL · · · HFk−1L

· · · · · ·
. . . · · ·

0 0 · · · 0

.

To construct the system of maximal dimension, set k := n− p and check the condition

rank(W(k) L(k)) < lk + n. (15)

When (15) is true, then there exists the row (Φ1 − J1 . . .− Jk) such that (14) has a solution. Then one
calculates the matrix Φ based on (13) and checks the condition (10). If it is satisfied, find the matrix A0

from (9), set n0 := k, G0 := ΦG, and C0 := ΦC. Thus, system (8) IWR to the unknown input w(k) has
been constructed.

If (15) is not true, set k := k− 1 and continue checking (15) and (10). If (15) and (10) are not true
for all k, then the system IWR to the unknown input does not exist and the problem has no solution.
Since the dimension n0 is maximal, the matrix Φ is an analog of the function ϕ from Theorem 2.

By analogy with general case, in some applications it is necessary to take into account the output
function y0(t) = H0x0(t) and the requirement y0(t) = Ry(t) for all t ≥ 0 and some matrix R. It can be
shown that this is equivalent to the relation

RH = H0Φ, (16)
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which is analog of (5). Replace the matrix Φ in (16) by Φ = NL0 and obtain the equation RH−H0NL0 = 0
which has a nontrivial solution when

rank(
H
L0

) < rank(H) + rank(L0). (17)

Note that (17) is necessary solvability condition additional to (11) and (12). When the matrix Φ has
been obtained, the matrices R and H0 can be found from (16).

To construct system (8) of minimal dimension, one takes k := 1 and checks the condition (15).
When (15) is satisfied, one calculates the matrix Φ and checks the condition (10). If it is satisfied,
find the matrix A0 from (9), set n0 := k, G0 := ΦG and C0 := ΦC. If (15) is not true, set k := k + 1 and
continue checking (15) and (10).

7. Applications

The property “invariance with respect to the unknown inputs” has many different practical
applications. Consider some of them related to the fault diagnosis, disturbance decoupling and
fault-tolerant control. Here, the unknown inputs are interpreted as the disturbances and faults.

In the fault diagnosis process, the residual is generated as a result of mismatch between the
original system behavior and the reference model behavior. Then a decision is made by evaluation of
this residual. System (2) or (8) in the fault diagnosis process is used as a reference model. The residual
r(t) is generated in the form

r(t) = ρ(y(t)) − y0(t) or r(t) = Ry(t) − y0(t). (18)

Different tools for fault diagnosis have been developed: diagnostic observers, parity relations and
identification [1–3].

The main goal of fault detection process is to construct system (2) or (8) of minimal dimension
IWR to the disturbances such that the relation (5) or (16) holds. Consider the simple practical example
of an electric servo–actuator described by the equations

x1(t + 1) = x1(t) + k1x2(t),
x2(t + 1) = x2(t) + k2x3(t) + k3sign(x2(t)) + w(t),
x3(t + 1) = k4x2(t) + k5x3(t) + k6u(t),
y1(t) = x1(t), y2(t) = x3(t).

Using the LDA model (6), we obtain

F =


1 k1 0
0 1 k2

0 k4 k5

, G =


0
0
k6

, H =

(
1 0 0
0 0 1

)
, L =


0
1
0

, C =


0
k3

0

, A = (0 1 0), ϕ = sign(Ax).

It can be shown that Φ = (k4 0 − k1), R = (k4 − k1), J = (k4 − k1k5), G0 = −k1k6, C0 = 0.
The diagnostic observer description is given by

x∗(t + 1) = k4y1(t) − k1k5y2(t) − k1k6u(t), y∗(t) = x∗(t),

the residual is generated as follows: r(t) = k4y1(t) − k1y2(t) − y∗(t). The observer is invariant with
respect to the disturbances w(t) and allows to detect the faults in sensors and deviation of the coefficients
k1, k4, k5, k6 from their nominal values.

When the problem of fault isolation is solved, a bank of such systems is constructed where some
faults are considered as the unknown inputs for each system which is constructed to be IWR to the
disturbances and faults, considered as the unknown inputs and sensitive to other faults. As a result,
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we obtain selective sensitivity to different faults that allows to develop fault isolation process based on
so-called matrix of syndromes [2].

Sliding mode observers are often used to solve the fault identification problem [3,25,26]. In [3,25],
such observers are constructed on the basis of the original system and then IWR to the disturbances is
achieved. In contrast to this approach, we suggest at first to construct system (8) of minimal dimension
IWR to the disturbances and then design sliding mode observer based on this system [26]. This allows
to reduce sliding mode observer complexity and relaxed the limitation imposed on the original system.

The disturbance decoupling problem can be stated as follows. The purpose is to find a dynamic
measurement feedback in such a way that the output-to-be-controlled y∗(t) = h∗(x(t)), for t ≥ 0,
of the closed-loop system does not depend on the disturbances (unknown inputs) w(t). This problem
for nonlinear control systems has been studied in [6–9,23]. Except [23] the papers [6–9] study the
continuous-time case, the solvability conditions are provided in the papers [6–8] on the basis of
differential geometric tools.

To solve the disturbance decoupling problem for the initial system (1) or (6), system (2) or (8)
of maximal dimension, IWR to the unknown inputs, are constructed at first under some restriction
imposed by the function h∗(x). Then this system is transformed into special compensator which
generates the control for the initial system. The details for system (1) can be found in [23], for system
(6) in [27,28].

Fault-tolerant control allows to meet the design purposes when the faults occur or if impossible,
to redefine the attainable design purposes [4,5]. Active approaches in fault-tolerant control are fault
accommodation and plant reconfiguration. The purpose of fault accommodation is to find a new
control law which can attain the predefined control purposes. In system reconfiguration, either the
controller or the faulty plant is reconfigured when the faults occur. Both approaches are based on
system (2) or (8) of maximal dimension without the relations (5) and (16). Such a system is considered
as a dynamic part of the compensator and then it is supplemented by static part, generating a new
control. In [24], the problem of faulty plant reconfiguration has been solved based on the disturbance
decoupling problem solution.

8. Conclusions

The paper deals with the problem of IWR to the unknown input in discrete-time nonlinear
dynamic systems. So-called algebra of functions and logic–dynamic approach are used to solve
the problem. The algebra of functions produces a solution in general form but demands analytical
calculations. The advantage of the LDA is that only methods of linear algebra are used to solve the
problems and the considered system may contain non-differential nonlinearities such as Coulomb
friction, backlash and hysteresis. Moreover, the LDA methods can be applied both to the discrete-time
and the continuous-time systems.
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