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Abstract: The notions of fuzzy set (FS) and intuitionistic fuzzy set (IFS) make a major contribution
to dealing with practical situations in an indeterminate and imprecise framework, but there are
some limitations. Pythagorean fuzzy set (PFS) is an extended form of the IFS, in which degree of
truthness and degree of falsity meet the condition 0 ≤ Θ̆2(x) + K2(x) ≤ 1. Another extension of
PFS is a q́-rung orthopair fuzzy set (q́-ROFS), in which truthness degree and falsity degree meet
the condition 0 ≤ Θ̆q́(x) + Kq́(x) ≤ 1, (q́ ≥ 1), so they can characterize the scope of imprecise
information in more comprehensive way. q́-ROFS theory is superior to FS, IFS, and PFS theory with
distinguished characteristics. This study develops a few aggregation operators (AOs) for the fusion
of q́-ROF information and introduces a new approach to decision-making based on the proposed
operators. In the framework of this investigation, the idea of a generalized parameter is integrated
into the q́-ROFS theory and different generalized q́-ROF geometric aggregation operators are
presented. Subsequently, the AOs are extended to a “group-based generalized parameter”, with the
perception of different specialists/decision makers. We developed q́-ROF geometric aggregation
operator under generalized parameter and q́-ROF geometric aggregation operator under group-based
generalized parameter. Increased water requirements, in parallel with water scarcity, force water
utilities in developing countries to follow complex operating techniques for the distribution of the
available amounts of water. Reducing water losses from water supply systems can help to bridge
the gap between supply and demand. Finally, a decision-making approach based on the proposed
operator is being built to solve the problems under the q́-ROF environment. An illustrative example
related to water loss management has been given to show the validity of the developed method.
Comparison analysis between the proposed and the existing operators have been performed in term
of counter-intuitive cases for showing the liability and dominance of proposed techniques to the
existing one is also considered.

Keywords: q-Rung orthopair fuzzy sets; geometric aggregation operators based on generalized and
group-generalized parameters; water loss management; decision making
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1. Introduction

For many years, the issue of vague and imperfect information has been at the forefront. Information
aggregation is the key factor for the decision management in the areas of business, management,
engineering, psychology, social sciences, medical sciences, and artificial intelligence. Various problems
in different areas aligned with vague and imprecise information. Modeling obscurities and data
accumulation are most important components for the decision management in many areas comprising
artificial intelligence, medical diagnosis, image processing i.e., it is extremely difficult challenge for
experts to acquire precise decision without dealing with indeterminate and ambiguous data. Due to the
critical, complex, subjective, and poorly structured nature of the issues themselves, many of the scientists
contributions are directed to the area of building objective models of decision support. The reason for
this phenomenon should be sought in the fact that modeling this class of problems requires correct
mapping not only of the assessed alternatives/variants or scenarios. In such a case, experts must
also consider the consequences of analyzing the decision problem from different perspectives and
points of view taking into account several conflicting criteria. Water services, particularly in developing
countries, continue to operate with considerable inefficiencies in terms of water and revenue losses.
With increasing demand for water and scarcity, utilities require effective strategies to make optimum
use of the available water resources. There are various options for reducing water loss. Deciding on
which option to choose between conflicting multiple criteria and different stakeholder interests is
a challenging task. One of the main challenges facing water utilities worldwide is the high levels
of water losses in the distribution networks. According to the World Bank [1] study, approximately
32 billion m3 of treated water is lost yearly as leakage from urban water distribution systems around
the world, while 16 billion m3 is lost but not paid for. They also guesstimate that these losses cost
water utilities as much as US 14 billion $ per year, with one-third occurring in developing countries.
In the light of global pressure (climate change, urbanization, demand, scarcity, etc.) water utilities,
particularly in developing countries, need to operate more effectively to provide sustainable water
services. Water loss management (WLM) has become an important decision issue in meeting utilityŠs
strategic goals. Whereas strategic planning (SP) has proven to be a valuable tool for sustainable urban
water management [2], water utilities in developing countries often lack the necessary capabilities to
carryout SP [3].

Water losses from water distribution systems (WDSs) have a major effect on the economic viability
of urban water supplies and are perhaps the most important measure of their inefficiency. Its control
encourages the efficient use of water as a valuable natural resource by allowing less water to be
collected from the environment [4]. There is a broad variety of choices for handling and reducing.

Water losses, including the use of advanced techniques such as online monitoring, multi- parameter
sensors, pressure control, and asset management. The entire method is complex. Costly, it needs
trained personnel, requires various levels of collaboration and includes different stakeholder interests.
Multi-criteria decision making (MCDM) methods are suggested to reduce the difficulty of this
multi-criteria task [5]. A number of researchers have recently addressed water resource management
and planning issues by applying various MCDM strategies, such as PROMETHEE (preference ranking
organization method for enrichment evaluations) [6,7], ELECTRE II (elimination et choix traduisant
la realite) [8], fuzzy TOPSIS (technique for the order preference by similarity to ideal solution) [9],
and fuzzy AHP (analytic hierarchy process) [10].

Addressing this problem, the idea of the generalized q́-rung orthopair fuzzy set (q́-ROFS) is
presented in this study.

To facilitate our debate, the paper is categorized as follows: in Section 2, we provided some
literature review about uncertain data modeling. In Section 3, some basis concepts including fuzzy set
(FS), intuitionistic fuzzy set (IFS), Pythagorean fuzzy set (PFS), and q́-ROFS are presented. Moreover,
some operational laws of q́-ROFSs and q́-ROFNs, accuracy function, score function of q́-ROFNs and
aggregation operators are also provided. In Section 4, we introduce generalized q́-rung orthopair
fuzzy set (GQROFS). In Section 5, some q́-ROF geometric aggregation operator based on a generalized
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parameter are presented. Section 6 consists of some q́-ROF geometric aggregation operators based
on a group-generalized parameter. In Section 6, we established an MCDM approach and presented a
numerical example of the proposed method for water loss management. In Section 6, we compared
the proposed operators with existing ones.

1.1. Literature Review

Traditionally, the information about an alternative has been believed to be a crisp number or linguistic
number. Nevertheless, information can not be aggregated in a simple form due to its uncertainty. MCDM
is a critical framework for decision making science, the purpose of which is to identify the most exceptional
goals among the most feasible ones. The person needs to assess the choices made by different types of
assessment criteria, such as crisp numbers and intervals, in the actual decision-making process. However,
in many cases, due to the presence of a number of data anomalies that may arise due to lack of knowledge
or human error, it is difficult for a person to choose the correct choice. Consequently, in order to measure
these inconsistencies and to analyze the mechanism, a large number of theories have been suggested.
To cope up with such situations, fuzzy set, which is an extended form of classical set, innovated by
Zadeh [11] entrained a insurgence in mathematics. FS is a substantial model to make a distinction and
assembling of the various challenges with ambiguous boundary. A FS is a collection of object, explicated
by a truthness function which allocates a degree of truthness, whose range lies between 0 and 1 to each
element. IFS, innovated by Atanassov [12] as an extended form of FS. Yager [13–15] established PFS,
which is an extended form of IFS [12]. Ali et al. [16] provided certain characteristics of soft sets (SSs), rough
sets(RSs), and fuzzy soft sets(FSSs). Wang et al. [17] introduced spatial multi-criteria approach for flood
risk management in the Dongting Lake Region. Wang et al. [18] introduced Single valued neutrosophic
sets. Cubic IF aggregation operators are established by Kaur and Garg [19]. TOPSIS technique on the
basis of connection number under interval-valued IFS environment, presented by Kumar and Garg [20].
The notion of Pythagorean fuzzy number presented by Peng and Yang [21] and examined certain results
for PFSs. Different PF-information measures and their enrollments are innovated by Peng et al. [22].

The concept of linear Diophantine fuzzy set (LDFS) and its enrollments in MCDMs was innovated
by Riaz and Hashmi [23]. LDFS with indicative attributes improves the existing approaches and the
decision experts (DEs) can select the grading values without any restriction. Riaz and Tehrim [24]
introduced cubic bipolar fuzzy set with application to multi-criteria group decision making using
geometric aggregation operators. Riaz and Tehrim [25] used a robust extension of VIKOR method for
bipolar fuzzy sets using connection numbers of SPA theory based metric spaces. Sharma H. K. et al. [26]
introduced a rough set approach for forecasting models. Petrovic and Kankaras [27] introduced a
hybridized multi-criteria decision making approach for the selection and evaluation of criteria for
determination of air traffic control radar position. Yager [28] established an idea of q́-ROFS which
is extended form of PFS, in which the degree of truthness Θ̆A(x) and degree of falsity KA(x) satisfy
the condition 0 ≤ Θ̆A(x)q́ + KA(x)q́ ≤ 1, (q́ ≥ 1) and degree of indefiniteness is given by πA(x) =

(Θ̆A(x)q́ + KA(x)q́ − Θ̆A(x)q́KA(x)q́)1/q́.
Multi-criteria decision making (MCDM) with various fuzzy sets have been studied by; Peng et al. [29],

Ali [30], Chen et al. [31], Chi and Lui [32], Feng et al. [33–36], Garg [37], Garg and Arora [38–41], Jose and
Kuriaskose [42], Joshi [43], Karaaslan [44], Liu and Wang [45], Liu et al. [46], and Peng and Dai [47].

Riaz et al. [48–51] introduced the concepts of q-rung orthopair fuzzy prioritized aggregation
operators, q-rung orthopair fuzzy hybrid aggregation operators, q-rung orthopair fuzzy information
aggregation using Einstein operations, q-rung orthopair fuzzy Einstein prioritized aggregation
operators with application towards multi-criteria group decision making (MCGDM). Aggregation
operators and MCDM methods have been studied by; Xu [52], Xu and Cai [53], Xu [54], Yager [55],
Ye [56,57], Zhan et al. [58,59], Zhang and Zhan [60,61], Zhang et al. [62], and Harrison et al. [5].

In realistic situations, different kinds of conditions are not completely fulfilled, as in MCDM issues,
a preference of experts throughout the decision-making process is done entirely by his opinions and may
result in the wrong decisions. In addition, the decision maker’s priority is a characteristic of his own
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understanding and should be verified by some other senior specialist/decision maker. There are number
of circumstances when the original data should be verified by some other specialist/decision expert.

(1) A patient can explain the symptoms to a doctor in accordance with his/her observations
and circumstances. The actual details may not be authentic, in denouncing the symptoms.
Otherwise this distortion factorized by a doctor, this would be conducive to an incorrect diagnosis.
Respect of this, it might be most cautious to seek advice of another doctor to temperate the
intensity of a patient’s symptoms through a generalized parameter, which signifying the reliability
of the provided data.

(2) For the selection of a manager for a firm, an unfair decision can be done by the individual’s
judgment, it must be confirmed by some other observer/decision maker by a general attribute
corresponding to the situation.

(3) In every MCDM method, it is necessary to demonstrate prior evaluation by another
specialist/decision expert in terms of generalized parameter to minimize the indeterminacy
in the provided data and produce an indeterminate comportment more precise.

In such situations, the chances of mistakes in decision of the expert’s field cannot be excluded.
Consequently in these circumstances, there is a requirement of a generalize parameter, signifying an
specialist’s degree of confidence in the reliability of presented data to make the method very close to
realistic circumstances substantially.

2. Preliminaries

In the presented section, we concisely review certain fundamentals of different sets which have
been very helpful in understanding the contributions in the paper.

Definition 1 ([11]). Let Υ̌ be a set of elements of universe and Θ̆F : Υ̌ → [0, 1] is a truthness mapping.
The fuzzy set (FS) F is defined as,

F =
{(

d̃, Θ̆F (d̃)
)

: d̃ ∈ Υ̌
}

where, Θ̆F (d̃) is a truthness degree of d̃. The accumulation of all FSs defined on Υ̌ is represented as F(Υ̌).

Definition 2 ([12]). An intuitionistic fuzzy set (IFS) I defined on the universe Υ̌ is the set of ordered triplets ,

I =
{(

d̃, Θ̆I (d̃),KI (d̃)
)

: d̃ ∈ Υ̌
}

with the condition that 0 ≤ Θ̆I (d̃) + KI (d̃) ≤ 1, where Θ̆I (d̃) is the truthness degree and KI (d̃) is a degree
of falsity of an alternative d̃ to I .

Definition 3. Let Υ̌ be a collection of universal elements. The Pythagorean fuzzy set (PFS) P̃ on Υ̌ is defined as,

P̃ =
{(

d̃, Θ̆P̃ (d̃),KP̃ (d̃)
)

: d̃ ∈ Υ̌
}

with the condition that 0 ≤ Θ̆2
P̃ (d̃) + K2

P̃ (d̃) ≤ 1 where Θ̆P̃ (d̃) : Υ̌ → [0, 1] is an indication of truthness
degree and KP̃ (d̃) : Υ̌ → [0, 1] indicates the degree of falsity of an universal element d̃ ∈ Υ̌. The degree of

indeterminacy is given as πP̃ (d̃) =
(
Θ̆2
P̃ (d̃) + K2

P̃ (d̃)− Θ̆2
P̃ (d̃)K

2
P̃ (d̃)

)1/2. For assistance, a fundamental
component

〈
Θ̆P̃ ,KP̃

〉
in a PFS is called a PF-Number (PFN).

Definition 4 ([28]). Let Υ̌ be a collection of universal elements. A q́-rung orthopair fuzzy set (q́-ROFS) P,
is characterized as

P =
{(

d̃, Θ̆P(d̃),KP(d̃)
)

: d̃ ∈ Υ̌
}
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with the condition that 0 ≤ Θ̆q́
P(d̃) + Kq́

P(d̃) ≤ 1, (q́ ≥ 1), where Θ̆P(d̃) : Υ̌ → [0, 1] indicates the
truthness degree and KP(d̃) : Υ̌→ [0, 1] indicates the degree of falsity of an alternative d̃ ∈ Υ̌. The degree of

indeterminacy is given as πP(d̃) =
(
Θ̆q́

P(d̃) + Kq́
P(d̃)− Θ̆q́

P(d̃)Kq́
P(d̃)

)1/q́.
For convenience, a basic element

〈
Θ̆P(d̃),KP(d̃)

〉
in a q́-ROF is denoted by Ξ̃ =

〈
Θ̆P,KP

〉
for short, which is

called (q́-ROFN).

The proposed models of aggregated operators are credible, valid, versatile, and superior to others
since they are based on the generalized q-ROFN structure. Whether the proposed operators are used in
the sense of IFNs or PFNs, the results may be imprecise due to the lack of information in the input data.
This loss is due to limitations on membership and non-membership of IFNs and PFNs (see Figure 1).
IFNs and PFNs are special cases of q-ROFNs where q = 1 and q = 2 , respectively.

Figure 1. Graphical comparison between the IF-value, PF-value, and q-ROF-value.

2.1. Operational Laws of ˆ́q-ROFS

Let î1 =
〈
Θ̆î1

(d̃),Kî1
(d̃)
〉

and î2 =
〈
Θ̆î2

(d̃),Kî2
(d̃)
〉

be q́-ROFSs on Υ̌ . Then,

(1) î1 = 〈Kî1
(d̃), Θ̆î1

(d̃)〉.
(2) î1⊆̃î2 ⇔ Θ̆î1

(d̃) 6 Θ̆î2
(d̃) and Kî2

(d̃) 6 Kî1
(d̃).

(3) î1 = î2 ⇔ î1⊆̃î2 and î2⊆̃î1.

(4) î1t̃î2 =
{〈

d̃, max
{

Θ̆î1
(d̃), Θ̆î2

(d̃)
}

, min
{
Kî1

(d̃),Kî2
(d̃)
}〉

: d̃ ∈ Υ̌
}

.

(5) î1ũî2 =
{〈

d̃, min
{

Θ̆î1
(d̃), Θ̆î2

(d̃)
}

, max
{
Kî1

(d̃),Kî2
(d̃)
}〉

: d̃ ∈ Υ̌
}

.

(6) î1 + î2 =
{〈

d̃,
(
Θ̆q́

î1
(d̃) + Θ̆q́

î2
(d̃)− Θ̆q́

î1
(d̃)Θ̆q́

î2
(d̃)
)1/q́, Kî1

(d̃)Kî2
(d̃)
〉

: d̃ ∈ Υ̌
}

.

(7) î1.î2 =
{〈

d̃,
(
Θ̆î1

(d̃)Θ̆î2
(d̃), Kq́

î1
(d̃) + Kq́

î2
(d̃)− Kq́

î1
(d̃)Θ̆q́

î2
(d̃)
)1/q́〉 : d̃ ∈ Υ̌

}
.

(8) αî1 =
{〈

d̃,
(
1− (1− Θ̆î1

(d̃)q́)α
)1/q́, Kî1

(d̃)α
〉}

.

(9) îα
1 =

{〈
d̃, Θ̆î1

(d̃)α,
(
1− (1− Kq́

î1
(d̃))α

)1/q́〉}.

2.2. Operational Laws of q́-ROFNs

Let Ξ̃1 =
〈
Θ̆1,K1

〉
and Ξ̃2 =

〈
Θ̆2,K2

〉
be q́-ROFNs on a Υ̌ [45]. Then

(1) Ξ̃1 =
〈
K1, Θ̆1

〉
(2) Ξ̃1 ∨ Ξ̃2 =

〈
max{Θ̆1, Θ̆2}, min{K1,K2}

〉
(3) Ξ̃1 ∧ Ξ̃2 =

〈
min{Θ̆1, Θ̆2}, max{K1,K2}

〉
(4) Ξ̃1 ⊕ Ξ̃2 =

〈(
Θ̆q́

1 + Θ̆q́
2 − Θ̆q́

1 Θ̆q́
2
)1/q́, K1K2

〉
(5) Ξ̃1 ⊗ Ξ̃2 =

〈(
Θ̆1Θ̆2, (Kq́

1 + Kq́
2 − Kq́

1K
q́
2
)1/q́

〉
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(6) αΞ̃1 =
〈(

1− (1− Θ̆q́
1 )

α
)1/q́, Kα

1

〉
(7) Ξ̃α

1 =
〈

Θ̆α
1 , 1−

(
(1− Kq́

1 )
α
)1/q́

〉
Definition 5 ([45]). Let Ξ̃i = 〈Θ̆i,Ki〉, i = (1, . . . , n) is a set of q́-ROFNs with weight vector
v̂ = (v̂1, v̂2, . . . , v̂n) such that v̂i ∈ [0, 1] and ∑n

i=1 v̂i = 1. The (q́-ROFWG) operator is

q́-ROFWG(Ξ̃1, Ξ̃2, . . . , Ξ̃n) =

(
∏̃

n

k=1Θ̆v̂k
k ,

q́

√
1− ∏̃

n

k=1(1− Kq́
k )

v̂k

)

Definition 6 ([28]). Suppose Ξ̃ = 〈Θ̆,K〉 is a q́-ROFN. The score function k̃ of Ξ̃ is determined as,

k̃(Ξ̃) = Θ̆q − Kq

k̃(Ξ̃) ∈ [−1, 1]. The ranking of q́-ROFNs is described by score function. Large value of score function specifies
high preference of q́-ROFN. Although, score function is not efficient in several instances of q́-ROFN. As for
example, suppose Ξ̃1 = 〈0.6138, 0.2534〉 and Ξ̃2 = 〈0.7147, 0.4453〉 are two q́-ROFNs. Consider q = 2,
then k̃(Ξ̃1) = 0.3125 = k̃(Ξ̃2) i.e., score functions of Ξ̃1 and Ξ̃2 are same. While comparing the q́-ROFNs,
there is no need to only depend on the score function. To solve this problem, there is another approach,
the accuracy function.

Definition 7 ([28]). Suppose Ξ̃ = 〈Θ̆,K〉 is a q́-ROFN. An accuracy function S of Ξ̃ is determined as

S(Ξ̃) = Θ̆q́ + Kq́

S(Ξ̃) ∈ [0, 1]. The large value of accuracy function S(Ξ̃), determines high priorities of q́-ROFN. For the above
example, their accuracy functions are S(Ξ̃1) = 0.4409 and S(Ξ̃2) = 0.7090, so by the accuracy function we
have Ξ̃1 < Ξ̃2.

Definition 8. Let Ξ̃1 = 〈Θ̆1,K1〉 and Ξ̃2 = 〈Θ̆2,K2〉 are any two q́-ROFNs, k̃(Ξ̃1), k̃(Ξ̃2) are the score
function of Ξ̃1 and Ξ̃2 and S(Ξ̃1),S(Ξ̃2) are the accuracy functions of Ξ̃1 and Ξ̃2, respectively. Then

(1) If k̃(Ξ̃1) > k̃(Ξ̃2), then Ξ̃1 > Ξ̃2.
(2) If k̃(Ξ̃1) = k̃(Ξ̃2), then

(1) If S(Ξ̃1) > S(Ξ̃2) then Ξ̃1 > Ξ̃2.
(2) If S(Ξ̃1) = S(Ξ̃2), then Ξ̃1 = Ξ̃2.

3. q́-ROF Information Under Generalized Parameter

Suppose in a medical diagnosis, a patient is suffering an anonymous disease and provide his/her
inclinations as q́-ROFNs regarding symptoms E = {h1, h2, h3}, where

(1) h1= Dry Cough (DC);
(2) h2= High Fever (HF);
(3) h3= Sore Throat (ST).

Let the q́-ROFS, P =
{
(0.23, 0.67)DC, (0.42, 0.77)HF, (0.78, 0.55)ST

}
(q́ = 3) represents the

preferences of the patient. The collected information is entirely based on his/her understanding,
physical conditions and awareness in reporting the symptoms. Thereby, doctors treat the patient as a
result of his presentation of symptoms, this may cause an imprecise outcome and patient might not be
recovered according to data presented by a patient is not confirmed by one more doctor. Therefore, it
is necessary to demonstrate the presented data to make the method quite similar to the situation of
a patient. It can be obtained by introducing the idea of general parameter in the initial information,
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which indicates the confidence of an expert in conviction of the presented data to make the method
very close to the actual circumstances. When a patient provided his/her preferences and is additionally
evaluated by a physician/senior doctor who presents his/her data as h = (0.5, 0.4), q́-ROFS under
generalized parameter (GP) is a

PG =
{
(0.23, 0.67)DC, (0.42, 0.77)HF, (0.78, 0.55)ST(0.41, 0.84)

}
(q́ = 3)

Here, the indication of GP in bold is a q́-ROFN which diminish the inaccurate demonstration of
imprecise data across the system of knowledge representation. The GP value capable of providing
optimum solution of upgrading existing systems of decision experts, making sure a better accuracy in
crucial decisions. The prior evaluation remains imprecise without the GP, which demonstrates that
effectiveness of evaluation is uncertain. Whereby, in the information mapping system, the chances
of substantial deformations of vague information can be discarded on the basis of judgment of a
particular observer through another expert’s opinion (in form of GP) in implementing the original
q́-ROPFNs. Consequently, the generalized q́-rung orthopair FS (GQROFS) is defined as

Definition 9. Let Υ̌ be a set of universal elements, a generalized q́-rung orthopair FS (GQROFS) is of the form

G =
{(〈

d̃, Θ̆G(d̃),KG(d̃)
〉
(Θ̆ǧ,Kǧ)

)
: d̃ ∈ Υ̌

}
with the condition that 0 ≤ Θ̆q́

G(d̃) + Kq́
G(d̃) ≤ 1, (q́ ≥ 1) where, Θ̆G(d̃) : Υ̌→ [0, 1] indicates the degree of

truthness and KG(d̃) : Υ̌→ [0, 1] indicates the degree of falsity of an alternative d̃ ∈ Υ̌. Here (Θ̆ǧ,Kǧ) is said
to be GP which is a q́-ROFN indicated by other observer/decision maker signifying the preferable evaluation.

4. q́-ROF Geometric Aggregation Operator Under Generalized Parameter

In the presented section we introduce some geometric aggregation operators under generalized
parameter, including the generalized q́-rung orthopair fuzzy weighted geometric (GQROFWG)
operator, generalized q́-rung orthopair fuzzy ordered weighted geometric (GQROFOWG) operator,
and generalized q́-rung orthopair fuzzy hybrid geometric aggregation (GQROFHG) operator.

4.1. The Generalized q́-ROF Weighted Geometric Operator

Definition 10. Let ǧ = (Θ̆ǧ,Kǧ) be the GP for the q́-ROFNs Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . , n), then the
GQROFWG-operator is determined as,

GQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n, ǧ)

)
= ǧ⊗ q́-ROFWG(Ξ̃1, Ξ̃2, . . . , Ξ̃n)

Theorem 11. Let Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . , n) be a set of q́-ROFNs and v̂ = (v̂1, v̂2, . . . , v̂n)T is a weight
vector of Ξ̃i such that v̂i ∈ [0, 1] and ∑n

i=1 v̂i = 1. The GP is ǧ = (Θ̆ǧ,Kǧ), then the GQROFWG-operator is
determined as

GQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), ǧ

)
= ǧ⊗ q́-ROFWG(Ξ̃1, Ξ̃2, . . . , Ξ̃n)

=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

n

i=1(Θ̆
v̂i

i )q́, Kǧ.
q́

√
1− ∏̃

n

i=1(1− (Ki)q́)v̂i

)
Proof. We use mathematical induction.

For n = 2,
GQROFWG

(
(Ξ̃1, Ξ̃2), ǧ

)
= ǧ⊗ (Ξ̃v̂1

1 ⊗ Ξ̃v̂2
2 )



Symmetry 2020, 12, 1236 8 of 31

First we solve (Ξ̃v̂1
1 ⊗ Ξ̃v̂2

2 ), by using the operational law of q́-ROFS, we have

Ξ̃v̂1
1 ⊗ Ξ̃v̂2

2 = (Θ̆1,K1)
v̂1 ⊗ (Θ̆2,K2)

v̂2

=

(
Θ̆v̂1

1 , q́

√
1− (1− Kq́

1 )
v̂1 ⊗ Θ̆v̂2

2 , q́

√
1− (1− Kq́

2 )
v̂2

)
=

(
Θ̆v̂1

1 .Θ̆v̂2
2 , q́

√
1− (1− Kq́

1 )
v̂1 .(1− Kq́

2 )
v̂2

)
Now,

ǧ⊗ (Ξ̃v̂1
1 ⊗ Ξ̃v̂2

2 ) = (Θ̆ǧ,Kǧ)⊗
(

Θ̆v̂1
1 .Θ̆v̂2

2 , q́

√
1− (1−Kq́

1 )
v̂1 .(1−Kq́

2 )
v̂2

)

=

(
q́
√
(Θ̆ǧ)q́ + (Θ̆v̂1

1 .Θ̆v̂2
2 )q́ − (Θ̆ǧ)q́.(Θ̆v̂1

1 .Θ̆v̂2
2 )q́, Kǧ. q́

√
1− (1−Kq́

1 )
v̂1 .(1−Kq́

2 )
v̂2

)

=

(
q́
√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́).((Θ̆

v̂1
1 )q́((Θ̆v̂2

2 )q́, Kǧ. q́

√
1− (1−Kq́

1 )
v̂1 .(1−Kq́

2 )
v̂2

)

GQROFWG
(
(Ξ̃1, Ξ̃2),g

)
=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́).∏̃

2

i=1((Θ̆
v̂i
i )q́, Kǧ.

q́

√
1− ∏̃

2

i=1(1−Kq́
i )

v̂i

)

For n = 2, result is true.
Suppose that result satisfied for n = k,

GQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), ǧ

)
= ǧ⊗ q́-ROFWG(Ξ̃1, Ξ̃2, . . . , Ξ̃n)

=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

k

i=1(Θ̆
v̂i
i )q́, Kǧ.

q́

√
1− ∏̃

k

i=1(1− (Ki)q́)v̂i

)

Now we will prove for n = k+ 1,

GQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃k, Ξ̃k+1), ǧ

)
= ǧ⊗ (Ξ̃v̂1

1 ⊗ . . . ,⊗Ξ̃v̂k
k ⊗ Ξ̃v̂k+1

k+1 )

=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)((Θ̆k+1)v̂k+1 )q́∏̃

k

i=1(Θ̆
v̂i
i )q́,

Kǧ.
q́

√
1− (1− (Kk+1)q́)v̂k+1 ∏̃

k

i=1(1− (Ki)q́)v̂i

)

=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

k+1

i=1 (Θ̆
v̂i
i )q́, Kǧ.

q́

√
1− ∏̃

k+1

i=1 (1− (Ki)q́)v̂i

)

The result is true for n = k+ 1. Consequently, the result holds, under generalized parameter for
any number.

Theorem 12. By using GQROFWG-operator, the aggregated value is also a q́-ROPFN.

Proof. For every i = 1, 2, ..., n, we have 0 ≤ Θ̆i, Ki ≤ 1 and 0 ≤ Θ̆q́
i + Kq́

i ≤ 1, (q́ ≥ 1) implies that
0 ≤ 1− Kq́

i ≤ 1. Therefore,

0 ≤ ∏̃
n

i=1(1− Kq́
i )

v̂i ≤ 1

0 ≤ Kg.
q́

√
1− ∏̃

n

i=1(1− Kq́
i )

v̂i ≤ 1 for 0 ≤ Kǧ ≤ 1.

In addition, for 0 ≤ Θ̆ǧ ≤ 1, one can write, 0 ≤ q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

n
i=1(Θ̆

v̂i
i )q́ ≤ 1.
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Now,

=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

n

i=1(Θ̆
v̂i

i )q́
)q́

+

(
Kǧ.

q́

√
1− ∏̃

n

i=1(1− (Ki)q́)v̂i

)q́

=

(
(Θ̆ǧ)

q́ + (1− (Θ̆ǧ)
q́)∏̃

n

i=1(Θ̆
v̂i

i )q́
)
+ (Kǧ)

q́

(
1− ∏̃

n

i=1(1− (Ki)
q́)v̂i

)
= ((Kǧ)

q́ + (Θ̆ǧ)
q́) + ∏̃

n

i=1(Θ̆
v̂i

i )q́ − (Kǧ)
q́∏̃

n

i=1(1− (Ki)
q́)v̂i − (Θ̆ǧ)

q́∏̃
n

i=1(Θ̆
v̂i

i )q́

≤ ((Kǧ)
q́ + (Θ̆ǧ)

q́) + ∏̃
n

i=1(Θ̆
v̂i

i )q́ − (Kǧ)
q́∏̃

n

i=1(Θ̆
v̂i

i )q́ − (Θ̆ǧ)
q́∏̃

n

i=1(Θ̆
v̂i

i )q́ as Θ̆q́
i ≤ 1− Kq́

i

≤ ((Kǧ)
q́ + (Θ̆ǧ)

q́) + ∏̃
n

i=1(Θ̆
v̂i

i )q́ − ((Kǧ)
q́ + (Θ̆ǧ)

q́)∏̃
n

i=1(Θ̆
v̂i

i )q́

≤ ((Kǧ)
q́ + (Θ̆ǧ)

q́)

(
1− ∏̃

n

i=1(Θ̆
v̂i

i )q́
)
+ ∏̃

n

i=1(Θ̆
v̂i

i )q́

≤ 1− ∏̃
n

i=1(Θ̆
v̂i

i )q́ + ∏̃
n

i=1(Θ̆
v̂i

i )q́ ≤ 1

Hence, the aggregated value obtained by the GQROFWG-operator is a q́-ROPFN.

Example 13. Consider ǧ = (0.5, 0.7) is a GP of four q́-ROPFNs. Ξ̃1 = (0.23, 0.67), Ξ̃2 = (0.42, 0.77),
Ξ̃3 = (0.78, 0.55) and Ξ̃4 = (0.41, 0.84) with a weight vector v̂ = (0.1, 0.2, 0.3, 0.4), here q́ = 3, then

q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

n

i=1(Θ̆
v̂i
i )q́ = 0.60071

In addition,

Kǧ.
q́

√
1− ∏̃

n

i=1(1− (Ki)q́)v̂i = 0.53054

By Theorem 3.2, we have

GQROFWG
(
(Ξ̃1, Ξ̃2, Ξ̃3, Ξ̃4), g

)
= ǧ⊗ q́-ROFWG(Ξ̃1, Ξ̃2, . . . , Ξ̃n)

=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

k

i=1(Θ̆
v̂i

i )q́, Kǧ.
q́

√
1− ∏̃

k

i=1(1− (Ki)q́)v̂i

)
= (0.60071, 0.53054)

Proposition 14. Let Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . , n) be a set of q́-ROFNs and v̂ = (v̂1, v̂2, . . . , v̂n)T is a
weight vector of Ξ̃i such that v̂i ∈ [0, 1] and ∑n

i=1 v̂i = 1. Generalized parameter is ǧ = (Θ̆ǧ,Kǧ), then the
GQROFWG-operator has the following properties:
1. (Idempotency) If Ξ̃i = Ξ̃ (∀i = 1, 2, . . . , n), then

GQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), g

)
= ǧ⊗ Ξ̃

2. (Boundary condition) if Ξ̃−i = (Θ̆min
ǧ⊗Ξ̃i

,Kmax
ǧ⊗Ξ̃i

) and Ξ̃+
i = (Θ̆max

ǧ⊗Ξ̃i
,Kmin

ǧ⊗Ξ̃i
), then for every v̂i,

Ξ̃−i ≤ GQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), ǧ

)
≤ Ξ̃+

i

3. (Monotonicity) Let Ξ̃?
i = (Θ̆?

i ,K?
i )(i = 1, 2, . . . , n) be a set of q́-ROFNs such that Θ̆i ≤ Θ̆?

i and Ki ≥ K?
i

for all i, then for every v̂i,

GQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), g

)
≤ GQROFWG

(
(Ξ̃?

1 , Ξ̃?
2 , . . . , Ξ̃?

n), ǧ
)
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4. (Commutativity) Let Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . , n) and Ξ̃∗i = (Θ̆∗i ,Ki
∗)(i = 1, 2, . . . , n) be two sets of n

q́-ROFNs such that Ξ̃∗i is any permutation of Ξ̃i, then

GQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), ǧ

)
= GQROFWG

(
(Ξ̃∗1 , Ξ̃∗2 , . . . , , Ξ̃∗n), ǧ

)
Proof. 1. if Ξ̃i = Ξ̃ (∀i = 1, 2, . . . , n), then by GQROFWG-operator,

GQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), ǧ

)
=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

n

i=1(Θ̆
v̂i
i )q́, Kǧ.

q́

√
1− ∏̃

n

i=1(1− (Ki)q́)v̂i

)

=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)

(
Θ̆∑n

i=1 v̂i

)q́

, Kǧ. q́

√
1− (1− (K)q́)∑n

i=1 v̂i

)
=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)(Θ̆)q́, Kǧ. q́

√
1− (1− (K)q́)

)
=

(
q́

√
(Θ̆ǧ)q́ + Θ̆q́ − (Θ̆ǧ)q́(Θ̆)q́, Kǧ.K

)
= ǧ⊗ Ξ̃

2. Let Ξ̃−i = (Θ̆min
ǧ⊗Ξ̃i

,Kmax
ǧ⊗Ξ̃i

) and Ξ̃+
i = (Θ̆max

g⊗Ξ̃i
,Kmin

g⊗Ξ̃i
), where Kmin

ǧ⊗Ξ̃i
= Kǧ(minKi) , Kmax

ǧ⊗Ξ̃i
=

Kǧ(maxKi), Kmin
ǧ⊗Ξ̃i

= q́

√
Θ̆q̂

ǧ + (1− Θ̆q́
ǧ)(min(Θ̆i))q́, and Kmax

g⊗Ξ̃i
= q́

√
Θ̆q́

g + (1− Θ̆q́
ǧ)(max(Θ̆i))q́

for all i, it is clear that min(Ki) ≤ Ki ≤ max(Ki) ⇒ max(1− Kq́
i ) ≤ (1− Kq́

i ) ≤ min(1− Kq́
i ),

for each v̂,

⇒ ∏̃
n
i=1
(
1−max(Ki)

q́
)v̂i ≤ ∏̃

n
i=1(1− Kq́

i )
v̂i ≤ ∏̃

n
i=1
(
1−min(Ki)

q́
)v̂i

⇒
(
1−max(Ki)

q́
)∑n

i=1 v̂i ≤ ∏̃
n
i=1(1− Kq́

i )
v̂i ≤

(
1−min(Ki)

q́
)∑n

i=1 v̂i

⇒ 1−
(
(1−min(Ki)

q́)
)
≤ ∏̃

n
i=1(1− Kq́

i )
v̂i ≤ 1−

((
1−max(Ki)

q́
))

⇒ q́

√
1−

(
(1−min(Ki)q́)

)
≤ q́

√
∏̃

n
i=1(1− Kq́

i )
vi ≤ q́

√
1−

(
(1−max(Ki)q́)

)
⇒ min(Ki) ≤ q́

√
∏̃

n
i=1(1− Kq́

i )
v̂i ≤ max(Ki)

As we know, 0 ≤ Kg

leq1, we can write

Kǧ.min(Ki) ≤ Kǧ. q́

√
∏̃

n
i=1(1− Kq́

i )
v̂i ≤ Kǧ.max(Ki)

Kmin
ǧ⊗Ξ̃i

≤ Kǧ. q́

√
∏̃

n
i=1(1− Kq́

i )
v̂i ≤ Kmax

ǧ⊗Ξ̃i
.

Furthermore, min(Θ̆i) ≤ Θ̆i ≤ max(Θ̆i) ⇐⇒ (min(Θ̆i))
q́ ≤ ∏̃

n
i=1(Θ̆

v̂i
i )q́ ≤ (max(Θ̆i))

q́.
In addition, for 0 ≤ Θ̆ǧ ≤ 1, we can write

=⇒ (1− Θ̆q́
ǧ)
(
min(Θ̆i)

)q́ ≤ (1− Θ̆q́
ǧ)∏̃

n
i=1(Θ̆

v̂i
i )q́ ≤ (1− Θ̆q́

ǧ)(max(Θ̆i))
q́

=⇒ Θ̆q́
ǧ + (1− Θ̆q́

ǧ)(min(Θ̆i))
q́ ≤ Θ̆q́

ǧ + (1− Θ̆q́
ǧ)∏̃

n
i=1(Θ̆

v̂i
i )q́ ≤ Θ̆q́

ǧ + (1− Θ̆q́
ǧ)(max(Θ̆i))

q́

=⇒ q́

√
Θ̆q́

ǧ + (1− Θ̆q́
ǧ)(min(Θ̆i))q́ ≤ q́

√
Θ̆q́

ǧ + (1− Θ̆q́
ǧ)∏̃

n
i=1(Θ̆

v̂i
i )q́ ≤ q́

√
Θ̆q́

ǧ + (1− Θ̆q́
ǧ)(max(Θ̆i))q́

=⇒ Θ̆max
ǧ⊗Ξ̃i

≤ q́

√
Θ̆q́

ǧ + (1− Θ̆q́
ǧ)∏̃

n
i=1(Θ̆

v̂i
i )q́ ≤ Θ̆min

ǧ⊗Ξ̃i
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GQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), ǧ

)
= Ξ̃ = (Θ̆ǧ⊗Ξ̃i

,Kǧ⊗Ξ̃i
), then we have Kmin

ǧ⊗Ξ̃i
≤ Kǧ⊗Ξ̃i

≤ Kmax
ǧ⊗Ξ̃i

and Θ̆min
ǧ⊗Ξ̃i

≤ Θ̆ǧ⊗Ξ̃i
≤ Θ̆max

ǧ⊗Ξ̃i
. Thus, by definition of score function, we get

Ξ̃−i ≤ GQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), ǧ

)
≤ Ξ̃+

i

3. It can be easily done by the above proof.
4. It follows trivially from definition.

Proposition 15. If the first priority of a another decision expert to the assessed object is considered to be
ǧ = (0, 1), then the GQROFWG-operator minimizes in the the q́-ROFWG-operator.

Proof. If we take ǧ = (0, 1) as given then by Theorem 3.2, we have

GQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), ǧ

)
=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

n

i=1(Θ̆
v̂i
i )q́, Kǧ.

q́

√
1− ∏̃

n

i=1(1− (Ki)q́)v̂i

)
=

(
q́

√
∏̃

n

i=1(Θ̆
v̂i
i )q́,

q́

√
1− ∏̃

n

i=1(1− (Ki)q́)v̂i

)
=

(
∏̃

n

i=1(Θ̆
v̂i
i )q́,

q́

√
1− ∏̃

n

i=1(1− (Ki)q́)v̂i

)
= q́-ROFWG(Ξ̃1, Ξ̃2, . . . , Ξ̃n).

Proposition 16. If the first priority of another decision maker to the assessed object is considered to be ǧ = (1, 0),
then the GQROFWG-operator provides the value (1, 0).

Proof. If we take ǧ = (1, 0) as given then by Theorem 3.2, we have

GQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), ǧ

)
=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

n

i=1(Θ̆
v̂i
i )q́, Kǧ.

q́

√
1− ∏̃

n

i=1(1− (Ki)q́)v̂i

)
=

(
q́

√
1 + (1− 1)∏̃

n

i=1(Θ̆
v̂i
i )q́, 0

)
= (1, 0).

4.2. The Generalized q́-ROF Ordered Weighted Geometric Operator

Definition 17. Let ǧ = (Θ̆ǧ,Kǧ) be a GP for the q́-ROFNs Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . , n), then the
GQROFOWG-operator is characterized as,

GQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n, ǧ)

)
= ǧ⊗ q́-ROFOWG(Ξ̃1, Ξ̃2, . . . , Ξ̃n)

Theorem 18. Let Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . , n) be a set of q́-ROFNs and v̂ = (v̂1, v̂2, . . . , v̂n)T is the
weight vector of Ξ̃i such that v̂i ∈ [0, 1] and ∑n

i=1. GP is ǧ = (Θ̆ǧ,Kǧ), then the GQROFOWG-operator is
defined as

GQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), ǧ

)
= g⊗ q́-ROFOWG(Ξ̃1, Ξ̃2, . . . , Ξ̃n)

=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

n

i=1(Θ̆
v̂i

σ(i)
)q́, Kǧ. q́

√
1− ∏̃

n

i=1(1− (Kσ(i))
q́)v̂i

)



Symmetry 2020, 12, 1236 12 of 31

(
σ(1), σ(2), . . . , σ(n)

)
is a permutation of (1, 2, . . . , n), such that Ξ̃σ(i−1) ≥ Ξ̃σ(i) for any i.

Proof. The proof can be done as Theorem 3.2.

Example 19. Let ǧ = (0.5, 0.7) be the GP of four q́-ROPFNs. Ξ̃1 = (0.23, 0.67), Ξ̃2 = (0.42, 0.77),
Ξ̃3 = (0.78, 0.55) and Ξ̃4 = (0.41, 0.84) with a weight vector v̂ = (0.1, 0.2, 0.3, 0.4), here q́ = 3, then first we
find score functions of all Ξ̃i.

k̃(Ξ̃1) = −0.2885

k̃(Ξ̃2) = −0.3824

k̃(Ξ̃3) = 0.3081

k̃(Ξ̃4) = −0.5237

On the behalf of score functions, Ξ̃σ(1) = Ξ̃3, Ξ̃σ(2) = Ξ̃1, Ξ̃σ(3) = Ξ̃2, and Ξ̃σ(4) = Ξ̃4

q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

n

i=1(Θ̆
v̂i

σ(i)
)q́ = 0.5623

In addition,

Kǧ. q́

√
1− ∏̃

n

i=1(1− (Kσ(i))
q́)v̂i = 0.5436

By Theorem 3.9, we have

GQROFOWG
(
(Ξ̃1, Ξ̃2, Ξ̃3, Ξ̃4), ǧ

)
= ǧ⊗ q́-ROFOWG(Ξ̃1, Ξ̃2, . . . , Ξ̃n)

=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

k

i=1(Θ̆
v̂i
i )q́, Kǧ.

q́

√
1− ∏̃

k

i=1(1− (Ki)q́)v̂i

)
= (0.5623, 0.5436)

Proposition 20. Let Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . n) be a set of q́-ROFNs and v̂ = (v̂1, v̂2, . . . , v̂n)T

is the weight vector of Ξ̃i such that v̂i ∈ [0, 1] and ∑n
i=1. Generalized parameter is ǧ = (Θ̆ǧ,Kǧ),

the GQROFOWG-operator has the following properties:

1. (Idempotency) If Ξ̃i = Ξ̃ (∀i = 1, 2, . . . , n), then

GQROFOWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), ǧ

)
= ǧ⊗ Ξ̃

2. (Boundary condition) If Ξ̃−i = (Θ̆min
ǧ⊗Ξ̃i

,Kmax
ǧ⊗Ξ̃i

) and Ξ̃+
i = (Θ̆max

ǧ⊗Ξ̃i
,Kmin

ǧ⊗Ξ̃i
), then for every v̂i,

Ξ̃−i ≤ GQROFOWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), g

)
≤ Ξ̃+

i

3. (Monotonicity) Let Ξ̃?
i = (Θ̆?

i ,K?
i )(i = 1, 2, . . . , n) be a set of q́-ROFNs such that K?

i ≤ Ki and Θ̆i ≤ Θ̆?
i

for all i, then for every v̂i,

GQROFOWG
(
(Ξ̃1, Ξ̃2, . . . , , Ξ̃n), ǧ

)
≤ GQROFOWG

(
(Ξ̃?

1 , Ξ̃?
2 , . . . , Ξ̃?

n), ǧ
)

4. (Commutativity) Let Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . , n) and Ξ̃∗i = (Θ̆∗i ,Ki
∗)(i = 1, 2, . . . , n) be a two

collection of n q́-ROFNs such that Ξ̃∗i is any permutation of Ξ̃i, then

GQROFOWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), ǧ

)
= GQROFOWG

(
(Ξ̃∗1 , Ξ̃∗2 , . . . , Ξ̃∗n), g

)
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5. If the preference of another decision maker to the assessed object is considered to be ǧ = (0, 1), then the
GQROFOWG-operator becomes the q́-ROFOWG-operator.
6. If the preference of another decision maker to the assessed object is considered to be ǧ = (1, 0), then the
GQROFOWG-operator provides the value (1, 0).

Proof. Here we leave proof.

4.3. The Generalized q́-ROF Hybrid Geometric Operator

Definition 21. Suppose ǧ = (Θ̆ǧ,Kǧ) be the generalized parameter for the q́-ROFNs
Ξ̃i = (Θ̆i,Ki) (i = 1, 2, . . . , n), then the GQROFHG-operator is determined as,

GQROFHG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n, g)

)
= ǧ⊗ q́-ROFHG(Ξ̃1, Ξ̃2, . . . , Ξ̃n)

Theorem 22. Let Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . , n) be a set of q́-ROFNs and v̂ = (v̂1, v̂2, . . . , v̂n)T be a weight
vector of Ξ̃i such that v̂i ∈ [0, 1] and ∑n

i=1 v̂i = 1. The GP is ǧ = (Θ̆ǧ,Kǧ) and the standard vector is
ξ = (ξ1, ξ2, . . . , ξn)T such that ξi ∈ [0, 1] and ∑n

i=1 ξi = 1. The GQROFHG-operator is determined as,

GQROFHG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), ǧ

)
= ǧ⊗ q́-ROFHG(Ξ̃1, Ξ̃2, . . . , Ξ̃n)

=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

n

i=1(
˘̆Θv̂i

σ(i)
)q́, Kǧ. q́

√
1− ∏̃

n

i=1(1− (K̆σ(i))
q́)v̂i

)

here ˘̃Ξi = nξiΞ̃i, n is the number of q́-ROFNs, ξi is a standard weight vector of Ξ̃i, and
(
σ(1), σ(2), . . . , σ(n)

)
is a permutation of (1, 2, . . . , n), such that ˘̃Ξσ(i−1) ≥

˘̃Ξσ(i) for any i.

Proof. The proof can be done same as Theorem 3.2.

Example 23. Let ǧ = (0.5, 0.7) be the GP of four q́-rung orthopair fuzzy numbers. Ξ̃1 = (0.23, 0.67),
Ξ̃2 = (0.42, 0.77), Ξ̃3 = (0.78, 0.55), and Ξ̃3 = (0.41, 0.84) with a weight vector v = (0.1, 0.2, 0.3, 0.4),
here q́ = 4. Standard weight vector will be ξi = (0.4, 0.3, 0.2, 0.1). First we find ˘̃Ξi = nξiΞ̃i for each Ξ̃i,
then we find score functions of each ˘̃Ξi.

˘̃Ξ1 = (0.258622, 0.526889)

˘̃Ξ2 = (0.439241, 0.730783)

˘̃Ξ3 = (0.745657, 0.619855)

˘̃Ξ4 = (0.326760, 0.932635)

The score functions will be,
k̃( ˘̃Ξ1) = −0.072594

k̃( ˘̃Ξ2) = −0.247979

k̃( ˘̃Ξ3) = 0.161515

k̃( ˘̃Ξ3) = −0.745165

On the behalf of score functions, Ξ̃σ(1) =
˘̃Ξ3, ˘̃Ξσ(2) =

˘̃Ξ1, Ξ̃σ(3) =
˘̃Ξ2, and Ξ̃σ(4) =

˘̃Ξ4

q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

n

i=1(
˘̆Θv̂i

σ(i)
)q́ = 0.531970
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In addition,

Kǧ. q́

√
1− ∏̃

n

i=1(1− (K̆σ(i))
q́)v̂i = 0.589324

By Theorem 3.13, we have

GQROFHG
(
(Ξ̃1, Ξ̃2, Ξ̃3), ǧ

)
=

(
q́

√
(Θ̆ǧ)q́ + (1− (Θ̆ǧ)q́)∏̃

k

i=1(Θ̆
v̂i

i )q́, Kǧ.
q́

√
1− ∏̃

k

i=1(1− (Ki)q́)v̂i ,
)

= (0.531970, 0.589324)

The following observation are derived from definition of GQROFHG-operator:

1. If the preference of another decision maker to the assessed object is considered to be ǧ = (0, 1),
then the GQROFHG-operator becomes the q́-ROFHG-operator.

2. If the preference of another decision maker to the assessed object is considered to be ǧ = (1, 0),
then the GQROFHG-operator provides the value (1, 0).

3. If ξ = ( 1
n , 1

n , . . . , 1
n )

T , then the GQROFHG-operator reduces to GQROFWG-operator.
4. If v̂ = ( 1

n , 1
n , . . . , 1

n )
T , then the GQROFHG-operator reduces to GQROFOWG-operator.

5. q́-ROF Geometric Aggregation Operator Based On Group-Generalized Parameter

The presented section is dedicated to extending collaborators above geometric aggregation
operators by taking the conceptions of different specialists/decision experts on the preliminary
information to better integrate different preferences of decision makers. This can be obtained by
providing a group-generalized q́-rung orthopair fuzzy weighted geometric(GGQROFWG-operator),
group-generalized q́-rung orthopair fuzzy ordered weighted geometric(GGQROFOWG-operator) and
group-generalized q́-rung orthopair fuzzy hybrid geometric(GGQROFHG-operator).

5.1. Group-Generalized q́-ROF Weighted Geometric Operator

Definition 24. Suppose there are q́ specialists/decision experts to verify the q́-ROF information.
Let gz = (Θ̆ǧz ,Kǧz) be the specialists/decision experts for the q́-ROFNs Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . , n),
then GGQROFWG-operator is determined as,

GGQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), (ǧ1, ǧ2, . . . , ǧq́)

)
= q́-ROFWG(ǧ1, ǧ2, . . . , ǧq́)⊗ q́-ROFWG(Ξ̃1, Ξ̃2, . . . , Ξ̃n)

Theorem 25. Let there be q́ specialists/decision experts to verify the q́-ROF information. Let ǧz = (Θ̆ǧz ,Kǧz)

(i = 1, 2, . . . , q́) be the specialists/decision experts for the q́-ROFNs Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . , n).
v̂′ = (v̂′1, v̂′2, . . . , , v̂′q́)

T and v̂ = (v̂1, v2, . . . , v̂n)T are the weight vectors of specialists/decision

experts and Ξ̃i, respectively and v̂′i ∈ [0, 1] , ∑q́
i=1 v̂′i = 1, v̂i ∈ [0, 1], and ∑n

i=1 v̂i = 1, then the
GGQROFWG-operator is determined as,

GGQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), (g1, ǧ2, . . . , ǧq́)

)
= q́-ROFWG(ǧ1, ǧ2, . . . , ǧq́)⊗ q́-ROFWG(Ξ̃1, Ξ̃2, . . . , Ξ̃n)

=

(
q́

√
∏̃

q́

z=1

(
Θ̆v̂′z

ǧz

)q́
+ ∏̃

n

i=1

(
Θ̆v̂i

i

)q́ − ∏̃
q́

z=1

(
Θ̆v′z

ǧz

)q́.∏̃
n

i=1

(
Θ̆v̂i

i

)q́,

q́

√
1− ∏̃

q́

z=1(1− (Kǧz )
q́)v̂′z .

q́

√
1− ∏̃

n

i=1(1− (Ki)q́)v̂i

)
Proof. We will use mathematical induction.
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For n = 2,

GGQROFWG
(
(Ξ̃1, Ξ̃2), (ǧ1, g2, . . . , ǧq́)

)
= q́-ROFWG(ǧ1, ǧ2, . . . , ǧq́)⊗ q́-ROFWG(Ξ̃1, Ξ̃2)

=

(
∏̃

n

k=1Θ̆v̂′z
ǧz

,
q́

√
1− ∏̃

q́

z=1(1− (Kǧz )
q́)v̂′z

)
⊗ (Ξ̃v̂1

1 ⊗ Ξ̃v̂2
2 )

=

(
∏̃

n

k=1Θ̆v̂′z
ǧz

,
q́

√
1− ∏̃

q́

z=1(1− (Kǧz )
q́)v̂′z

)
⊗
(

Θ̆v̂1
1 .Θ̆v̂2

2 , q́

√
1− (1− Kq́

1 )
v̂1 .(1− Kq́

2 )
v̂2

)
=

(
q́

√
∏̃

n

k=1(Θ̆
v̂′z
ǧz
)q́ + (Θ̆v̂1

1 .Θ̆v̂2
2 )q́ − ∏̃

n

k=1(Θ̆
v̂′z
ǧz
)q́.(Θ̆v̂1

1 .Θ̆v̂2
2 )q́,

q́

√
1− ∏̃

q́

z=1(1− (Kǧz )
q́)v̂′z . q́

√
1− (1− Kq́

1 )
v̂1 .(1− Kq́

2 )
v̂2

)

=

(
q́

√
∏̃

q́

z=1

(
Θ̆v̂′z

ǧz

)q́
+ ∏̃

2

i=1

(
Θ̆v̂i

i

)q́ − ∏̃
q́

z=1

(
Θ̆v̂′z

ǧz

)q́.∏̃
2

i=1

(
Θ̆v̂i

i

)q́,

q́

√
1− ∏̃

q́

z=1(1− (Kǧz )
q́)v̂′z .

q́

√
1− ∏̃

2

i=1(1− (Ki)q́)v̂i

)

For n = 2, result is satisfied.
Suppose result is true for n = k,

GGQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃k), (ǧ1, ǧ2, . . . , ǧq́)

)
= q́-ROFWG(ǧ1, ǧ2, . . . , ǧq́)⊗ q́-ROFWG(Ξ̃1, Ξ̃2, . . . , Ξ̃k)

=

(
q́

√
∏̃

q́

z=1

(
Θ̆v̂′z

ǧz

)q́
+ ∏̃

k

i=1

(
Θ̆v̂i

i

)q́ − ∏̃
q́

z=1

(
Θ̆v′z

ǧz

)q́.∏̃
k

i=1

(
Θ̆v̂i

i

)q́,

q́

√
1− ∏̃

q́

z=1(1− (Kǧz )
q́)v̂′z .

q́

√
1− ∏̃

k

i=1(1− (Ki)q́)v̂i ,
)

For n = k+ 1, we will prove

GGQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃k+1), (ǧ1, ǧ2, . . . , ǧq́)

)
= q́-ROFWG(ǧ1, ǧ2, . . . , ǧq́)⊗ q́-ROFWG(Ξ̃1, Ξ̃2, . . . , Ξ̃k+1)

=

(
q́

√
∏̃

q́

z=1

(
Θ̆v̂′z

ǧz

)q́
+ ∏̃

k+1

i=1

(
Θ̆v̂i

i

)q́ − ∏̃
q́

z=1

(
Θ̆v̂′z

ǧz

)q́.∏̃
k+1

i=1

(
Θ̆vi

i

)q́,

q́

√
1− ∏̃

q́

z=1(1− (Kǧz )
q́)v̂′z .

q́

√
1− ∏̃

k+1

i=1 (1− (Ki)q́)v̂i

)

Therefore, the result satisfied for n = k+ 1, under more than one specialist’s/decision expert’s
preference.

Example 26. Let ǧz = {ǧ1, ǧ2, ǧ3, ǧ4} be the group of four senior specialists/decision experts with weight
vector v̂′ = (0.1, 0.2, 0.3, 0.4), where ǧ1 = (0.7, 0.1), ǧ2 = (0.5, 0.7), g3 = (0.8, 0.4) and ǧ4 = (0.2, 0.3).
Here we have four q́-rung orthopair fuzzy numbers, Ξ̃1 = (0.78, 0.45), Ξ̃2 = (0.32, 0.56), Ξ̃3 = (0.67, 0.33),
and Ξ̃4 = (0.87, 0.21) with associated weight vector v̂ = (0.4, 0.3, 0.2, 0.1), here q́ = 4, then

q́

√
∏̃

q́

z=1

(
Θ̆v̂′z

gz

)q́
+ ∏̃

n

i=1

(
Θ̆v̂i

i

)q́ − ∏̃
q́

z=1

(
Θ̆v̂′z

ǧz

)q́.∏̃
n

i=1

(
Θ̆v̂i

i

)q́
= 0.615040

In addition,

q́

√
1− ∏̃

q́

z=1(1− (Kǧz)
q́)v′z .

q́

√
1− ∏̃

n

i=1(1− (Ki)q́)v̂i = 0.236624

By Theorem 4.2, we have
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GGQROFWG
(
(Ξ̃1, Ξ̃2, Ξ̃3, Ξ̃4), (ǧ1, ǧ2, ǧ3, ǧ4)

)
= q́-ROFWG(ǧ1, ǧ2, ǧ3, ǧ4)⊗ q́-ROFWG(Ξ̃1, Ξ̃2, Ξ̃3, Ξ̃4)

=

(
q́

√
∏̃

q́

z=1

(
Θ̆v̂′z

ǧz

)q́
+ ∏̃

n

i=1

(
Θ̆v̂i

i

)q́ − ∏̃
q́

z=1

(
Θ̆v̂′z

ǧz

)q́.∏̃
n

i=1

(
Θ̆v̂i

i

)q́,

q́

√
1− ∏̃

q́

z=1(1− (Kǧz )
q́)v̂′z .

q́

√
1− ∏̃

n

i=1(1− (Ki)q́)v̂i

)
= (0.615040, 0.236624)

Proposition 27. Let Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . , n) be a set of q́-ROFNs, there are q́ specialists/decision
experts to verify the q́-ROF information. If ǧz = (Θ̆gz ,Kǧz) (i = 1, 2, . . . , q́) be the specialists/decision experts
for the q́-ROFNs Ξ̃i, then the GGQROFWG-operator has the given characteristics:
1. (Idempotency) If Ξ̃i = Ξ̃ and ǧz = ǧ, for all i and z, then

GGQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), (ǧ1, ǧ2, . . . , ǧq́)

)
= ǧ⊗ Ξ̃

2. (Monotonicity) Let Ξ̃?
i = (Θ̆?

i ,K?
i )(i = 1, 2, . . . , n) be a set of q́-ROFNs such that K?

i ≤ Ki and Θ̆i ≤ Θ̆?
i

for all i, then

GGQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), (ǧ1, ǧ2, . . . , ǧq́)

)
≤ GGQROFWG

(
(Ξ̃?

1 , Ξ̃?
2 , . . . , Ξ̃?

n), (ǧ1, ǧ2, . . . , ǧq́)
)

3. (Commutativity) Let Ξ̃i = (Θ̆i,Ki) and Ξ̃∗i = (Ki
∗, Θ̆∗i )(i = 1, 2, . . . , n) be two sets of n q́-ROFNs such

that Ξ̃∗i is any permutation of Ξ̃i, then

GGQROFWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), (ǧ1, ǧ2, . . . , ǧq́)

)
= GGQROFWG

(
(Ξ̃∗1 , Ξ̃∗2 , . . . , Ξ̃∗n), (ǧ1, ǧ2, . . . , ǧq́)

)
4. If the preference of another decision maker to the assessed object is considered to be ǧz = (0, 1) for all z,
then the GGQROFWG operator becomes the q́-ROFWG-operator.
5. If the preference of another decision maker to the assessed object is considered to be ǧz = (1, 0) for all z,
then the GGQROFWG operator provides the value (1, 0).

Proof. Here we leave proof.

5.2. Group-Generalized q́-ROF Ordered Weighted Geometric Operator

Definition 28. Suppose there are q́ specialists/decision experts to verify the q́-ROF information.
Let ǧz = (Θ̆ǧz ,Kǧz) (i = 1, 2, . . . , q́) be the specialists/decision experts for the q́-ROFNs Ξ̃i =

(Θ̆i,Ki) (i = 1, 2, . . . , n), then the GGQROFOWG-operator is described as,

GGQROFOWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), (ǧ1, ǧ2, . . . , ǧq́)

)
= q́-ROFWG(ǧ1, ǧ2, . . . , ǧq́)⊗ q́-ROFOWG(Ξ̃1, Ξ̃2, . . . , Ξ̃n)

Theorem 29. Let q́ be the number of specialists/decision experts to verify the q́-ROF information.
Let ǧz = (Θ̆ǧz ,Kǧz) (i = 1, 2, . . . , q́) be the specialists/decision experts for the q́-ROFNs Ξ̃i = (Θ̆i,Ki)

(i = 1, 2, . . . , n). v′ = (v̂′1, v̂′2, . . . , v̂′q́)
T , v̂ = (v̂1, v̂2, . . . , vn)T are the weight vectors of

specialists/decision makers and Ξ̃i respectively and v̂′i ∈ [0, 1] , ∑q́
i=1 v̂′i = 1, v̂i ∈ [0, 1], ∑n

i=1 v̂i = 1,
then the GGQROFOWG-operator is described as

GGQROFOWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), (ǧ1, ǧ2, . . . , ǧq́)

)
= q́-ROFWG(ǧ1, ǧ2, . . . , ǧq́)⊗ q́-ROFOWG(Ξ̃1, Ξ̃2, . . . , Ξ̃n)

=

(
q́

√
∏̃

q́

z=1

(
Θ̆v′z

ǧz

)q́
+ ∏̃

n

i=1

(
Θ̆v̂i

σ(i)

)q́ − ∏̃
q́

z=1

(
Θ̆v̂′z

ǧz

)q́.∏̃
n

i=1

(
Θ̆v̂i

σ(i)

)q́,

q́

√
1− ∏̃

q́

z=1(1− (Kǧz )
q́)v̂′z . q́

√
1− ∏̃

n

i=1(1− (Kσ(i))
q́)v̂i

)
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(σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n), such that Ξ̃σ(i−1) ≥ Ξ̃σ(i) for any i.

Proof. Proof is same as Theorem 4.2.

Example 30. Let ǧz = {ǧ1, g2, ǧ3, ǧ4} be the group of four senior specialists/decision experts with weight
vector v̂′ = (0.1, 0.2, 0.3, 0.4), where ǧ1 = (0.7, 0.1), g2 = (0.5, 0.7), ǧ3 = (0.8, 0.4) and ǧ4 = (0.2, 0.3).
Here we have four q́-rung orthopair fuzzy numbers. Ξ̃1 = (0.78, 0.45), Ξ̃2 = (0.32, 0.56), Ξ̃3 = (0.67, 0.33),
and Ξ̃4 = (0.87, 0.21) with associated weight vector v = (0.4, 0.3, 0.2, 0.1). Here q́ = 4, first we find score
functions of all Ξ̃i.

k̃(Ξ̃1) = 0.329144

k̃(Ξ̃2) = −0.087859

k̃(Ξ̃3) = 0.189652

k̃(Ξ̃4) = 0.570952

On the behalf of score functions, Ξ̃σ(1) = Ξ̃4, Ξ̃σ(2) = Ξ̃1, Ξ̃σ(3) = Ξ̃3, and Ξ̃σ(4) = Ξ̃2, then

q́

√
∏̃

q́

z=1

(
Θ̆v̂′z

ǧz

)q́
+ ∏̃

n

i=1

(
Θ̆vi

σ(i)

)q́ − ∏̃
q́

z=1

(
Θ̆v̂′z

ǧz

)q́.∏̃
n

i=1

(
Θ̆v̂i

σ(i)

)q́
= 0.424947

In addition,

q́

√
1− ∏̃

q́

z=1(1− (Kǧz)
q́)v̂′z . q́

√
1− ∏̃

n

i=1(1− (Kσ(i))
q́)v̂i = 0.201330

By Theorem 4.6, we have

GGQROFOWG
(
(Ξ̃1, Ξ̃2, Ξ̃3, Ξ̃4), (ǧ1, ǧ2, ǧ3, ǧ4)

)
= q́-ROFWG(g1, ǧ2, ǧ3, ǧ4)⊗ q́-ROFOWG(Ξ̃1, Ξ̃2, Ξ̃3, Ξ̃4)

=

(
q́

√
∏̃

q́

z=1

(
Θ̆v̂′z

ǧz

)q́
+ ∏̃

n

i=1

(
Θ̆v̂i

σ(i)

)q́ − ∏̃
q́

z=1

(
Θ̆v̂′z

ǧz

)q́.∏̃
n

i=1

(
Θ̆v̂i

σ(i)

)q́,

q́

√
1− ∏̃

q́

z=1(1− (Kǧz )
q́)v̂′z . q́

√
1− ∏̃

n

i=1(1− (Kσ(i))
q́)v̂i

)
= (0.424947, 0.201330)

Proposition 31. Let Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . , n) be a set of q́-ROFNs, there are q́ specialists/decision to
verify the q́-ROF information. Let ǧz = (Θ̆gz ,Kǧz) (i = 1, 2, . . . , q́) be the specialists/decision for the q́-ROFNs
Ξ̃i, then the GGQROFOWG-operator has the given characteristics:
1. (Idempotency) If Ξ̃i =

ˇ̃Ξ and ǧz = ǧ, for all i and z then

GGQROFOWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), (ǧ1, ǧ2, . . . , ǧq́)

)
= ǧ⊗ Ξ̃

2. (Monotonicity) Let Ξ̃?
i = (Θ̆?

i ,K?
i )(i = 1, 2, . . . , n) be a set of q́-ROFNs such that K?

i ≤ Ki and Θ̆i ≤ Θ̆?
i

for all i, then

GGQROFOWG
(
(Ξ̃1, Ξ̃2, . . . , , Ξ̃n), (ǧ1, ǧ2, . . . , ǧq́)

)
≤ GGQROFOWG

(
(Ξ̃?

1 , Ξ̃?
2 , . . . , Ξ̃?

n), (ǧ1, ǧ2, . . . , ǧq́)
)

3. (Commutativity) Let Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . , n) and Ξ̃∗i = (Θ̆∗i ,Ki
∗)(i = 1, 2, . . . , n) be a two

collection of n q́-ROFNs such that Ξ̃∗i is any permutation of Ξ̃i, then

GGQROFOWG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), (ǧ1, ǧ2, . . . , ǧq́)

)
= GGQROFOWG

(
(Ξ̃∗1 , Ξ̃∗2 , . . . , Ξ̃∗n), (ǧ1, ǧ2, . . . , ǧq́)

)
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4. If the preference of the specialists/decision experts to the assessed object is considered to be ǧz = (0, 1) for all z,
then the GGQROFOWG-operator becomes the q́-ROFOWG-operator.
5. If the preference of another decision maker to the assessed object is considered to be ǧz = (1, 0) for all z,
then the GGQROFOWG-operator provides the value (1, 0).

Proof. Here we leave the proof.

5.3. Group-Generalized q́-ROF Hybrid Geometric Operator

Definition 32. Suppose there are q́ specialists/decision experts to verify the q́-ROF information. Let ǧz =

(Θ̆ǧz ,Kǧz) (i = 1, 2, . . . , q́) be the specialists/decision experts for the q́-ROFNs Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . , n),
then the GGQROFHG-operator is described as,

GGQROFHG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), (ǧ1, ǧ2, . . . , ǧq́)

)
= q́-ROFWG(ǧ1, ǧ2, . . . , gq́)⊗ q́-ROFHG(Ξ̃1, Ξ̃2, . . . , Ξ̃n)

Theorem 33. Let there be q́ specialists/decision experts to verify the q́-ROF information. Let gz = (Θ̆ǧz ,Kǧz)

(i = 1, 2, . . . , q́) be the specialists/decision experts for the q́-ROFNs Ξ̃i = (Θ̆i,Ki)(i = 1, 2, . . . , n), v̂′ =

(v̂′1, v̂′2, . . . , , v̂′q́)
T , and v̂ = (v̂1, v̂2, . . . , vn)T are the weight vectors of specialists/observers and Ξ̃i,

respectively and v̂′i ∈ [0, 1], ∑q́
i=1 v′i = 1, v̂i ∈ [0, 1], and ∑n

i=1 v̂i = 1, then GGQROFHG-operator is
described as

GGQROFHG
(
(Ξ̃1, Ξ̃2, . . . , Ξ̃n), (g1, ǧ2, . . . , aaǧq́)

)
= q́-ROFWG(ǧ1, ǧ2, . . . , ǧq́)⊗ q́-ROFHG(Ξ̃1, Ξ̃2, . . . , Ξ̃n)

=

(
q́

√
∏̃

q́

z=1

(
Θ̆v̂′z

ǧz

)q́
+ ∏̃

n

i=1

( ˘̆Θv̂i
σ(i)

)q́ − ∏̃
q́

z=1

(
Θ̆v̂′z

ǧz

)q́.∏̃
n

i=1

( ˘̆Θv̂i
σ(i)

)q́,

q́

√
1− ∏̃

q́

z=1(1− (Kǧz )
q́)v̂′z . q́

√
1− ∏̃

n

i=1(1− (K̆σ(i))
q́)v̂i

)

Here ˘̃Ξi = nξiΞ̃i, n is the number of q́-ROFNs, ξi is a standard weight vector of Ξ̃i,
and (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n), such that ˘̃Ξσ(i−1) ≥

˘̃Ξσ(i) for any i.

Proof. Proof is the same as Theorem 4.2.

Example 34. Let ǧz = {ǧ1, ǧ2, g3, ǧ4} be the group of four senior specialists/decision experts with weight
vector v̂′ = (0.1, 0.2, 0.3, 0.4), where ǧ1 = (0.7, 0.1), g2 = (0.5, 0.7), ǧ3 = (0.8, 0.4), and ǧ4 = (0.2, 0.3).
Here we have four q́-rung orthopair fuzzy numbers. Ξ̃1 = (0.78, 0.45), Ξ̃2 = (0.32, 0.56), Ξ̃3 = (0.67, 0.33),
and Ξ̃3 = (0.67, 0.33) with associated weight vector v̂ = (0.4, 0.3, 0.2, 0.1). Here q́ = 4 and a standard weight
vector will be ξi = (0.2, 0.2, 0.3, 0.3). First we find ˘̃Ξi = nξiΞ̃i for each Ξ̃i, then we find score functions of
each ˘̃Ξi.

˘̃Ξ1 = (0.745657, 0.527922)

˘̃Ξ2 = (0.302716, 0.628854)

˘̃Ξ3 = (0.697473, 0.264372)

˘̃Ξ4 = (0.894329, 0.153696)

The score function will be,
k̃( ˘̃Ξ1) = 0.231466

k̃( ˘̃Ξ2) = −0.147989

k̃( ˘̃Ξ3) = −0.231766
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k̃( ˘̃Ξ3) = 0.639160

On the behalf of score functions, Ξ̃σ(1) =
˘̃Ξ4, ˘̃Ξσ(2) =

˘̃Ξ3, Ξ̃σ(3) =
˘̃Ξ1, and Ξ̃σ(4) =

˘̃Ξ2

q́

√
∏̃

q́

z=1

(
Θ̆v′z

ǧz

)q́
+ ∏̃

n

i=1

(
Θ̆v̂i

σ(i)

)q́ − ∏̃
q́

z=1

(
Θ̆v̂z

ǧz

)q́∏̃n

i=1

(
Θ̆v̂i

σ(i)

)q́
= 0.287407

In addition,

q́

√
1− ∏̃

q́

z=1(1− (Kgz)
q́)v̂′z . q́

√
1− ∏̃

n

i=1(1− (Kσ(i))
q́)v̂i = 0.216261

By Theorem 4.10, we have

GGQROFHG
(
(Ξ̃1, Ξ̃2, Ξ̃3, Ξ̃4), (ǧ1, ǧ2, ǧ3, ǧ4)

)
= q́-ROFWG(ǧ1, ǧ2, ǧ3, ǧ4)⊗ q́-ROFHG(Ξ̃1, Ξ̃2, Ξ̃3, Ξ̃4)

=

(
q́

√
∏̃

q́

z=1

(
Θ̆v̂′z

ǧz

)q́
+ ∏̃

n

i=1

(
Θ̆v̂i

σ(i)

)q́ − ∏̃
q́

z=1

(
Θ̆v̂′z

ǧz

)q́.∏̃
n

i=1

(
Θ̆v̂i

σ(i)

)q́,

q́

√
1− ∏̃

q́

z=1(1− (Kǧz )
q́)v̂′z . q́

√
1− ∏̃

n

i=1(1− (Kσ(i))
q́)v̂i

)
= (0.287407, 0.216261)

The following observation are taken from the definition of GGQROFHG-operator:

1. If the priorities of the specialists/decision experts to the assessed object are considered to be
ǧz = (0, 1) for all z, then the GGQROFHG-operator becomes the q́-ROFHG-operator.

2. If the priorities of the specialists/decision to the assessed object is considered to be ǧz = (1, 0) for
all z, then the GQROFHG-operator provides the value (1, 0).

3. If ξ = ( 1
n , 1

n , . . . , 1
n )

T , then the GGQROFHG-operator reduces to GQROFWG-operator.
4. If v̂ = ( 1

n , 1
n , . . . , 1

n )
T , then the GGQROFHG-operator reduces to GQROFOWG-operator.

6. Multi-Attribute Decision-Making Method With Application Based On
Group-Generalized Parameter

In this section, the provided method examines MADM challenges, in accordance with proposed
aggregation operators. To illustrate the MADM technique efficiently, a numerical demonstration is
also discussed in Algorithm 1.

6.1. Methodology

Suppose Ω = {d̃1, d̃2, . . . , d̃m} is a collection of universal elements, C = {f1,f2, . . . ,fn} be
a collection of evaluation criteria/attributes and v̂ = {v1, v̂2, . . . , v̂n} is the weight vector, in a
such way that v̂j ∈ [0, 1] and ∑n

j=1 v̂j = 1, (j = 1, 2, . . . , n). A universal element on the evaluation
attribute is assessed by the specialist and the assessment values should be in q́-ROFNs. Suppose
that (Ωij)m×n = (Θ̆ij,Kij)m×n is a matrix characterized by decision makers. Here Θ̆ij and Kij
demonstrates the degree of appreciation and non-appreciation corresponding to alternatives d̃i to the
evaluation attribute fj respectively. To make the situation more credible, consider a group of different
specialists/decision experts ð = {ǧ1, ǧ2, . . . , ǧl} with weight vector w′ = {w′1, w′2, . . . , w′l} satisfying

w′k > 0, k = (1, 2, . . . l) and
n
∑

k=1
w′i = 1. These decision experts provide their evaluation regarding the

priority for each alternative in the terms of q́-ROFNs indicated by gk = (Θ̆ǧk ,Kǧk ) (k = 1, 2, . . . , l).
To solve the MADM problems, the steps of the algorithm are in the following manner.
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Algorithm 1:

Step 1: Take the experts point of view corresponding to each alternative over specific evaluation
attribute in terms of q́-ROFNs and then produce a decision matrix [£]m×n = (Θ̆ij,Kij)m×n.
If normalization of decision matrix is necessary then normalize the decision matrix.
If evaluation attributes are of different categories like cost and benefit, then we normalize
the decision matrix. By normalizing the decision matrix we handle all evaluation attributes
in a similar manner. Apart from that, distinct evaluation attributes need to be aggregate in
distinct manners.

Step 2: According to the idea of generalized parameter, collect the priorities of the group of other
specialists/decision experts for every alternative and then acquire a GP matrix
[f]m×l = (Θ̆ǧik ,Kǧik )m×l (k = 1, 2, . . . , l).

Step 3: Add the matrices derived in the first two steps to design a new structure [β]m×(n+k)
row-wise, which provides the decision makers evaluation for each universal element over
the evaluation attribute under GPs.

Step 4: By using GGQROFWG-operator, we aggregate the efficiency of each universal element of the
matrix [β]m×(n+k) row-wise to achieve entire execution and it is represented by ℵi.
Here, we can also use GGQROFOWG-operator and GGQROFHG-operator.

Step 5: Compute the score functions of all aggregated values, denoted by ℵi.
Step 6: According to the score values, give the order of priority to all ℵi (i = 1, 2, . . . , m) in descending

order and choose an universal element with the high score value, calculated by proposed
aggregation operators.

The flow chart of proposed Algorithm is given by Figure 2.

Figure 2. Flow chart of Algorithm.

6.2. Case Study

Water is classified among the fundamental life-sustaining needs. If there is no water on the planet
earth then life is impossible. However, it is a sad fact that we are not taking appropriate actions for
preservation and protection of our natural endowments. Even among the other natural endowments
we have, water has the most significance. Currently, Pakistan is facing several problems but possibly
the most challenging is the water scarcity. As reported by International Monetary Fund (IMF), Pakistan
has 3rd position confronting serious deficiency of water. The requirement of water is escalating,
as population of Pakistan is rapidly growing. Therefore, we need more water for agricultural and
domestic use. The historical water demands by sector are given in Figure 3. Currently, about 40 percent
of Pakistanis do not have availability of fresh water and are influenced by contaminated water mainly
polluted by sewerage, pesticides, by fertilizer, and industrial waste water (source: jworldtimes.com).
It should be pointed out that while in the 1950s the accessibility of water was nearly 5000 m3 per year,
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it is now reduced to below 1000 m3, that is worldwide limit of shortage of water. From 2009, per annum
water reduction is 1500 cubic meters per capita to only 1017 cubic meters (source: tribune.com.pk).
The comparison of population and water availability in Pakistan is shown in Figure 4.

One of the main causes of this problem is the lack of actions in water loss management. Due to bad
administration and mismanagement, about 30 million acre feet (MAF) of water is wasted. Owing to
the fact that, the water accessibility in Pakistan is uniformly decreasing. In May 2018, the “Pakistan
Council of Research in water Resources” (PCRWR) declared that, there will be short or no availability of
clean water in the country in 2025 (source: jworldtimes.com). The situation of water losses in irrigation
systems in Pakistan is shown in Figure 5.

Figure 3. Historical water demands (source: www.undp.org).

Figure 4. Population vs. water availability in Pakistan (source: pcwr.gov.pk).

pcwr.gov.pk
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Figure 5. Water losses in an irrigation system (Source: Final PAS water 2019 (pcrwr.gov.pk)).

An adequate and efficient water loss management needs to be considered as a primary objective
in improvement of drinkable supply of water. Across the board, policy makers/decision experts need
to be aware that any strategy to control water loss in order to be effective must be a continuous activity
based on a long term strategy. The success of the strategy will necessarily rely upon the engagement
and devotion at every stage throughout the service and obviously the acceptance of suitable policies
and methods. The advantages of strategy to control the loss of water could be summarized as follows:

(1) Rescuing an affected and precious expedient.
(2) Growing the effectiveness of available systems.
(3) Retarding enormous financial assets of infrastructure.
(4) Increasing the average life span of the systems.
(5) Increasing the earnings for the service of water.
(6) Reduction of energy demands.
(7) Improvement in Carbon Footprint of the service.

The fundamental goal of this investigation is to construct a comprehensive structure of strategies
to recognize and emphasize the suitable strategy to overcome the water loss problem. The selected
strategy needs to be able to meet the goals and has compatibility with general policy of water sector
particularly ensure the maximum supply, enhancing the water quality, preserving the accessible supply
of water. Whereas the administration of losses of water is usually a complicated process of making
decisions including various goals and potentials, the concerns of different involved persons as well as
the demands of the amendable authorities must take into account to establish a well-organized scheme
explicated by efficiently and with clarity. Current situation encompasses the participation of policy
makers/decision experts who have a profound knowledge of the decision problem. The preferred
strategies were originated from review of the literature on water loss management with specialists
and policy makers and on the basis of domestic circumstances of region of interest, as given in Table 1.
The considered strategies are established for water loss management in water distribution network.
Particular provisions are usually established in persistent water distribution network, like leakage
control. Some of the strategies are closely linked to the situation of recurring supply. To evaluate
the efficiency of each strategy, the evaluation attributes (EA) are used. The significance of evaluation
attributes need to be clear to recognize the most convenient strategy. The evaluation attributes are
derived from review of literature [5,10], as given in Table 2.

pcrwr.gov.pk
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Table 1. Explanation of strategies.

Code Strategies Explanation
d̃1 Pressure management Managing pressure of system to the highest grade of

service, guarantee the adequate and effective supply,
while reducing useless or excessive pressures

d̃2 Management of assets for service lines Replacement of mains and affected service lines
d̃3 Enhancing the repairing quality To prevent repetition of explosions,

and to minimize the harmful effects
of breakdown of the service

d̃4 Monitoring of inefficient use of water service Raising awareness of people through beneficial
supervision and campaigning, to eradicate the
improper utilization of water

d̃5 Leakage control Adopt measures for identification and repair
of leaks that have not indicated

d̃6 Water meters replacements Installation of automatic water meters
to eliminate water meters uncertainty

Table 2. Explanation of evaluation attributes.

Code Evaluation Attributes Explanation
f1 Cost Figure Related expenses for execution of alternatives
f2 Benefit Period Measurement of useful life expectancy of alternative
f3 Energy Saved If the alternative has ability to reduce the utilization

of energy and discharges of green house gas
f4 Supply Reliability If the alternative has ability to save a sustained

service and reduce supply hindrances
f5 Flexibility If the alternative has capacity of being adjusted to

fulfill different requirements and imprecisions

6.3. Numerical Example

The demonstrative example of water loss management is presented to demonstrate the method.
Let Ω = {d̃1, d̃2, d̃3, d̃4, d̃5, d̃6} be the collection of alternative, C = {f1,f2,f3,f4,f5} be the
collection of evaluation attributes as given in Table 1, Table 2, respectively, v = (0.1, 0.1, 0.2, 0.2, 0.4)T

are the associated weights assigned by different policy makers/decision experts from Pakistan Water
and Power Development Authority (WAPDA) and take q́ = 3. The policy makers/decision makers are
asked to give their evaluation in terms of q́-ROFNs for each strategy against each evaluation criteria.

Step 1: According to the preferences of policy makers/decision experts for each alternative against
the distinct evaluation attribute, construct the decision matrix [£]6×5 = (Θ̆ij,Kij)6×5, as given
in Table 3.

Table 3. q́-rung orthopair fuzzy decision expert assessment matrix [£]6×5.

Ω/C f1 f2 f3 f4 f5
d̃1 (0.67, 0.21) (0.57, 0.11) (0.86, 0.14) (0.72, 0.21) (0.62, 0.21)
d̃2 (0.35, 0.38) (0.21, 0.68) (0.51, 0.66) (0.27, 0.38) (0.72, 0.23)
d̃3 (0.41, 0.17) (0.35, 0.45) (0.67, 0.51) (0.28, 0.78) (0.72, 0.21)
d̃4 (0.13, 0.66) (0.32, 0.31) (0.35, 0.61) (0.31, 0.52) (0.81, 0.24)
d̃5 (0.67, 0.21) (0.57, 0.32) (0.86, 0.14) (0.70, 0.20) (0.72, 0.20)
d̃6 (0.46, 0.38) (0.32, 0.68) (0.62, 0.66) (0.38, 0.28) (0.81, 0.31)

Step 2: On each strategy, collect the preferences of group of three other specialists/experts of
different environmental groups of Pakistan like, Pakistan Environmentalists Association
(PEA), Society for conservation and protection of Environment (SCOPE), i.e., with a weight
vector (0.2, 0.3, 0.5)T according to their experiences, that would be helpful in aggregation
information. The corresponding generalized parameter matrix [f]6×3 = (Θ̆ǧik ,Kǧik )6×3.
(k = 1, 2, . . . , l) is given in Table 4.
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Table 4. q́-rung orthopair fuzzy generalized parameter preference matrix [f]6×3.

Ω/ð g1 g2 g3
d̃1 (0.72, 0.25) (0.68, 0.12) (0.58, 0.22)
d̃2 (0.21, 0.35) (0.35, 0.63) (0.82, 0.26)
d̃3 (0.45, 0.26) (0.35, 0.71) (0.67, 0.52)
d̃4 (0.14, 0.62) (0.25, 0.14) (0.38, 0.27)
d̃5 (0.20, 0.17) (0.31, 0.23) (0.26, 0.25)
d̃6 (0.24, 0.13) (0.32, 0.20) (0.27, 0.13)

Step 3: By combining the evaluations of all specialists/policy makers, construct the matrix [β]6×(5+3).
(see Table 5)

Table 5. Group generalized q́-rung orthopair fuzzy assessment matrix [β]6×8.

f1 f2 f3 f4
d̃1 (0.67, 0.21) (0.57, 0.11) (0.86, 0.14) (0.72, 0.21)
d̃2 (0.35, 0.38) (0.21, 0.68) (0.51, 0.66) (0.27, 0.38)
d̃3 (0.41, 0.17) (0.35, 0.45) (0.67, 0.51) (0.28, 0.78)
d̃4 (0.13, 0.66) (0.32, 0.31) (0.35, 0.61) (0.31, 0.52)
d̃5 (0.67, 0.21) (0.57, 0.32) (0.86, 0.14) (0.70, 0.20)
d̃6 (0.46, 0.38) (0.32, 0.68) (0.62, 0.66) (0.38, 0.28)

f5 g1 g2 g3
d̃1 (0.62, 0.21) (0.72, 0.25) (0.68, 0.12) (0.58, 0.22)
d̃2 (0.72, 0.23) (0.21, 0.35) (0.35, 0.63) (0.82, 0.26)
d̃3 (0.34, 0.21) (0.45, 0.26) (0.35, 0.71) (0.67, 0.52)
d̃4 (0.81, 0.24) (0.14, 0.62) (0.25, 0.14) (0.38, 0.27)
d̃5 (0.72, 0.20) (0.20, 0.17) (0.31, 0.23) (0.26, 0.25)
d̃6 (0.81, 0.31) (0.24, 0.13) (0.32, 0.20) (0.27, 0.13)

Step 4: Calculate ℵi for all q́-ROFNs using GGQROWG-operator. The results obtained by
GGQROFOWG-operator and GGQROFHG-operator are also mentioned in Table 6.
For GGQROFHG-operator, policy makers/decision experts will determine a standard weight
vector (0.4, 0.2, 0.2, 0.1, 0.1) in accordance with evaluation attributes to hybridize the specified
information. The hybridization is slightly different method to choose the suitable strategy
and very useful to identify the precise conclusions. Ranking can be obtained by using one of
three given operators.

Table 6. Aggregated matrix by using aggregation operators.

GGQROFWG GGQROFOWG GGQROFHG
d̃1 (0.789337, 0.040080) (0.766308, 0.036567) (0.740615, 0.079633)
d̃2 (0.581194, 0.227714) (0.519988, 0.271544) (0.382272, 0.357161)
d̃3 (0.565361, 0.310873) (0.551443, 0.364875) (0.539303, 0.239981)
d̃4 (0.460982, 0.194678) (0.328874, 0.232439) (0.343440, 0.246197)
d̃5 (0.383551, 0.049236) (0.690241, 0.054126) (0.629404, 0.090020)
d̃6 (0.585816, 0.077892) (0.463008, 0.093438) (0.447749, 0.097445)

Step 5: Calculate the score values for each ℵi, as given in Table 7.

Table 7. Score values of ℵi.

GGQROFWG GGQROFOWG GGQROFHG
k̃(ℵ1) 0.491734 0.449948 0.405730
k̃(ℵ2) 0.184511 0.119768 0.010301
k̃(ℵ3) 0.150664 0.119110 0.143034
k̃(ℵ4) 0.090582 0.023012 0.025586
k̃(ℵ5) 0.056305 0.328694 0.248608
k̃(ℵ6) 0.200567 0.098442 0.088839
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Step 6: The order of preferences of the alternatives by using GGQROPFWG-operaor, GGQROPFOWG-
operator, and GGQROPFHG-operator are given in Table 8 and the graphical representations
are given in Figures 6–8 respectively.

Table 8. Final ranking of alternatives.

Method Ranking of Alternatives
GGQROFWG-operator d̃1 � d̃6 � d̃2 � d̃3 � d̃4 � d̃5
GGQROFOWG-operator d̃1 � d̃5 � d̃2 � d̃3 � d̃6 � d̃4
GGQROFHG-operator d̃1 � d̃5 � d̃3 � d̃6 � d̃4 � d̃2

The final ranking shows that α̈1 is the best strategy to control the water loss. It should be
emphasized that all aggregation operators provides nearby similar outcomes. By the reason of different
techniques of provided aggregation operators, the little difference in the ranking of strategies can be
observed but the optimal outcomes acquired from all proposed aggregation operators are precise and
provide appropriate order of priority regarding the choice of suitable strategy. The highly preferred
option is pressure management that is focused by policy makers/decision experts. The execution of
this strategy comprises the formation of pressure zones to sustain the pressure range and the pressure
would have to be restricted as required, by the use of pressure reducers. The main objective of this
provided strategy is the inadequate explanation of pressure zones related with subsequent components:
big difference in elevations which leads high level water pressure, leading finally to physical losses of
water with breakage of pipes and irregular water supply, which is connected with highly esteemed
pumping equipment, which leads to pressure relief and subsequently gives rise to the pipe bursts.
The pressure management strategy is applied by many developed countries to control their water loss.

Figure 6. Score values obtained by GGQROFWG-operator.

Figure 7. Score values obtained by GGQROFOWG-operator.
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Figure 8. Score values obtained by GGQROFHG-operator.

6.4. Sensitive Analysis

In the presented section, we investigate the impact, by considering only one specialist/decision
expert on decision analysis. If the analysis done on the recommendation of one specialist/decision
expert regarding authenticity of the provided information, then we have the following conclusions:

(1) If only g1 is to be considered, then by the above analysis we get the ranking d̃1 � d̃5 � d̃6 �
d̃3 � d̃2 � d̃4. The score values are given in Figure 9.

Figure 9. Score values when only ǧ1 is considered.

(2) If only g2 is to be considered, then by the above analysis, we get the ranking d̃1 � d̃5 � d̃6 �
d̃2 � d̃4 � d̃3. The score values are given in Figure 10.

Figure 10. Score values when only ǧ2 is considered.

(3) If only g3 is to be considered, then by the above analysis we get the ranking d̃1 � d̃6 � d̃5 �
d̃4 � d̃3 � d̃2. The score values are given in Figure 11.
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Figure 11. Score values when only ǧ3 is considered.

The final ranking achieved by taking into account only a single policy maker/decision expert,
is changed but the suitable universal element remained same, which is signifying and demonstrating
that each policy maker/specialist has own priorities and values of evaluation attributes, due to his/her
own awareness, confessions, knowledge, and personal experiences.

6.5. Comparison Analysis

To demonstrate the productiveness and eminent benefits of the established aggregation
operators, the same numerical example is solved by utilizing other aggregation operators
including GPFEWG-operator, QROFWA-operator, QROFWG-operator, QROFEWG-operator,
QROFEOWG-operator by ignoring the additional preference matrix in some existing operators.
Different aggregation operators have distinct classification of strategies so they are able to sustain a
little difference in accordance with their consultation. It can be noted in comparison, the suitable choice
developed by any aggregation operator, is significant and acknowledges the viability and efficiency
of the proposed aggregation operators. The comparison analysis of final rankings of all aggregation
operators is given in Table 9.

Table 9. Comparison analysis of final ranking with existing aggregation operators.

Method Ranking of Alternatives Optimal Alternative
GGQROFWG operator (Proposed) d̃1 � d̃6 � d̃2 � d̃3 � d̃4 � d̃5 d̃1
GGQROFOWG operator (Proposed) d̃1 � d̃5 � d̃2 � d̃3 � d̃6 � d̃4 d̃1
GGQROFHG operator (Proposed) d̃1 � d̃5 � d̃3 � d̃6 � d̃4 � d̃2 d̃1
q́-ROFEPWA operator (Riaz et al. [51]) d̃1 � d̃3 � d̃5 � d̃6 � d̃4 � d̃2 d̃1
q́-ROFEPWG operator (Riaz et al. [51]) d̃1 � d̃3 � d̃5 � d̃6 � d̃4 � d̃2 d̃1
q́-ROFWG operator (Liu and Wang [45]) d̃1 � d̃2 � d̃3 � d̃6 � d̃4 � d̃5 d̃1
q́-ROFOWG operator (Liu and Wang [45]) d̃1 � d̃2 � d̃6 � d̃3 � d̃4 � d̃5 d̃1
q́-ROFWA operator (Liu and Wang [45]) d̃1 � d̃6 � d̃2 � d̃3 � d̃4 � d̃5 d̃1
q́-ROFOWA operator (Liu and Wang [45]) d̃1 � d̃6 � d̃2 � d̃3 � d̃4 � d̃5 d̃1
q́-ROFEWG operator(Riaz et al. [48]) d̃1 � d̃5 � d̃3 � d̃4 � d̃2 � d̃6 d̃1
q́-ROFEOWG operator(Riaz et al. [48]) d̃1 � d̃3 � d̃5 � d̃6 � d̃4 � d̃2 d̃1
q́-ROFPWA operator (Riaz et al. [49]) d̃1 � d̃3 � d̃5 � d̃6 � d̃4 � d̃2 d̃1
q́-ROFPWG operator (Riaz et al. [49]) d̃1 � d̃3 � d̃5 � d̃6 � d̃4 � d̃2 d̃1
q́-ROFHWAGA operator (Riaz et al. [50]) d̃1 � d̃3 � d̃5 � d̃6 � d̃4 � d̃2 d̃1
q́-ROFHOWAGA operator (Riaz et al. [50]) d̃1 � d̃3 � d̃5 � d̃6 � d̃2 � d̃4 d̃1

Consequently the provided method establish the similar alternative as achieved by different
aggregation operators which states that the provided method is beneficial and conceivable.

7. Conclusions

A variety of methods have been suggested to incorporate q́-ROF values. Even though prevailing
q́-ROF aggregation operators were established under the presumption that decision experts have a
profound knowledge, these kinds of circumstances were not met while handling the realistic issues,
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as the policy maker/decision experts priorities regarding alternatives are characteristic of one’s own
apprehension. Consequently it is required to establish a few different and modern approaches. To deal
with this problem, the idea of GQROFS is established by integrating the concept of GP of the other
specialist/experts and provides the structure for evaluating the morality of the provided data in
initial q́-ROFS to eliminate any distortion in the preferences of senior expert. The most important
advantage of addition of generalized parameter is to overcome the chances of mistakes resulting from
inaccurate information. This theory is extended to group generalized parameter by integrating the
evaluation of different specialists/decision makers which will decrease the influence of single decision
expert’s choices and will approximate the far more realistic condition under q́-ROF environment.
In this paper, we developed q́-ROF geometric aggregation operator under generalized parameter
and q́-ROF geometric aggregation operator under group-based generalized parameter. The viability
and effectiveness of the proposed aggregation operators are demonstrated by a numerical example.
This examination is favorable to utilities of water in respect of achievement a clear idea and evaluation
of elements of water loss management strategies, their collaborations and proportions which are not
restricted to economic zone, but are expanded to cover environmental, potentially health, and security
concerns. The outcomes deliberate the policy maker’s concerns in considering the most efficient
strategies to reduce the shortages in the water supply system connected with the adoption of
unsystematic supply scheme. For further studies, taking into account the advanced simulation
capabilities of q-ROFSs, in the q-ROF context we may further examine different kinds of AOs and
apply them to realistic decision-making situations. Moreover, the methodological advances for many
fields like machine learning, robotics, green supply chain management (GSCM), medical diagnosis,
weather forecasting, intelligence, informatics, and sustainable energy planning decision making are
promising areas for future studies.
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