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Abstract: Let f ∈ A, the class of normalized analytic functions defined in the unit disk D, and be
given by f (z) = z + ∑∞

n=2 anzn for z ∈ D. This paper presents a new approach to finding bounds for
|an|. As an application, we find the sharp bound for |a5| for the class B1(α) of Bazilevič functions
when α ≥ 1.
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1. Introduction

Let A denote the class of analytic functions f in the unit disk D = {z ∈ C : |z| < 1} normalized
by f (0) = 0 = f ′(0)− 1. Then for z ∈ D, f ∈ A has the following representation

f (z) = z +
∞

∑
n=2

anzn. (1)

Denote by S , the subset of A consisting of univalent functions in D.
We remark at the outset that in a great number of the more familiar subclasses of S , sharp bounds

have been found for the coefficients |an|, when 2 ≤ n ≤ 4, but bounds when n = 5 and beyond are
much more difficult to obtain. (See, e.g., [1]).

Denote by S∗, the class of starlike functions defined as follows.

Definition 1. Let f ∈ A. Then f ∈ S∗ if, and only if, for z ∈ D,

Re
{ z f ′(z)

f (z)

}
> 0.

An application of the method introduced in this paper to estimate the fifth coefficient of functions
in A, concerns the B1(α) Bazilevič functions defined as follows.

Definition 2. Let f ∈ A. Then f ∈ B1(α) if, and only if, for α ≥ 0, and z ∈ D,

Re
{

f ′(z)
(

f (z)
z

)α−1 }
> 0. (2)

We note that B1(0) = S∗, and each of the above classes are necessarily subclasses of S . Apart from
α = 0, where |an| ≤ n for n ≥ 2, we also note that sharp bounds for |an| are known for f ∈ B1(α)
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when α ≥ 0 only when 2 ≤ n ≤ 4, [2], and only partial solutions are known for |an| when n ≥ 5 [3,4]
for α ≥ 1.

It was conjectured in [4], that when α ≥ 1, the sharp bound for |an| when n ≥ 2 is given by

|an| ≤
2

n− 1 + α
,

and a partial solution to this problem in the case n = 5 was given in [3].
In this paper, we illustrate our method by giving a complete solution to finding the sharp bound

for |a5| when f ∈ B1(α) for α ≥ 1.

2. Auxiliary Results

Denote by P , the class of analytic functions p with positive real part on D given by

p(z) = 1 +
∞

∑
n=1

pnzn. (3)

Lemma 1 ([5]). If the functions

1 +
∞

∑
n=1

bnzn and 1 +
∞

∑
n=1

cnzn

belong to P , then the same is true of the function

1 +
1
2

∞

∑
n=1

bncnzn.

Lemma 2 ([6]). Let h(z) = 1 + β1z + β2z2 + · · · and 1 + G(z) = 1 + d1z + d2z2 + · · · be functions in P ,
ε0 = 1, and

εn =
1
2n

[
1 +

1
2

n

∑
k=1

(
n
k

)
βk

]
, n ∈ N. (4)

If An (n ∈ N) is defined by

∞

∑
n=1

(−1)n+1εn−1Gn(z) =
∞

∑
n=1

Anzn,

then |An| ≤ 2.

We first outline the method of proof.
Let p ∈ P be in the form (3), and

Ψ = p4 + B1 p4
1 + B2 p2

1 p2 + B3 p1 p3 + B4 p2
2 (5)

with Bi ∈ C, i ∈ {1, 2, 3, 4}. Assume that there exists q ∈ P of the form q(z) = 1 +
∞

∑
n=1

bnzn. Then by

Lemma 1 the function

1 +
1
2
(p(z)− 1) ∗ (q(z)− 1) = 1 +

∞

∑
n=1

1
2

bn pnzn

also belongs to P . Let

1 + G(z) = 1 +
1
2
(p(z)− 1) ∗ (q(z)− 1) = 1 +

∞

∑
n=1

vnzn.

Then 1 + G(z) ∈ P , and vn = bn pn/2, n ∈ N.
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Now assume that h(z) = 1 +
∞

∑
n=1

unzn ∈ P . Then by Lemma 2 we obtain |A4| ≤ 2, where

A4 =
1
2

ε0b4 p4 −
1
4

ε1b2
2 p2

2 −
1
2

ε1b1b3 p1 p3 +
3
8

ε2b2
1b2 p2

1 p2 −
1
16

ε3b4
1 p4

1. (6)

Here, εi, i ∈ {1, 2, 3, 4}, are given by
ε0 = 1,

ε1 =
1
2

(
1 +

1
2

u1

)
,

ε2 =
1
4

(
1 + u1 +

1
2

u2

)
,

ε3 =
1
8

(
1 +

3
2

u1 +
3
2

u2 +
1
2

u3

)
.

Hence we have the following.
(A) Let p ∈ P be in the form (3). If there exist q, h ∈ P such that q and h are represented by

q(z) = 1 +
∞

∑
n=1

bnzn, h(z) = 1 +
∞

∑
n=1

unzn,

respectively, with 

b4 = 2

B1 = − 1
128

(
1 + 3

2 u1 +
3
2 u2 +

1
2 u3

)
b4

1

B2 = 3
32

(
1 + u1 +

1
2 u2

)
b2

1b2

B3 = − 1
4

(
1 + 1

2 u1

)
b1b3

B4 = − 1
8

(
1 + 1

2 u1

)
b2

2,

then |Ψ| = |A4| ≤ 2, where Ψ and A4 are given by (5) and (6), respectively.
We now recall a recent result of Cho et al. [7], where they obtained the following parametric

formulas for the initial coefficients of Carathéodory functions (see also [8]). We recall the Möbius
transformation ψζ : D→ D, ζ ∈ D, defined by

ψζ(z) =
z− ζ

1− ζz
(7)

and let
L(z) =

1 + z
1− z

, z ∈ D. (8)

Lemma 3 ([7]). If p ∈ P is of the form (3), then

p1 = 2ζ1, (9)

p2 = 2ζ2
1 + 2(1− |ζ1|2)ζ2 (10)

and
p3 = 2ζ3

1 + 4(1− |ζ1|2)ζ1ζ2 − 2(1− |ζ1|2)ζ1ζ2
2 + 2(1− |ζ1|2)(1− |ζ2|2)ζ3 (11)

for some ζi ∈ D, i ∈ {1, 2, 3}. For ζ1 ∈ T, there is a unique function p ∈ P with p1 as in (9), namely,

p(z) =
1 + ζ1z
1− ζ1z

, z ∈ D.
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For ζ1 ∈ D and ζ2 ∈ T, there is a unique function p = L ◦ω ∈ P with p1 and p2 as in (9)-(10), where

ω(z) = zψ−ζ1(ζ2z), z ∈ D,

i.e.,

p(z) =
1 + (ζ1ζ2 + ζ1)z + ζ2z2

1 + (ζ1ζ2 − ζ1)z− ζ2z2
, z ∈ D.

For ζ1, ζ2 ∈ D and ζ3 ∈ T, there is a unique function p = L ◦ω ∈ P with p1, p2 and p3 as in (9)-(11),
where

ω(z) = zψ−ζ1(zψ−ζ2(ζ3z)), z ∈ D,

i.e.,

p(z) =
1 + (ζ2ζ3 + ζ1ζ2 + ζ1)z + (ζ1ζ3 + ζ1ζ2ζ3 + ζ2)z2 + ζ3z3

1 + (ζ2ζ3 + ζ1ζ2 − ζ1)z + (ζ1ζ3 − ζ1ζ2ζ3 − ζ2)z2 − ζ3z3
, z ∈ D.

Conversely, if ζ1, ζ2 ∈ D and ζ3 ∈ D are given, then we can construct a (unique) function p ∈ P
of the form (3) so that pi, i ∈ {1, 2, 3}, satisfying the identities in (9)–(11). For this, we define

ω(z) = ωζ1,ζ2,ζ3(z) = zψ−ζ1(zψ−ζ2(ζ3z)), z ∈ D, (12)

where ψζ is the function defined as in (7). Then ω ∈ B. Moreover, if we define p(z) = (1 + ω(z))/(1−
ω(z)), z ∈ D, then p is represented by (3), where p1, p2 and p3 satisfy the identities in (9)–(11) (see the
proof of ([7], Lemma 2.4)).

Assume that the function q(z) = 1 +
∞

∑
n=1

bnzn ∈ P is constructed by ξ1, ξ2 ∈ D, ξ3 ∈ D, and the

function h(z) = 1 +
∞

∑
n=1

unzn ∈ P is constructed by ζ1, ζ2 ∈ D, ζ3 ∈ D. Namely, q = L ◦ ω1

and h = L ◦ ω2, where L is the function defined by (8), ω1(z) = zψ−ξ1(zψ−ξ2(ξ3z)) and ω2(z) =

zψ−ζ1(zψ−ζ2(ζ3z)). Then by combining the above argument, we conclude (B) below.
(B) Let p ∈ P be in the form (3). If there exist ζ1, ζ2, ξ1, ξ2 ∈ D, ζ3, ξ3 ∈ D satisfying the

following conditions

b1 = 2ξ1

b2 = 2ξ2
1 + 2(1− |ξ1|2)ξ2

b3 = 2ξ3
1 + 4(1− |ξ1|2)ξ1ξ2 − 2(1− |ξ1|2)ξ1ξ2

2 + 2(1− |ξ1|2)(1− |ξ2|2)ξ3

u1 = 2ζ1

u2 = 2ζ2
1 + 2(1− |ζ1|2)ζ2

u3 = 2ζ3
1 + 4(1− |ζ1|2)ζ1ζ2 − 2(1− |ζ1|2)ζ1ζ2

2 + 2(1− |ζ1|2)(1− |ζ2|2)ζ3

b4 = 2

B1 = − 1
128

(
1 + 3

2 u1 +
3
2 u2 +

1
2 u3

)
b4

1

B2 = 3
32

(
1 + u1 +

1
2 u2

)
b2

1b2

B3 = − 1
4

(
1 + 1

2 u1

)
b1b3

B4 = − 1
8

(
1 + 1

2 u1

)
b2

2,

then |Ψ| = |A4| ≤ 2, where Ψ and A4 are given by (5) and (6), respectively.

Since the system of equations in (B) has many solutions, we now place some restrictions on the
parameters sufficient for our purpose.
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We fix

q(z) = qτ(z) =
1 + 2τz + z2

1− z2 .

Then if τ ∈ [−1, 1], q ∈ P and is given by q(z) = 1 +
∞

∑
n=1

bnzn, with

b1 = b3 = 2τ, and b2 = b4 = 2.

We also assume that ζi, i ∈ {1, 2, 3} take real values. Then the identities for ui, i ∈ {1, 2, 3} become
u1 = 2ζ1

u2 = 2ζ2
1 + 2(1− ζ2

1)ζ2

u3 = 2ζ3
1 + 4(1− ζ2

1)ζ1ζ2 − 2(1− |ζ1|2)ζ1ζ2
2 + 2(1− ζ2

1)(1− ζ2
2)ζ3.

Thus we are able to conclude the following.
(C) Let p ∈ P be in the form (3). If there exist ζ1, ζ2 ∈ (−1, 1) and ζ3, τ ∈ [−1, 1] such that

u1 = 2ζ1

u2 = 2ζ2
1 + 2(1− ζ2

1)ζ2

u3 = 2ζ3
1 + 4(1− ζ2

1)ζ1ζ2 − 2(1− |ζ1|2)ζ1ζ2
2 + 2(1− ζ2

1)(1− ζ2
2)ζ3

b4 = 2

B1 = − 1
8

(
1 + 3

2 u1 +
3
2 u2 +

1
2 u3

)
τ4

B2 = 3
4

(
1 + u1 +

1
2 u2

)
τ2

B3 = −
(

1 + 1
2 u1

)
τ2

B4 = − 1
2

(
1 + 1

2 u1

)
,

then |Ψ| = |A4| ≤ 2, where Ψ and A4 are given by (5) and (6), respectively.

3. The Fifth Coefficient of B1(α) Bazilevič Functions

Lemma 4. ([9] Cohn’s rule) Let t(z) = a0 + a1z + · · ·+ anzn be a polynomial of degree n and

t∗(z) = znt(1/z) = an + an−1z + · · ·+ a0zn.

Let r and s be the number of zeros of t inside and on the unit circle |z| = 1, respectively. If |a0| < |an|, then

t1(z) =
ant(n)− a0t∗(z)

z

is a polynomial of degree n− 1 and has r1 = r− 1 and s1 = s number of zeros inside and on the unit circle
|z| = 1, respectively.

We now use the above method to find the sharp bound for |a5| when α ≥ 1.

Theorem 1. Let f ∈ B1(α), and be given by (1), then |a5| ≤ 2/(4 + α), provided α ≥ 1. The inequality is
sharp, with extreme function f ∈ A defined by

f ′(z)
(

f (z)
z

)α−1

=
1 + z5

1− z5 . (13)

Proof. From (2) we can write
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f ′(z)
(

f (z)
z

)α−1

= p(z), (14)

for some function p ∈ P of the form (3). Putting the series (1) and (3) into (14) by equating the
coefficients we get

p1 = (1 + α)a2, p2 =
1
2
(2 + α)[(−1 + α)a2

2 + 2a3], (15)

p3 =
1
6
(3 + α)[(2− 3α + α2)a3

2 + 6(−1 + α)a2a3 + 6a4] (16)

and

p4 =
1

24
(4 + α)[(−6 + 11α− 6α2 + α3)a4

2 + 12(3− 3α + α2)a2
2a3

+ 24(−1 + α)a2a4 + 12((−1 + α)a2
3 + 2a5)].

(17)

From the equalities (15), (16) and (17), a5 can be written as

a5 =
1

4 + α
·Ψ, (18)

where
Ψ = p4 + (4 + α)(1− α)(µ1 p1 p3 + µ2 p2

2 + µ3 p2
1 p2 + µ4 p4

1),

with
µ1 =

1
(1 + α)(3 + α)

, µ2 =
1

2(2 + α)2 ,

µ3 =
1− 2α

2(1 + α)2(2 + α)
, and µ4 =

(3α− 1)(2α− 1)
24(1 + α)4 .

Thus it is enough to show that |Ψ| ≤ 2.

When α = 1, it is clear that |Ψ| ≤ 2 holds trivially, and so we can assume that α > 1.

Put

ζ1 = −25 + 28α + 10α2 + α3

(3 + 4α + α2)2 ,

ζ2 =
12 + 42α + 32α2 + 9α3 + α4

3(34 + 52α + 32α2 + 9α3 + α4)
,

and

ζ3 = − 256 + 684α + 770α2 + 438α3 + 134α4 + 21α5 + α6

4(5 + 3α + α2)(57 + 156α + 163α2 + 82α3 + 20α4 + 2α5)
,

then |ζi| < 1 (i = 1, 2, 3) when α > 1.

Now let ω ∈ B be defined by (12). Thus the function k defined by k = L ◦ω, where L is given by
(8), belongs to P , with k(0) = 1.

Setting

k(z) = 1 +
∞

∑
n=1

βnzn,

we obtain

β1 = −2(25 + 28α + 10α2 + α3)

(3 + 4α + α2)2 ,
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β2 =
2(187 + 262α + 173α2 + 94α3 + 41α4 + 10α5 + α6)

3(1 + α)4(3 + α)2 ,

and

β3 = −2(427 + 696α + 688α2 + 641α3 + 427α4 + 161α5 + 30α6 + 2α7)

3(1 + α)6(3 + α)2 .

With εn (n ∈ N) as in (4), we obtain

ε1 =
(2 + α)2(−4 + 3α + α2)

2(3 + 4α + α2)2 , (19)

ε2 =
(2 + α)3(4− 11α + 5α2 + 2α3)

6(1 + α)4(3 + α)2 , (20)

and

ε3 =
(2 + α)4(−4 + 23α− 38α2 + 13α3 + 6α4)

24(1 + α)6(3 + α)2 . (21)

Now define q by

q(z) =
1 + 2τz + 2τ2z2 + 2τz3 + z4

1− z4 = 1 +
∞

∑
n=1

cnzn

with τ :=
√

3 + 4α + α2/(2 + α). Then 0 < τ < 1 for α > 1, and

c1 = c3 = 2τ, c2 = 2τ2 and c4 = 2. (22)

We shall show that q belongs P . Let

ω(z) =
q(z)− 1
q(z) + 1

=
zA(z)
B(z)

, (23)

where A and B are polynomials of degree 3, and defined by

A(z) = τ + τ2z + τz2 + z3 and B(z) = 1 + τz + τ2z2 + τz3,

respectively. Then it holds that
B(z) = z3 A(1/z). (24)

Define a function Ã by Ã(z) = (A(z)− τB(z))/z. Then a computation gives

Ã(z) = (1− τ2)(τ + z)z = 0.

Therefore Ã has two zeros in D. By Lemma 4, the function A has exactly three zeros, say w1, w2 and
w3, in D. Hence, from (23) and (24), we have

ω(z) = z
3

∏
i=1

z− wi
1− wiz

,

which implies that ω belongs to B. It follows from (23) that q ∈ P as we asserted.
Since p ∈ P , by Lemma 1 the function

h(z) := 1 +
1
2

∞

∑
n=1

cn pnzn
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also belongs to P . Therefore from Lemma 2 with dn = cn pn/2 we have |A4| ≤ 2, where

A4 =
1
2

c4 p4 −
1
4

ε1(c2
2 p2

2 + 2c1c3 p1 p3) +
3
8

ε2c2
1c2 p2

1 p2 −
1
16

ε3c4
1 p4

1.

Finally, (19)–(22) shows that A4 = Ψ, and so |Ψ| ≤ 2. Thus it follows from (18) that the inequality
|a5| ≤ 2/(4 + α) holds.

Let f ∈ B1(α) be the function defined by (13). Then, by equating coefficients in (13), we get
a2 = a3 = a4 = 0 and a5 = 2/(4 + α), which shows that this result is sharp. This completes the proof
of Theorem 1.

4. Conclusions

There are several instances in the literature where only partial solutions are known for the bounds
for |a5| for functions in subclasses of S (again, see [1]). Applying the method introduced in this paper
may well provide improved, or complete solutions to some of these.
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