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Abstract: The concept of linear Diophantine fuzzy sets (LDFSs) is a new approach for modeling
uncertainties in decision analysis. Due to the addition of reference or control parameters with
membership and non-membership grades, LDFS is more flexible and reliable than existing concepts
of intuitionistic fuzzy sets (IFSs), Pythagorean fuzzy sets (PFSs), and q-rung orthopair fuzzy sets
(q-ROFSs). In this paper, the notions of linear Diophantine fuzzy soft rough sets (LDFSRSs)
and soft rough linear Diophantine fuzzy sets (SRLDFSs) are proposed as new hybrid models
of soft sets, rough sets, and LDFS. The suggested models of LDFSRSs and SRLDFSs are more
flexible to discuss fuzziness and roughness in terms of upper and lower approximation operators.
Certain operations on LDFSRSs and SRLDFSs have been established to discuss robust multi-criteria
decision making (MCDM) for the selection of sustainable material handling equipment. For these
objectives, some algorithms are developed for the ranking of feasible alternatives and deriving an
optimal decision. Meanwhile, the ideas of the upper reduct, lower reduct, and core set are defined
as key factors in the proposed MCDM technique. An application of MCDM is illustrated by a
numerical example, and the final ranking in the selection of sustainable material handling equipment
is computed by the proposed algorithms. Finally, a comparison analysis is given to justify the
feasibility, reliability, and superiority of the proposed models.

Keywords: linear Diophantine fuzzy set; linear Diophantine fuzzy soft rough set; soft rough linear
Diophantine fuzzy set; upper reduct and lower reduct; core set; multi-criteria decision making

1. Introduction

The multi-criteria decision making (MCDM) techniques have been rigorously investigated by
many researchers around the real world. Due to uncertain and vague information, the complexity
of human’s decision making has grown broadly in the present era. This pursuit gave rise to many
resourceful techniques to deal with real-world problems. The methodologies developed for this
objective essentially rely on the description of the problem under contemplation. The problem
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of imperfect, uncertain, and vague information has been focused on by many researchers in the
last few decades.

Zadeh (1965) developed the notion of fuzzy sets, fuzzy numbers, and linguistic variables to
describe hidden uncertain information in the objects by using membership grades. Researchers found
that membership/affiliation grades alone are not enough to express some real-life situations such
as: benefit and loss claims, positive results and side effects of drugs, inferiority and superiority,
perfection and imperfection, affiliation and non-affiliation, etc. In order to cope with these challenges,
Atanassov (1983) proposed the idea of intuitionistic fuzzy sets (IFSs) with the inclusion of satisfaction
or membership grade (MG) and dissatisfaction or non-membership grade (NMG). Yager (2014, 2017)
extended IFSs to Pythagorean fuzzy sets (PFSs) and q-rung orthopair fuzzy sets (q-ROFSs).

In inadequate information data, the vagueness caused by the indiscernibility can be manipulated
by utilizing the rough set techniques. This is an individualistic generalization of crisp set theory and
was first originated by Pawlak (1982). This hypothesis acts as a tool for investigating and implementing
solutions for various decision making difficulties found in the fields of computer intelligence, image
processing, data analysis, medical sciences, and many more. It eliminates vagueness by using upper
and lower approximation operators of a collection by assembling the equivalence relation. The
above-listed theories do not deal with the parameterizations of the input information set. For this
purpose, Molodtsov (1999) proposed soft set theory to deal with the uncertainties in parametric
behavior.

Sustainability is the ability to exist constantly. The main components of sustainability are society,
the economy, and the environment. The equilibrium of local and global efforts for sustainability is
necessary to meet elementary human needs without destroying the environment. The ability to finance
all capital projects is essential for the sustainability of the economy. The environmental concerns
while retaining sustainable growth for the environment are becoming increasingly relevant to decision
analysis around the world. Sustainability is regarded as a task, process, activity, and exercise through
which humankind avoids the destruction of natural resources. The selection of sustainable material
handling equipment is essential for the development of infrastructure.

Multi-criteria decision making (MCDM) is a branch of operations research that explicitly evaluates
multiple conflicting criteria in decision making. The purpose of MCDM is to support decision makers
(DMs) facing problems in ranking feasible alternatives/objects. There are different types of criteria
for determining weights for the alternatives/objects. The subjective criteria weights depend on
the DM and can change if another DM computes them. On the opposite side, there is the idea of
objective weights, which are different because they have the capacity to evaluate alternatives. For
determining subjective and objective weights, there are different fuzzy and crisp methods like SWARA
(step-wise weight assessment ratio analysis), WASPAS (weighted aggregated sum product assessment),
ARAS (additive ratio assessment), AHP (analytic hierarchy process), PIPRECIA (pivot pairwise
relative criteria importance assessment), and CRITIC (criteria importance through inter-criteria
correlation). Some integrated MCDM methods studied by researchers are TOPSIS (technique for the
order preference by similarity to ideal solution), VIKOR (vlse kriterijumska optimizacija kompromisno
resenje), PROMETHEE (preference ranking organization method for enrichment evaluations), COPRAS
(complex proportional assessment), MOORA (multi-objective optimization by ratio analysis), GRA
(grey relational analysis), ANP (analytic network process), BWM (best worst method), and aggregation
operators.

1.1. Literature Review

Bellman and Zadeh [1] proposed the MCDM technique based on fuzzy sets for the first time in
1970. Akram et al. [2] introduced the m-polar fuzzy soft rough sets and presented their applications
in multi-attribute decision making (MADM) difficulties. Ali et al. [3] established certain properties
of rough sets, soft sets, and fuzzy soft sets. Chen and Tan [4] established the concept of the score
function, which was presented by Tversky and Kahneman [5] earlier. Feng et al. [6–9] proposed the



Symmetry 2020, 12, 1215 3 of 39

idea of soft rough sets. Garg [10] investigated Einstein operators and established the Pythagorean
operators to solve decision making obstacles. Hashmi et al. [11] invented the hybrid structure of
m-polar neutrosophic set (MPNS) as an abstraction of the bipolar neutrosophic set by combining
MPFSsand neutrosophic sets. They developed innovative algorithms to deal with the difficulties
in medical sciences and for the clustering of information data. Hashmi and Riaz [12] introduced
Pythagorean m-polar fuzzy Dombi operators and proposed a novel technique to the censuses process.

Jose and Kuriaskose [13] proposed the MCDM model for intuitionistic fuzzy numbers (IFNs)
by using operators. Naeem et al. [14] introduced multi-criteria group decision making (MCGDM)
methods based on TOPSIS and VIKOR using Pythagorean fuzzy soft sets. Pawlak and Skowron [15]
presented certain extensions of rough sets.

Riaz and Hashmi [16,17] invented the notions of cubic m-polar fuzzy sets and Pythagorean
m-polar fuzzy soft rough sets with applications to decision making difficulties. They established
novel structures of soft rough Pythagorean m-polar fuzzy sets and Pythagorean m-polar fuzzy soft
rough sets with their applications. Riaz et al. [18,19] introduced the soft rough topology including its
applications to group decision making. Riaz and Tehrim [20–22] originated the notions of the bipolar
fuzzy soft topology, cubic bipolar fuzzy sets, and operators. By using diverse algorithms, they solved
some new and challenging decision making applications. Roy et al. [23] introduced a rough strength
relational decision making trial and evaluation laboratory (DEMATEL) model for analyzing the key
success factors of hospital service quality. Sharma et al. [24] introduced a rough set theory application
in forecasting models.

Wei et al. [25] proposed aggregation operators based on hesitant triangular fuzzy information to
determine MADM obstacles. Zhang et al. [26] established the concept of intuitionistic fuzzy soft rough
sets and presented its applications.

Zhao [27] et al. discovered novel algorithms based on generalized intuitionistic fuzzy aggregation
operators. Xu and Chen [28] practiced distance and similarity measures on IFSs. Kulak et al. [29]
and Karande et al. [30] prepared some techniques for the assortment of material handling equipment
using the information axiom and weighted utility additive theory. Zubair et al. [31] presented the
optimization of a material handling system. Vashist [32] presented an algorithm for finding the reduct
and core of the information dataset. Zhang et al. [33–35] discovered different covering based rough
sets, fuzzy rough sets, and intuitionistic fuzzy rough sets with their applications to MADM obstacles.
Wang and Triantaphyllou [36] identified irregularities in the ranking when evaluating alternatives
using certain elimination et choix traduisant la realite (ELECTRE) methods. In order to evaluate green
suppliers, Búyúkózkan and Çifçi [37] presented a novel hybrid MCDM approach based on fuzzy
DEMATEL, fuzzy ANP, and fuzzy TOPSIS.

Govindan et al. [38] developed a DEMATEL approach focused on experience to establish
sustainability strategies and efficiency in a green supply chain. Via flipped e-learning,
Jeong and González-Gómez [39] built a system adjusting to the pedagogical changes in sustainable
mathematics education through pre-service teachers (PSTs) : rating the requirements with MCDA/F
-DEMATEL. Under a q-rung orthopair fuzzy set, Wang and Li [40] established a novel approach for
green supplier selection. Xu et al. [41] presented some q-rung dual hesitant Heronian mean operators
with their application to multiple group decision making attributes. Soft rough fuzzy sets were
developed by Sun and Ma [42] with their applications in strategic decision making. Including its
various results and illustrations, Meng et al. [43] introduced the structures of soft rough fuzzy sets
and soft fuzzy rough sets. Hussain et al. [44] invented Pythagorean fuzzy soft-rough set models and
presented their applications in decision making. Zadeh [45] introduced the concept of a linguistic
variable and its application to approximate reasoning.

1.2. Motivation and Objectives

A q-ROFS is the generalization of both IFS and PFS. The main feature of q-ROFS is that the
uncertain space for MG and NMG is boarder. Each IFS is a PFS, and each PFS is a q-ROFS, but not
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conversely. A q-ROFS is more powerful in growing the freedom between MG and NMG. However,
there are some situations when these theories are unable to deal with uncertain information. In order
to relax existing constraints on MG and NMG, Riaz and Hashmi (2019) introduced the innovative idea
of linear Diophantine fuzzy sets (LDFSs). The use of reference or control parameters in LDFS give
freedom to DMs in choosing MG and NMG. Moreover, IFSs, PFSs, and q-ROFSs can be considered as
specific cases of LDFSs with some limitations (see Figure 1). The semantic comparison of suggested
technique with some existing structures is given in Table 1.

Figure 1. Graphical comparison among IFNs, PFFNs, q-ROFNs, and LDFNs.

The goal of this paper is to develop strong models for MCDM that have less limitations
than other models. Table 1 shows the advantages and drawbacks of some set theoretical models.
The notions of linear Diophantine fuzzy soft rough sets (LDFSRSs) and soft rough linear Diophantine
fuzzy sets (SRLDFSs) are established as new hybrid models of soft sets, rough sets, and LDFSs.
The suggested models of LDFSRSs and SRLDFSs are more flexible to discuss fuzziness and roughness
in terms of upper and lower approximation operators. Certain operations on LDFSRSs and SRLDFSs
have been established to discuss a robust multi-criteria decision making (MCDM) for the selection
of sustainable material handling equipment. We present four new algorithms based on LDFS,
crisp soft approximation spaces, core sets, and reducts.

The organization of this article is provided as follows. Section 2 implies certain fundamental
notions of fuzzy sets, IFSs, PFSs, q-ROFSs, and LDFSs. We investigate fascinating operations and score
functions of LDFSs. In Section 3, we invent the notions of LDFSRSs and SRLDFSs by applying the
LDFS approximation space and crisp soft approximation space. We establish multiple results based
on intended structures with the help of illustrations. In Section 4, we present four novel algorithms
to determine the material handling equipment selection obstacle. These algorithms are based on
the approximation spaces, score functions, upper and lower reducts, and core set. We examine and
compare our suggested structures and their results with certain existing notions. Section 5 provides
the conclusion of this manuscript.
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Table 1. Semantic comparison of the suggested technique with some existing models.

Set Theories Advantages Semantic Disadvantages

Fuzzy sets [46] Contribute knowledge about Dose not give information about the
specific property falsity and roughness of information system

Intuitionistic fuzzy sets [47,48] Detect vagueness with Restricted valuation space and
agree and disagree criteria does not deal with roughness

Pythagorean fuzzy sets [49–51] Detect vagueness with larger Cannot handle the roughness of the
valuation space than IFSs data and dependency between the grades

q-rung orthopair fuzzy sets [52,53] Increase the valuation space of grades For smaller values of q, creates dependency
to deal with real-life situations in grades and cannot handle roughness

Create independency between the degrees Does not give information about the
Linear Diophantine fuzzy sets [54] and increase their valuation space under roughness of information data and cannot

the effect of control parameterizations deal with multi-valued parameterizations

Rough sets [55] Contain upper and lower approximations of Does not characterize the agree and
information dataset to handle roughness disagree degrees with parameterizations

Soft sets [56] Produce multi-valued mapping based Does not contain fuzziness and
parameterizations under different criteria roughness in optimization

Linear Diophantine fuzzy Produce multi-valued mapping based Does not characterize the roughness
soft sets (proposed) on the LDF value information system of real-life dataset

Contain upper and lower approximations Due to the use of LDFS approximation
Linear Diophantine fuzzy soft with LDF degrees under double space for evaluations, it contains

rough sets (proposed) parameterizations (soft and reference) and heavy calculations, but easy to handle
collect data without any loss of information

Use crisp soft approximation space Easy calculations as compared to
Soft rough linear Diophantine to evaluate upper and lower approximations LDFSRS, but heavy as compared to

fuzzy sets (proposed) with LDF degrees and collect data others (easy to handle)
without any loss of information
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2. Some Basic Concepts

First, we assemble fascinating fundamental ideas of LDFSs, rough sets, soft sets, and soft
rough sets.

Definition 1 ([54]). A linear Diophantine fuzzy set D in Q̈ is defined as:

D =
{(

G, 〈T̈D (G), S̈D (G)〉, 〈αD (G), βD (G)〉
)

: G ∈ Q̈
}

,

where T̈D (G), S̈D (G), αD (G), βD (G) ∈ [0, 1] are the satisfaction grade, the dissatisfaction grade, and the
corresponding reference parameters, respectively. Moreover, it is required that:

0 ≤ αD (G) + βD (G) ≤ 1,

and:
0 ≤ αD (G)T̈D (G) + βD (G)S̈D (G) ≤ 1

for all G ∈ Q̈. The LDFS:
DQ̈ = {(G, 〈1, 0〉, 〈1, 0〉) : G ∈ Q̈}

is called the absolute LDFS in Q̈. The LDFS:

Dφ = {(G, 〈0, 1〉, 〈0, 1〉) : G ∈ Q̈}

is called the null LDFS in Q̈.

The reference parameters are useful for describing objective weights for each pair of MG and
NMG. These parameters can be used for multiple objectives to express the physical interpretation of a
dynamical system. In addition, γD (G)π̇D (G) = 1− (αD (G)T̈D (G) + βD (G)S̈D (G)), where π̇D (G)

is called the indeterminacy degree of G to D and γD (G) is the reference parameter related to the
indeterminacy part. It can be seen that the tuples (〈T̈D (G), S̈D (G)〉, 〈αD (G), βD (G)〉) with G ∈ Q̈
are crucial for specifying the LDFS D . Due to this fact, we introduce the new notion of the linear
Diophantine fuzzy number (LDFN) denoted as ÄD = (〈ṫD , ḟD 〉, 〈αD , βD 〉) satisfying all the constraints
listed above for LDFSs. The collection of all LDFSs in Q̈ is denoted as D(Q̈).

Example 1 (Combination of drugs in medicine for better treatment.). Medicines are chemicals or
compounds used to cure, halt, or prevent disease, ease symptoms, or help in the diagnosis of illnesses. Advances in
medicines have enabled doctors to cure many diseases and save lives. A combination drug or a fixed-dose
combination (FDC) is a medicine that includes two or more active ingredients combined in a single dosage form.
For example: aspirin/paracetamol and caffeine is a combination drug for the treatment of pain, especially tension
headaches and migraines. Let Q̈ = {G1,G2,G3,G4,G5} be the collection of some life-saving drugs. In order
to gain a high impact of medicine, two or more drugs can be combined in the preparation of a medicine. If the
reference or control parameter is considered as:

α = excellent impact against infection produced during surgeries

β = no high impact against infection produced during surgeries

then its LDFS is given in Table 2.
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Table 2. LDFS for medication.

Alternatives LDFNs

G1 (〈00.963, 00.472〉,〈00.731, 00.121〉)
G2 (〈00862, 00.576〉,〈00.631, 00.222〉)
G3 (〈00.665, 00.874〉,〈00.332, 00.123〉)
G4 (〈00.664, 00.773〉,〈00.234, 00.225〉)
G5 (〈00.867, 00.776〉,〈00.435, 00.225〉)

According to the quality, variety, and severity of the disease, a physician provides medicine to the subject.
The information data can be classified using control parameters. These parameters represent how much that
portion is necessary for the treatment, and their grade values describe how much that factor is present in that
medicine. If we change the parameter as:

α = “Excellent impact against ear infection”

β = “Not highly affective for ear infection”

OR

α = “Fewer side effects”

β = “More side effects”,

then we can establish various LDFSs that are suitable in other situations. This model helps a
pharmacist/doctor/consultant prescribe the most reliable and suitable medicine to the patient for his/her disease.
Moreover, reference or control parameters can be used for the purpose of various alternatives in medicine.

Theorem 1 ([54]). LDFSs have a larger valuation space than IFSs and PFSs.

Definition 2 ([54]). Let ÄD = (〈ṫD , ḟD 〉, 〈αD , βD 〉) be an LDFN and X > 0. Then:

• Äc
D = (〈 ḟD , ṫD 〉, 〈βD , αD 〉);

• X ÄD =
(
〈1− (1− ṫD )X , ḟXD 〉, 〈1− (1− αD )X , βXD 〉

)
;

• ÄXD =
(
〈ṫXD , 1− (1− ḟD )X 〉, 〈αXD , 1− (1− βD )X 〉

)
.

Definition 3 ([54]). Let Äi = (〈ṫDi
, ḟDi
〉, 〈αD , βD 〉) be two LDFNs with i = 1, 2. Then:

• ÄD1
⊆ ÄD2 ⇔ ṫD1

≤ ṫD2 , ḟD2 ≤ ḟD1
, αD1

≤ αD2 , βD2 ≤ βD1
;

• ÄD1
= ÄD2 ⇔ ṫD1

= ṫD2 , ḟD1
= ḟD2 , αD1

= αD2 , βD1
= βD2 ;

• ÄD1
⊕ ÄD2 =

(
〈ṫD1

+ ṫD2 − ṫD1
ṫD2 , ḟD1

ḟD2〉, 〈αD1
+ αD2 − αD1

αD2 , βD1
βD2〉

)
;

• ÄD1
⊗ Ä2 =

(
〈ṫD1

ṫD2 , ḟD1
+ ḟD2 − ḟD1

ḟD2〉, 〈αD1
αD2 , βD1

+ βD2 − βD1
βD2〉

)
.

Definition 4 ([54]). Let ÄDi
= (〈ṫDi

, ḟDi
〉, 〈αDi

, βDi
〉) be a collection of LDFNs with i ∈ ∆. Then:

•
⋃

i∈∆
ÄDi

=

(
〈sup

i∈∆
ṫDi

, inf
i∈∆

ḟDi
〉, 〈sup

i∈∆
αDi

, inf
i∈∆

βDi
〉
)

;

•
⋂

i∈∆
ÄDi

=

(
〈inf

i∈∆
ṫDi

, sup
i∈∆

ḟDi
〉, 〈inf

i∈∆
αDi

, sup
i∈∆

βDi
〉
)

.

Definition 5 ([56]). For the non-empty collection of alternatives Q̈ and the collection of attributes Ġ, the soft
set is evaluated by the mapping Ω̇ : Ġ → P̃(Q̈). Alternatively, it can be represented as:

(Ω̇, Ġ) = {(℘, Ω̇(℘)) : Ω̇(℘) ∈ P̃(Q̈),℘ ∈ Ġ}
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The collection of all subsets of Q̈ is denoted as P̃(Q̈).

Definition 6 ([55]). Suppose the indiscernibility relation on Q̈ is denoted as R. We assume arbitrarily that
R is an equivalence relation. Moreover, NegRK = Q̈ − K>, PosRK = K>, and BndRK = K> −K> are
said to be negative, positive, and boundary regions of K ⊆ Q̈. The characteristics of these regions are given as
follows:

(1) G ∈ PosRK implies that K certainly contains the elements G of Q̈.
(2) G ∈ NegRK implies that K does not contains the elements G of Q̈.
(3) G ∈ BndRK implies that K may or may not contain the elements G of Q̈.

The equivalence class of object G under the relationR is represented as [G]R. The pair (Q̈,R) is said to
be a “Pawlak approximation space”, and R will generate the partition Q̈/R = {[G]R : G ∈ Q̈}. Then, pair
(R>(K),R>(K)) is called the rough set of crisp set K, where:

R>(K) = {G ∈ Q̈ : [G]R ⊆ K}

R>(K) = {G ∈ Q̈ : [G]R ∩K 6= φ}

are called “lower and upper approximations” of K with respect to (Q̈,R). IfR>(K) = R>(K), then K is said
to be definable; otherwise, it is called a rough set.

Remark 1. The concepts of the core and reduct in rough set theory are very significant tools in the decision
making methods. We can deduce the reduct from the reference set Q̈. It is used to reduce the unimportant
information in the input data. The core is the intersection of all reducts and provides the final optimal decision
about the decision making problem (see [3,32]).

Definition 7 ([26]). For a non-empty collection of alternatives Q̈ and the collection of attributes Ġ, the crisp
soft relationR ⊆ Q̈ × Ġ is written as:

R = {〈(G, ℘̇), ψR(G, ℘̇)〉 : (G, ℘̇) ∈ Q̈ × Ġ}

where ψR : Q̈ × Ġ → {0, 1} and:

ψR(G, ℘̇) =

{
1 if (G, ℘̇) ∈ R
0 ; otherwise

Definition 8 ([26]). For a non-empty collection of alternatives Q̈ and the collection of attributes Ġ, we have a
crisp soft relation ˜A ⊆ Q̈ × Ġ. A mapping ˜As : Q̈ → P(Ġ) is written as:

˜As(G) = {℘̇ ∈ Ġ : (G, ℘̇) ∈ ˜A ;G ∈ Q̈}

˜A is called serial if ∀G ∈ Q̈, ˜As(G) 6= φ. The “crisp soft approximation space” is represented by this triplet
(Q̈, Ġ, ˜A ). For arbitrary H ⊆ Ġ, ˜A>(H) and ˜A >(H) are called the “lower and upper approximations”,
respectively, defined as:

˜A>(H) = {G ∈ Q̈ : ˜As(G) ∩H 6= φ}

˜A >(H) = {G ∈ Q̈ : ˜As(G) ⊆ Q̈}

The pair ( ˜A>(H), ˜A >(H)) is called the crisp soft rough set, and ˜A>, ˜A > : P̃(Ġ)→ P̃(Q̈) are called
“lower and upper approximation operators”. P̃(Ġ) and P̃(Q̈) are an assembly of all subsets of Ġ and Q̈,
respectively. If ˜A>(H) = ˜A >(H), then Q̈ is called definable.
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3. Construction of SRLDFSs and LDFSRSs

In this part, we organize the innovative hybrid structures of soft rough linear Diophantine fuzzy
sets (SRLDFSs) and linear Diophantine fuzzy soft rough sets (LDFSRSs) by merging the fundamental
compositions of LDFSs, soft sets, and rough sets. In decision making obstacles, we deal with the
ambiguities and vagueness in the initial input information. Due to these circumstances, we cannot
manage these inputs by utilizing simplistic models. In fuzzy sets, IFSs, PFSs, and q-ROFSs, the
opportunities for the assortment of satisfaction and dissatisfaction degrees are restricted due to
constraints 0 ≤ Ṫ ≤ 1, 0 ≤ T̈ + S̈ ≤ 1, 0 ≤ T̈ 2 + S̈2 ≤ 1, and 0 ≤ T̈ q + S̈q ≤ 1. However,
in the LDFS, we can comfortably choose the degrees from [0, 1], due to the reference or control
parameters. However, this set does not deal with the vagueness or roughness. We cannot handle
uncertainties and parameterizations if we deal only with the roughness of a set. The soft set only works
for parameterizations. Therefore, to eliminate these ambiguities and to fill in the research gap, we
assemble SRLDFSs and LDFSRSs. These models dispense with the fuzzy degrees, parameterizations,
and roughness of the data in the decision making difficulties. The significance of these generalized
and authentic notions can be examined in the entire article. Table 3 represents the notations used in
the whole manuscript.

Table 3. Description of the notations used in the whole manuscript.

Notation Explanation

Q̈ Universal set
Ġ Set of decision variables
G Elements of set Q̈
℘̇ Elements of set Ġ
˜A> Lower approximation operator for SRLDFSs
˜A > Upper approximation operator for SRLDFSs
ð̃> Lower approximation operator for LDFSRSs
ð̃> Upper approximation operator for LDFSRSs
T̈ Satisfaction grade
S̈ Dissatisfaction grade

D(Ġ) Collection of all LDFSs over Ġ
D(Q̈) Collection of all LDFSs over Q̈

3.1. Soft Rough Linear Diophantine Fuzzy Sets

Definition 9. For the reference set Q̈ and set of decision variables Ġ, if we define a crisp soft relation ˜A over
Q̈ × Ġ, then (Q̈, Ġ, ˜A ) is called a “crisp soft approximation space”. If YD ∈ D(Ġ), then ˜A >(YD ) and

˜A>(YD ) are called “upper and lower approximations” of YD about (Q̈, Ġ, ˜A ) respectively and written as:

˜A>(YD ) = {(G, 〈T̈ ˜A>(YD )(G), S̈ ˜A>(YD )(G)〉, 〈α ˜A>(YD )(G), β ˜A>(YD )(G)〉) : G ∈ Q̈}

˜A >(YD ) = {(G, 〈T̈ ˜A >(YD )(G), S̈ ˜A >(YD )(G)〉, 〈α ˜A >(YD )(G), β ˜A >(YD )(G)〉) : G ∈ Q̈}

where the degrees can be calculated as given in Table 4.
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Table 4. Formulation of SRLDFSs.

Notation Formulation Notation Formulation

T̈ ˜A >(YD )(G) max
℘̇∈ ˜As(G)

(
T̈YD

(℘̇)
)
S̈ ˜A >(YD )(G) min

℘̇∈ ˜As(G)

(
S̈YD

(℘̇)
)

T̈ ˜A>(YD )(G) min
℘̇∈ ˜As(G)

(
T̈YD

(℘̇)
)
S̈ ˜A>(YD )(G) max

℘̇∈ ˜As(G)

(
S̈YD

(℘̇)
)

α ˜A >(YD )(G) max
℘̇∈ ˜As(G)

(
αYD

(℘̇)
)

β ˜A >(YD )(G) min
℘̇∈ ˜As(G)

(
βYD

(℘̇)
)

α ˜A>(YD )(G) min
℘̇∈ ˜As(G)

(
αYD

(℘̇)
)

β ˜A>(YD )(G) max
℘̇∈ ˜As(G)

(
βYD

(℘̇)
)

The notions given in Table 4 satisfy the following constraints::

0 ≤ α ˜A >(YD )(G)T̈ ˜A >(YD )(G) + β ˜A >(YD )(G)S̈ ˜A >(YD )(G) ≤ 1

0 ≤ α ˜A>(YD )(G)T̈ ˜A>(YD )(G) + β ˜A>(YD )(G)S̈ ˜A>(YD )(G) ≤ 1

0 ≤ α ˜A >(YD )(G) + β ˜A >(YD )(G) ≤ 1 and

0 ≤ α ˜A>(YD )(G) + β ˜A>(YD )(G) ≤ 1

D(Ġ) is an assembly of LDFSs over Ġ. ˜A>(YD ) and ˜A >(YD ) are LDFSs over Q̈. Thus, the pair
( ˜A>(YD ), ˜A >(YD )) is called the soft rough linear Diophantine fuzzy set (SRLDFS) about (Q̈, Ġ, ˜A ), and

˜A >, ˜A> : D(Ġ) → D(Q̈) are called upper and lower SRLDF approximation operators. If ˜A>(YD ) =
˜A >(YD ), then YD is called definable.

Example 2. We consider the collection of well known cars given as Q̈ = {G1,G2,G3,G4} and the assembly of
suitable attributes Ġ = {℘̇1, ℘̇2, ℘̇3, ℘̇4}. The attributes are given as “comfortable and reliable”, “good safety”,
“good maintenance”, and “affordable”. Let (η, Ġ) be the soft set in Q̈ given as:

η(℘̇1) = {G1,G2,G3}, η(℘̇2) = {G2,G4}
η(℘̇3) = {G1,G2,G3,G4}, η(℘̇4) = {G1,G4}

A crisp relation over Q̈ × Ġ is given as
˜A = {(G1, ℘̇1), (G2, ℘̇1), (G3, ℘̇1), (G2, ℘̇2), (G4, ℘̇2), (G1, ℘̇3), (G2, ℘̇3), (G3, ℘̇3), (G4, ℘̇3), (G1, ℘̇4), (G4, ℘̇4)}.

By definition, we have:

˜As(G1) = {℘̇1, ℘̇3, ℘̇4}
˜As(G2) = {℘̇1, ℘̇2, ℘̇3}
˜As(G3) = {℘̇1, ℘̇3}
˜As(G4) = {℘̇2, ℘̇3, ℘̇4}

We consider LDFS, YD ∈ D(Ġ), given as:

YD = {(℘̇1, 〈0.786, 0.765〉, 〈0.234, 0.123〉), (℘̇2, 〈0.987, 0.574〉, 〈0.232, 0.423〉),
(℘̇3, 〈0.912, 0.536〉, 〈0.235, 0.635〉), (℘̇4, 〈0.726, 0.825〉, 〈0.765, 0.122〉)}
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The “upper and lower approximations” can be computed by using Definition 9. Upper approximations are
given as:

T̈ ˜A >(YD )(G1) = 0.912, S̈ ˜A >(YD )(G1) = 0.536, α ˜A >(YD )(G1) = 0.765, β ˜A >(YD )(G1) = 0.122

T̈ ˜A >(YD )(G2) = 0.987, S̈ ˜A >(YD )(G2) = 0.574, α ˜A >(YD )(G2) = 0.765, β ˜A >(YD )(G2) = 0.122

T̈ ˜A >(YD )(G3) = 0.912, S̈ ˜A >(YD )(G3) = 0.536, α ˜A >(YD )(G3) = 0.235, β ˜A >(YD )(G3) = 0.123

T̈ ˜A >(YD )(G4) = 0.987, S̈ ˜A >(YD )(G4) = 0.536, α ˜A >(YD )(G4) = 0.765, β ˜A >(YD )(G4) = 0.122

Lower approximations are evaluated as:

T̈ ˜A>(YD )(G1) = 0.726, S̈ ˜A>(YD )(G1) = 0.825, α ˜A>(YD )(G1) = 0.234, β ˜A>(YD )(G1) = 0.635

T̈ ˜A>(YD )(G2) = 0.786, S̈ ˜A>(YD )(G2) = 0.765, α ˜A>(YD )(G2) = 0.232, β ˜A>(YD )(G2) = 0.635

T̈ ˜A>(YD )(G3) = 0.786, S̈ ˜A>(YD )(G3) = 0.765, α ˜A>(YD )(G3) = 0.234, β ˜A>(YD )(G3) = 0.635

T̈ ˜A>(YD )(G4) = 0.726, S̈ ˜A>(YD )(G4) = 0.825, α ˜A>(YD )(G4) = 0.232, β ˜A>(YD )(G4) = 0.635

Thus:

˜A >(YD ) = {(G1, 〈00.912, 00.536〉, 〈00.765, 00.122〉), (G2, 〈00.987, 00.574〉, 〈00.765, 00.122〉),
(G3, 〈00.912, 00.536〉, 〈00.235, 00.123〉)}, (G4, 〈00.987, 00.536〉, 〈00.765, 00.122〉)}

˜A>(YD ) = {(G1, 〈00.726, 00.825〉, 〈00.234, 00.635〉), (G2, 〈00.786, 00.765〉, 〈00.232, 00.635〉),
(G3, 〈00.786, 00.765〉, 〈00.234, 00.635〉)}, (G4, 〈00.726, 00.825〉, 〈00.232, 00.635〉)}

Therefore, ( ˜A>(YD ), ˜A >(YD )) is said to be SRLDFS.

Remark 2. For the “crisp soft approximation space” (Q̈, Ġ, Ã ), if we take the upper and lower approximations of
the following sets listed in Table 5, then we can observe the degeneration of SRLDF approximation operators into
different structures based on rough sets.

It is evident from Table 5 that our proposed model is superior and powerful in contrast with other existing
structures. However, we cannot decompose the described theories into the SRLDFSs and their respective
approximation operators. In simple terms, SRLDFS is the generalization of “soft rough sets, soft rough fuzzy sets,
soft rough intuitionistic fuzzy sets, soft rough Pythagorean fuzzy sets, and soft rough q-rung orthopair fuzzy sets”.

Theorem 2. Let YD , BD ∈ D(G) and ˜A >(YD ), ˜A >(YD ) be “upper and lower approximation operators”
over the approximation space (Q̈, Ġ, ˜A ), then the following axioms are true:

(1) ˜A>(YD ) =∼ ˜A >(∼ YD ),
(2) YD ⊆ BD ⇒ ˜A>(YD ) ⊆ ˜A>(BD ),
(3) ˜A>(YD ∩BD ) = ˜A>(YD ) ∩ ˜A>(BD ),
(4) ˜A>(YD ∪BD ) ⊇ ˜A>(YD ) ∪ ˜A>(BD ),
(5) ˜A >(YD ) =∼ ˜A>(∼ YD ),
(6) YD ⊆ BD ⇒ ˜A >(YD ) ⊆ ˜A >(BD ),
(7) ˜A >(YD ∪BD ) = ˜A >(YD ) ∪ ˜A >(BD ),
(8) ˜A >(YD ∩BD ) ⊆ ˜A >(YD ) ∩ ˜A >(BD ).

The complement of YD is represented by ∼ YD .

Proof. See Appendix A.

Now, we provide a counter example to prove that equality does not exist in Parts (4) and (8) of
Theorem 2.



Symmetry 2020, 12, 1215 12 of 39

Table 5. Degeneration of SRLDF approximation operators into different rough set models.

Approximation Space Set Theories Family of Sets Degeneration of SRLDF After Degeneration of the
Approximation Operators Constructed Model

Crisp soft YD=crisp set∈ P(Ġ) P(Ġ) collection of all Yes Soft rough
(Q̈, Ġ, ˜A ) crisp subsets of Ġ sets [26]
Crisp soft YD = {〈℘̇, T̈ (℘̇)〉 : ℘̇ ∈ Ġ} ∈ F (Ġ) F (Ġ) collection of all Yes Soft rough
(Q̈, Ġ, ˜A ) fuzzy subsets of Ġ fuzzy sets [42,43]
Crisp soft YD = {〈℘̇, T̈ (℘̇), S̈(℘̇)〉 : ℘̇ ∈ Ġ} ∈ I(Ġ) I(Ġ) collection of all Yes Soft rough intuitionistic
(Q̈, Ġ, ˜A ) IF-subsets of Ġ fuzzy sets [26]
Crisp soft YD = {〈℘̇, T̈ (℘̇), S̈(℘̇)〉 : ℘̇ ∈ Ġ} ∈ P(Ġ) P(Ġ) collection of all Yes Soft rough Pythagorean
(Q̈, Ġ, ˜A ) PF-subsets of Ġ fuzzy sets [44]
Crisp soft YD = {〈℘̇, T̈ (℘̇), S̈(℘̇)〉 : ℘̇ ∈ Ġ} ∈ R(Ġ) R(Ġ) collection of all Yes Soft rough q-rung
(Q̈, Ġ, ˜A ) PF-subsets of Ġ orthopair fuzzy sets
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Example 3. For the reference set Q̈ = {G1,G2,G3,G4} and assembly of decision variables Ġ = {℘̇1, ℘̇2, ℘̇3},
we define a soft set (η, Ġ) in Q̈ written as:

β(℘̇1) = {G1,G4}, β(℘̇2) = {G1,G2,G4}, β(℘̇3) = {G2,G3}

The crisp soft relation ˜A in Q̈ × Ġ is given as
˜A = {(G1, ℘̇1), (G4, ℘̇1), (G1, ℘̇2), (G2, ℘̇2), (G4, ℘̇2), (G2, ℘̇3), (G3, ℘̇3)}. We can write it as:

˜As(G1) = {℘̇1, ℘̇2}, ˜As(G2) = {℘̇2, ℘̇3}, ˜As(G3) = {℘̇3}, ˜As(G4) = {℘̇1, ℘̇2}

Let YD , BD ∈ D(G) be given as follows:

YD = {(℘̇1, 〈0.573, 0.273〉, 〈0.271, 0.531〉), BD = {(℘̇1, 〈0.773, 0.273〉, 〈0.281, 0.523〉),
(℘̇2, 〈0.378, 0.177〉, 〈0.291, 0.532〉), (℘̇2, 〈0.778, 0.371〉, 〈0.283, 0.521〉),
(℘̇3, 〈0.678, 0.178〉, 〈0.271, 0.521〉)} (℘̇3, 〈0.873, 0.371〉, 〈0.261, 0.532〉)}

The “upper approximations” are given as:

˜A >(YD ) = {(G1, 〈00.573, 00.177〉, 〈00.291, 00.531〉), (G2, 〈00.678, 00.177〉, 〈00.291, 00.521〉),
(G3, 〈00.678, 00.178〉, 〈00.271, 00.521〉), (G4, 〈00.573, 00.177〉, 〈00.291, 00.531〉)}

˜A >(BD ) = {(G1, 〈00.778, 00.273〉, 〈00.283, 00.521〉), (G2, 〈00.873, 00.371〉, 〈00.261, 00.521〉),
(G3, 〈00.873, 00.371〉, 〈00.261, 00.532〉), (G4, 〈00.778, 00.273〉, 〈00.283, 00.521〉)}

˜A >(YD ∩BD ) = {(G1, 〈00.573, 00.273〉, 〈00.283, 00.531〉), (G2, 〈00.678, 00.371〉, 〈00.261, 00.532〉),
(G3, 〈00.678, 00.371〉, 〈00.261, 00.532〉), (G4, 〈00.573, 00.273〉, 〈00.283, 00.531〉)}

˜A >(YD ) ∩ ˜A >(BD ) = {(G1, 〈00.573, 00.273〉, 〈00.283, 00.531〉), (G2, 〈00.678, 00.371〉, 〈00.261, 00.521〉),
(G3, 〈00.678, 00.371〉, 〈00.261, 00.532〉), (G4, 〈00.573, 00.273〉, 〈00.283, 00.531〉)}

From the above calculations, it is clear that ˜A >(YD ) ∩ ˜A >(BD ) * ˜A >(YD ∩BD ) as for alternative
G2, the degrees of reference parameter β ˜A >(YD )∩ ˜A >(BD )(G2) � β ˜A >(YD∩BD )(G2), i.e., 00.521 � 00.532.
Similarly, we can check that ˜A>(YD ∪BD ) * ˜A>(YD ) ∪ ˜A>(BD ).

Proposition 1. If YD , BD ∈ D(G), then ˜A>(YD ), ˜A>(BD ), ˜A >(YD ) and ˜A >(BD ) are “lower and upper
approximations” of LDFSs over the “crisp soft approximation space” (Q̈, Ġ, ˜A ) satisfying the following axioms:

(1) ∼ ( ˜A>(YD ) ∪ ˜A>(BD )) = ˜A >(∼ YD ) ∩ ˜A >(∼ BD ),
(2) ∼ ( ˜A>(YD ) ∪ ˜A >(BD )) = ˜A >(∼ YD ) ∩ ˜A>(∼ BD ),
(3) ∼ ( ˜A >(YD ) ∪ ˜A>(BD )) = ˜A>(∼ YD ) ∩ ˜A >(∼ BD ),
(4) ∼ ( ˜A >(YD ) ∪ ˜A >(BD )) = ˜A>(∼ YD ) ∩ ˜A>(∼ BD ),
(5) ∼ ( ˜A>(YD ) ∩ ˜A>(BD )) = ˜A >(∼ YD ) ∪ ˜A >(∼ BD ),
(6) ∼ ( ˜A>(YD ) ∩ ˜A >(BD )) = ˜A >(∼ YD ) ∪ ˜A>(∼ BD ),
(7) ∼ ( ˜A >(YD ) ∩ ˜A>(BD )) = ˜A>(∼ YD ) ∪ ˜A >(∼ BD ),
(8) ∼ ( ˜A >(YD ) ∩ ˜A >(BD )) = ˜A>(∼ YD ) ∪ ˜A>(∼ BD ).

Proof. The proof is obvious.
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3.2. Linear Diophantine Fuzzy Soft Rough Sets

Definition 10. For the non-empty set of alternatives Q̈ and the collection of attributes Ġ, we consider a subset
Ȯ ⊆ Ġ. Then, we define linear Diophantine fuzzy soft set (LDFSS), (δ̈, Ȯ) represented by the mapping:

δ̈ : Ȯ → D(Q̈)

where D(Q̈) is an assembly of all LDF-subsets of Q̈. Alternatively, it can be written as:

(δ̈, Ȯ) = {(℘̇, δ̈(℘̇)) : ℘̇ ∈ Ȯ, δ̈(℘̇) ∈ D(Q̈)}

Definition 11. Let (δ̈, Ȯ) be an LDFSS in Q̈. Then, an LDF-subset ð̃ of Q̈ × Ġ is called a linear Diophantine
fuzzy soft relation (LDFSR) from Q̈ to Ġ written as:

ð̃ = {((G, ℘̇), 〈T̈ð̃(G, ℘̇), S̈ð̃(G, ℘̇)〉, 〈αð̃(G, ℘̇), βð̃(G, ℘̇)〉) : (G, ℘̇) ∈ Q̈ × Ġ}

where αT̈ ð̃(G, ℘̇), αS̈ ð̃(G, ℘̇) ∈ [0, 1] are truth and falsity grades, respectively, with the corresponding reference
parameters αð̃(G, ℘̇), βð̃(G, ℘̇) ∈ [0, 1] satisfying the constraints:

0 ≤ αð̃(G, ℘̇)αT̈
2
ð̃(G, ℘̇) + βð̃(G, ℘̇)αS̈2

ð̃(G, ℘̇) ≤ 1

0 ≤ αð̃(G, ℘̇) + βð̃(G, ℘̇) ≤ 1

If Q̈ = {G1,G2, ...,Gn} and Ġ = {℘̇1, ℘̇2, ..., ℘̇m}, then LDFSR ð̃ on Q̈ × Ġ can be represented in tabular
form as Table 6.

Table 6. LDFSR.

ð̃̃ð̃ð ℘̇1 ... ℘̇m

G1 〈T̈ð̃(G1, ℘̇1), S̈ð̃(G1, ℘̇1)〉, 〈αð̃(G1, ℘̇1), βð̃(G1, ℘̇1)〉 ... 〈T̈ð̃(G1, ℘̇m), S̈ð̃(G1, ℘̇m)〉, 〈αð̃(G1, ℘̇m), βð̃(G1, ℘̇m)〉
G2 〈T̈ð̃(G2, ℘̇1), S̈ð̃(G2, ℘̇1)〉, 〈αð̃(G2, ℘̇1), βð̃(G2, ℘̇1)〉 ... 〈T̈ð̃(G2, ℘̇m), S̈ð̃(G2, ℘̇m)〉, 〈αð̃(G2, ℘̇m), βð̃(G2, ℘̇m)〉
... ... ... ...
Gn 〈T̈ð̃(Gn, ℘̇1), S̈ð̃(Gn, ℘̇1)〉, 〈αð̃(Gn, ℘̇1), βð̃(Gn, ℘̇1)〉 ... 〈T̈ð̃(Gn, ℘̇m), S̈ð̃(Gn, ℘̇m)〉, 〈αð̃(Gn, ℘̇m), βð̃(Gn, ℘̇m)〉

Definition 12. For the reference set Q̈ and set of decision variables Ġ, if we define an LDFSR ð̃ over Q̈ × Ġ,
then (Q̈, Ġ, ð̃) is called an “LDFS approximation space”. If YD ∈ D(Ġ), then ð̃>(YD ) and ð̃>(YD ) are
“upper and lower approximations” of YD about (Q̈, Ġ, ð̃) respectively and written as:

ð̃>(YD ) = {(G, 〈T̈ð̃>(YD )(G), S̈ð̃>(YD )(G)〉, 〈αð̃>(YD )(G), βð̃>(YD )(G)〉) : G ∈ Q̈}

ð̃>(YD ) = {(G, 〈T̈ð̃>(YD )(G), S̈ð̃>(YD )(G)〉, 〈αð̃>(YD )(G), βð̃>(YD )(G)〉) : G ∈ Q̈}

where the degrees can be calculated as given in Table 7.

Table 7. Formulation of LDFSRSs.

Notation Formulation Notation Formulation

T̈ð̃>(YD )(G) max
℘̇∈Ġ

[T̈ð̃(G, ℘̇) ∧ T̈YD
(℘̇)] S̈ð̃>(YD )(G) min

℘̇∈Ġ
[(1− S̈ð̃(G, ℘̇)) ∨ S̈YD

(℘̇)]

αð̃>(YD )(G) max
℘̇∈Ġ

[αð̃(G, ℘̇) ∧ αYD
(℘̇)] βð̃>(YD )(G) min

℘̇∈Ġ
[(1− βð̃(G, ℘̇)) ∨ βYD

(℘̇)]

T̈ð̃>(YD )(G) min
℘̇∈Ġ

[(1− T̈ð̃(G, ℘̇)) ∨ T̈YD
(℘̇)] S̈ð̃>(YD )(G) max

℘̇∈Ġ
[S̈ð̃(G, ℘̇) ∧ S̈YD

(℘̇)]

αð̃>(YD )(G) min
℘̇∈Ġ

[(1− αð̃(G, ℘̇)) ∨ αYD
(℘̇)] βð̃>(YD )(G) max

℘̇∈Ġ
[βð̃(G, ℘̇) ∧ βYD

(℘̇)]
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The pair (ð̃>(YD ), ð̃>(YD )) is a called linear Diophantine fuzzy soft rough set (LDFSRS) in (Q̈, Ġ, ð̃).
The “lower and upper approximation operators” are represented as ð̃>(YD ) and ð̃>(YD ), respectively.
If ð̃>(YD ) = ð̃>(YD ), then YD is said to be definable.

Example 4. Let Q̈ = {G1,G2} be the collection of certain cloth brands and Ġ = {℘̇1, ℘̇2, ℘̇3} be the set of
attributes, where:

℘̇1 = Product quality,

℘̇2 = Affordable,

℘̇3 = Recovery service.

We construct the LDFSR, ð̃ : Q̈ → Ġ, represented in Table 8.

Table 8. LDFSR.

ð̃̃ð̃ð Numeric Values of LDFNs

G1 ℘̇1:(〈0.684, 0.355〉, 〈0.221, 0.325〉)
℘̇2:(〈0.825, 0.836〉, 〈0.226, 0.123〉)
℘̇3:(〈0.826, 0.265〉, 〈0.122, 0.323〉)

G2 ℘̇1:(〈0.973, 0.543〉, 〈0.246, 0.652〉)
℘̇2:(〈0.822, 0.642〉, 〈0.223, 0.524〉)
℘̇3:(〈0.752, 0.275〉, 〈0.122, 0.233〉)

Consider a linear Diophantine fuzzy soft subset YD of Ġ given as:

YD = {(℘̇1, 〈0.837, 0.535〉, 〈0.242, 0.242〉), (℘̇2, 〈0.833, 0.635〉, 〈0.634, 0.142〉), (℘̇3, 〈0.725, 0.526〉, 〈0.625, 0.211〉)}

By using Definition 12, we find the “upper and lower approximations” of YD given by:

T̈ð̃>(YD )(G1) =
∨
℘̇

[0.684, 0.825, 0.725] = 0.825, S̈ð̃>(YD )(G1) = max
℘̇

[0.645, 0.635, 0.735] = 0.635,

αð̃>(YD )(G1) = max
℘̇

[0.221, 0.226, 0.122] = 0.226, βð̃>(YD )(G1) = min
℘̇

[0.675, 0.877, 0.677] = 0.675

Similarly, we find all other values for the “upper and lower approximation” of YD . This implies that:

ð̃>(YD ) = {(G1, 〈0.825, 0.635〉, 〈0.226, 0.675〉), (G2, 〈0.837, 0.535〉, 〈0.242, 0.348〉)}
ð̃>(YD ) = {(G1, 〈0.725, 0.635〉, 〈0.774, 0.242〉), (G2, 〈0.752, 0.635〉, 〈0.754, 0.242〉)}

Thus, (ð̃>(YD ), ð̃>(YD )) is called LDFSRS.

Remark 3. For the “linear Diophantine fuzzy soft approximation space (LDFS approximation space)” (Q̈, Ġ, ð̃),
if we take the upper and lower approximations of the following sets listed in Table 9, then we can observe the
degeneration of LDFSR approximation operators into different structures based on rough sets.
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Table 9. Degeneration of LDFSR approximation operators into different rough set models.

Approximation Space Set Theories Family of Sets Degeneration of LDFSR After Degeneration of the
Approximation Operators Constructed Model

LDFS YD = {〈℘̇, T̈ (℘̇)〉 : ℘̇ ∈ Ġ} ∈ F (Ġ) F (Ġ) collection of all Yes Soft fuzzy
(Q̈, Ġ, ð̃) fuzzy subsets of Ġ rough sets [42,43]

LDFS YD = {〈℘̇, T̈ (℘̇), S̈(℘̇)〉 : ℘̇ ∈ Ġ} ∈ I(Ġ) I(Ġ) collection of all Yes Intuitionistic fuzzy
(Q̈, Ġ, ð̃) IF-subsets of Ġ soft rough sets [26]

LDFS YD = {〈℘̇, T̈ (℘̇), S̈(℘̇)〉 : ℘̇ ∈ Ġ} ∈ P(Ġ) P(Ġ) collection of all Yes Pythagorean fuzzy
(Q̈, Ġ, ð̃) PF-subsets of Ġ soft rough sets [44]

LDFS YD = {〈℘̇, T̈ (℘̇), S̈(℘̇)〉 : ℘̇ ∈ Ġ} ∈ R(Ġ) R(Ġ) collection of all Yes q-rung orthopair
(Q̈, Ġ, ð̃) PF-subsets of Ġ fuzzy soft rough sets
Crisp soft YD = {〈℘̇, T̈ (℘̇), S̈(℘̇), α(℘̇), β(℘̇)〉 : D(Ġ) collection of all Yes Soft rough linear
(Q̈, Ġ, ˜A ) ℘̇ ∈ Ġ} ∈ D(Ġ) LDF-subsets of Ġ Diophantine fuzzy sets
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It is evident from Table 9 that our proposed model is superior and powerful in contrast with other existing
structures. However, we cannot decompose the described theories into the LDFSRSs and their respective
approximation operators. The beauty of this structure is that if we select the “crisp soft approximation space” for
LDFSR approximation operators, then it will be degenerated into the proposed SRLDFSs. This generalization
provides us a strong relation between both proposed rough set models. In simple terms, LDFSRS is the
generalization of “soft fuzzy rough sets, intuitionistic fuzzy soft rough sets, Pythagorean fuzzy soft rough sets,
q-rung orthopair fuzzy soft rough sets, and soft rough linear Diophantine fuzzy sets”.

Theorem 3. For arbitrary YD , BD ∈ D(G), the “upper and lower approximation operators”
ð̃>(YD ), ð̃>(BD ), ð̃>(YD ) and ð̃>(BD ) on the “LDFS approximation space” (Q̈, Ġ, ð̃) satisfy the
following axioms:

(1) ð̃>(YD ) =∼ ð̃>(∼ YD ),
(2) YD ⊆ BD ⇒ ð̃>(YD ) ⊆ ð̃>(BD ),
(3) ð̃>(YD ∩BD ) = ð̃>(YD ) ∩ ð̃>(BD ),
(4) ð̃>(YD ∪BD ) ⊇ ð̃>(YD ) ∪ ð̃>(BD ),
(5) ð̃>(YD ) =∼ ð̃>(∼ YD ),
(6) YD ⊆ BD ⇒ ð̃>(YD ) ⊆ ð̃>(BD ),
(7) ð̃>(YD ∪BD ) = ð̃>(YD ) ∪ ð̃>(BD ),
(8) ð̃>(YD ∩BD ) ⊆ ð̃>(YD ) ∩ ð̃>(BD ).

The complement of YD is represented by ∼ YD .

Proof. The proof is similar to the proof given in Appendix A.

Proposition 2. For arbitrary YD , BD ∈ D(G), the “upper and lower approximation operators”
ð̃>(YD ), ð̃>(BD ), ð̃>(YD ) and ð̃>(BD ) on the “LDFS approximation space” (Q̈, Ġ, ð̃) satisfy the
following axioms:

(1) ∼ (ð̃>(YD ) ∪ ð̃>(BD )) = ð̃>(∼ YD ) ∩ ð̃>(∼ BD ),
(2) ∼ (ð̃>(YD ) ∪ ð̃>(BD )) = ð̃>(∼ YD ) ∩ ð̃>(∼ BD ),
(3) ∼ (ð̃>(YD ) ∪ ð̃>(BD )) = ð̃>(∼ YD ) ∩ ð̃>(∼ BD ),
(4) ∼ (ð̃>(YD ) ∪ ð̃>(BD )) = ð̃>(∼ YD ) ∩ ð̃>(∼ BD ),
(5) ∼ (ð̃>(YD ) ∩ ð̃>(BD )) = ð̃>(∼ YD ) ∪ ð̃>(∼ BD ),
(6) ∼ (ð̃>(YD ) ∩ ð̃>(BD )) = ð̃>(∼ YD ) ∪ ð̃>(∼ BD ),
(7) ∼ (ð̃>(YD ) ∩ ð̃>(BD )) = ð̃>(∼ YD ) ∪ ð̃>(∼ BD ),
(8) ∼ (ð̃>(YD ) ∩ ð̃>(BD )) = ð̃>(∼ YD ) ∪ ð̃>(∼ BD ).

Proof. The proof is obvious.

Theorem 4. For “LDFS approximation space” (Q̈, Ġ, ð̃), if ð̃ is serial, then ð̃>(YD ) and ð̃>(YD ) satisfy
the following:
(1) ð̃>(∅) = ∅, ð̃>(Ġ) = Ġ,
(2) ð̃>(YD ) ⊆ ð̃>(YD ), ∀ YDYD ∈ D(G).

Proof. The proof is obvious by following Definition 12.
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Definition 13. Let YD ∈ D(Q̈), and let ð̃>(YD ), ð̃>(YD ) be lower and upper “LDFSR approximation
operators”. Then, the ring sum operation of ð̃>(YD ) and ð̃>(YD ) is written as:

ð̃>(YD )⊕ ð̃>(YD ) = {(G, 〈T̈ð̃>(YD )(G) + T̈ð̃>(YD )(G)− (T̈ð̃>(YD )(G)× T̈ð̃>(YD )(G)),

S̈ð̃>(YD )(G)× S̈ð̃>(YD )(G)〉, 〈αð̃>(YD )(G) + αð̃>(YD )(G)− (αð̃>(YD )(G)× αð̃>(YD )(G)),

βð̃>(YD )(G)× βð̃>(YD )(G)〉) : G ∈ Q̈}

Definition 14. Let D =
{(
G, 〈T̈D (G), S̈D (G)〉, 〈αD (G), βD (G)〉

)
: G ∈ Q̈

}
be an LDFS and the constants

(〈η, θ〉, 〈ζ, ψ〉), where η, θ, ζ, ψ ∈ [0, 1] satisfying the constraints 0 ≤ ηθ + ζψ ≤ 1 and 0 ≤ θ + ψ ≤ 1.
Then, the (〈η, θ〉, 〈ζ, ψ〉)-level cut set of D is written as:

D
〈ζ,ψ〉
〈η,θ〉 = {G ∈ Q̈ : T̈D (G) ≥ η, αD (G) ≥ θ, S̈D (G) ≤ ζ, βD (G) ≤ ψ}.

The 〈η, θ〉-level cut of D is written as D〈η,θ〉 = {G ∈ Q̈ : T̈D (G) ≥ η, αD (G) ≥ θ}.
The strong 〈η, θ〉-level cut of D is written as D〈η,θ〉+ = {G ∈ Q̈ : T̈D (G) > η, αD (G) > θ}.
The 〈ζ, ψ〉-level cut of D is written as D 〈ζ,ψ〉 = {G ∈ Q̈ : S̈D (G) ≤ ζ, βD (G) ≤ ψ}.
The strong 〈ζ, ψ〉-level cut of D is written as D 〈ζ,ψ〉+ = {G ∈ Q̈ : S̈D (G) < ζ, βD (G) < ψ}.
The other cut sets of an LDFS are analogously described as:

D
〈ζ,ψ〉
〈η,θ〉+

= {G ∈ Q̈ : T̈D (G) > η, αD (G) > θ, S̈D (G) ≤ ζ, βD (G) ≤ ψ}.

D
〈ζ,ψ〉+
〈η,θ〉 = {G ∈ Q̈ : T̈D (G) ≥ η, αD (G) ≥ θ, S̈D (G) < ζ, βD (G) < ψ}.

D
〈ζ,ψ〉+

〈η,θ〉+
= {G ∈ Q̈ : T̈D (G) > η, αD (G) > θ, S̈D (G) < ζ, βD (G) < ψ}.

Theorem 5. Let D , 1D , 2D ∈ D(Q̈) and η, θ, ζ, ψ ∈ [0, 1] satisfy the constraints 0 ≤ ηθ + ζψ ≤ 1 and
0 ≤ θ + ψ ≤ 1. Then, the cut sets of LDFSs satisfy the following axioms:

1. D
〈ζ,ψ〉
〈η,θ〉 = D〈η,θ〉 ∩D 〈ζ,ψ〉,

2. (∼ D)〈η,θ〉 =∼ D〈η,θ〉+ , (∼ D)〈ζ,ψ〉 =∼ D 〈ζ,ψ〉+ ,

3. 1D ⊆ 2D = 1D
〈ζ,ψ〉
〈η,θ〉 ⊆

2D
〈ζ,ψ〉
〈η,θ〉 ,

4. (1D ∩ 2D)〈η,θ〉 =
1D 〈η,θ〉 ∩ 2D 〈η,θ〉, (

1D ∩ 2D)〈ζ,ψ〉 = 1D
〈ζ,ψ〉 ∩ 2D

〈ζ,ψ〉,

(1D ∩ 2D)
〈ζ,ψ〉
〈η,θ〉 =

1D
〈ζ,ψ〉
〈η,θ〉 ∩

2D
〈ζ,ψ〉
〈η,θ〉 ,

5. (1D ∪ 2D)〈η,θ〉 =
1D 〈η,θ〉 ∪ 2D 〈η,θ〉, (

1D ∪ 2D)〈ζ,ψ〉 = 1D
〈ζ,ψ〉 ∪ 2D

〈ζ,ψ〉,

(1D ∪ 2D)
〈ζ,ψ〉
〈η,θ〉 =

1D
〈ζ,ψ〉
〈η,θ〉 ⊇

2D
〈ζ,ψ〉
〈η,θ〉

6. If η1 ≥ η2, θ1 ≥ θ2 and ζ1 ≤ ζ2, ψ1 ≤ ψ2, then
D〈η1,θ1〉 ⊆ D〈η2,θ2〉, D 〈ζ1,ψ1〉 ⊆ D 〈ζ2,ψ2〉 and D

〈ζ1,ψ1〉
〈η1,θ1〉

⊆ D
〈ζ2,ψ2〉
〈η1,θ1〉

.

Proof. This proof is inferred explicitly by Definition 14.

By using the defined idea of cut sets on LDFSs, we can find the cut sets of LDFSR:

ð̃ = {((G, ℘̇), 〈T̈ð̃(G, ℘̇), S̈ð̃(G, ℘̇)〉, 〈αð̃(G, ℘̇), βð̃(G, ℘̇)〉) : (G, ℘̇) ∈ Q̈ × Ġ}

given as:
ð̃〈η,θ〉 = {((G, ℘̇) ∈ Q̈ × Ġ : T̈ð̃(G, ℘̇) ≥ η, αð̃(G, ℘̇) ≥ θ}

ð̃〈η,θ〉(G) = {℘̇ ∈ Ġ : T̈ð̃(G, ℘̇) ≥ η, αð̃(G, ℘̇) ≥ θ} for η, θ ∈ [0, 1]



Symmetry 2020, 12, 1215 19 of 39

ð̃〈η,θ〉+ = {((G, ℘̇) ∈ Q̈ × Ġ : T̈ð̃(G, ℘̇) > η, αð̃(G, ℘̇) > θ}

ð̃〈η,θ〉+(G) = {℘̇ ∈ Ġ : T̈ð̃(G, ℘̇) > η, αð̃(G, ℘̇) > θ} for η, θ ∈ [0, 1)

ð̃〈η,θ〉 = {((G, ℘̇) ∈ Q̈ × Ġ : S̈ð̃(G, ℘̇) ≤ η, βð̃(G, ℘̇) ≤ θ}

ð̃〈η,θ〉(G) = {℘̇ ∈ Ġ : S̈ð̃(G, ℘̇) ≤ η, βð̃(G, ℘̇) ≤ θ} for η, θ ∈ [0, 1]

ð̃〈η,θ〉+ = {((G, ℘̇) ∈ Q̈ × Ġ : S̈ð̃(G, ℘̇) < η, βð̃(G, ℘̇) < θ}

ð̃〈η,θ〉+(G) = {℘̇ ∈ Ġ : S̈ð̃(G, ℘̇) < η, βð̃(G, ℘̇) < θ} for η, θ ∈ (0, 1]

where all the calculated cuts are crisp soft relations. Now, we present a result to show that LDFSR
approximation operators can be written as crisp soft rough approximation operators.

Theorem 6. Consider that for LDFSR approximation space (Q̈, Ġ, ð̃) and D ∈ D(Q̈), the upper approximation
operators can be represented as:

1.

〈T̈ð̃>(D)(G), αð̃>(D)(G)〉 =
∨

η,θ∈[0,1]

[〈η, θ〉 ∧ ð̃>〈η,θ〉(D〈η,θ〉)(G)]

=
∨

η,θ∈[0,1]

[〈η, θ〉 ∧ ð̃>〈η,θ〉(D〈η,θ〉+)(G)]

=
∨

η,θ∈[0,1]

[〈η, θ〉 ∧ ð̃>〈η,θ〉+(D〈η,θ〉)(G)]

=
∨

η,θ∈[0,1]

[〈η, θ〉 ∧ ð̃>〈η,θ〉+(D〈η,θ〉+)(G)]

2.

〈S̈ð̃>(D)(G), βð̃>(D)(G)〉 =
∧

η,θ∈[0,1]

[〈η, θ〉 ∨ (1− ð̃>〈1−η,1−θ〉(D
〈η,θ〉)(G))]

=
∧

η,θ∈[0,1]

[〈η, θ〉 ∨ ð̃>〈1−η,1−θ〉(D
〈η,θ〉+)(G)]

=
∧

η,θ∈[0,1]

[〈η, θ〉 ∨ ð̃>〈1−η,1−θ〉+(D
〈η,θ〉)(G)]

=
∧

η,θ∈[0,1]

[〈η, θ〉 ∨ ð̃>〈1−η,1−θ〉+(D〈η, θ〉+)(G)]

and for arbitrary 〈η, θ〉 ∈ [0, 1], we have:
3. [ð̃>(D)]〈η,θ〉+ ⊆ ð̃

>
〈η,θ〉+

(D〈η,θ〉+) ⊆ ð̃
>
〈η,θ〉+

(D〈η,θ〉) ⊆ ð̃>〈η,θ〉(D〈η,θ〉) ⊆ [ð̃>(D)]〈η,θ〉.

4. [ð̃>(D)]〈η,θ〉+ ⊆ ð̃>
〈1−η,1−θ〉+

(D 〈η,θ〉+) ⊆ ð̃>
〈1−η,1−θ〉+

(D 〈η,θ〉) ⊆ ð̃>〈1−η,1−θ〉(D
〈η,θ〉) ⊆ [ð̃>(D)]〈η,θ〉.

Proof. One can conclude the proof of this theorem directly by using Definitions 12 and 14.

Theorem 7. Consider that for LDFSR approximation space (Q̈, Ġ, ð̃) and D ∈ D(Q̈), the upper approximation
operators can be represented as:
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1.

〈T̈ð̃>(D)(G), αð̃>(D)(G)〉 =
∧

η,θ∈[0,1]

[〈η, θ〉 ∨ ð̃〈1−η,1−θ〉>(D〈η,θ〉+)(G)]

=
∧

η,θ∈[0,1]

[〈η, θ〉 ∨ ð̃〈1−η,1−θ〉+>
(D〈η,θ〉)(G)]

=
∧

η,θ∈[0,1]

[〈η, θ〉 ∨ ð̃〈1−η,1−θ〉+>
(D〈η,θ〉+)(G)]

=
∧

η,θ∈[0,1]

[〈η, θ〉 ∨ ð̃〈1−η,1−θ〉>(D〈η,θ〉)(G)]

2.

〈S̈ð̃>(D)(G), βð̃>(D)(G)〉 =
∨

η,θ∈[0,1]

[〈η, θ〉 ∧ (1− ð̃〈η,θ〉>(D
〈η,θ〉)(G))]

=
∨

η,θ∈[0,1]

[〈η, θ〉 ∧ (1− ð̃〈η,θ〉+>
(D 〈η,θ〉)(G))]

=
∨

η,θ∈[0,1]

[〈η, θ〉 ∧ (1− ð̃〈η,θ〉+>
(D 〈η,θ〉+)(G))]

=
∨

η,θ∈[0,1]

[〈η, θ〉 ∧ (1− ð̃〈η,θ〉>(D
〈η,θ〉+)(G))]

and for arbitrary 〈η, θ〉 ∈ [0, 1], we have:
3. [ð̃>(D)]〈η,θ〉+ ⊆ ð̃〈1−η,1−θ〉>(D〈η,θ〉+) ⊆ ð̃〈1−η,1−θ〉+>

(D〈η,θ〉+) ⊆ ð̃〈1−η,1−θ〉>(D〈η,θ〉) ⊆
[ð̃>(D)]〈η,θ〉.

4. [ð̃>(D)]〈η,θ〉+ ⊆ ð̃〈1−η,1−θ〉+>
(D 〈η,θ〉+) ⊆ ð̃〈1−η,1−θ〉+>

(D 〈η,θ〉) ⊆ ð̃〈1−η,1−θ〉>(D
〈η,θ〉) ⊆

[ð̃>(D)]〈η,θ〉.

Proof. The proof of this theorem can be obtained directly by using Definitions 12 and 14.

4. MCDM for Sustainable Material Handling Equipment

The determination of material handling equipment is extremely substantial in the project
of an operative industrial system. The efficiency of material flow depends on the selection of
appropriate material handling equipment. It promotes capability utilization and increases productivity.
Decision support systems and various programs have been developed by various researchers for the
selection of the best material handling equipment. In this section, we establish the novel methodologies
for the selection of the appropriate and most reliable material handling equipment by using the
LDFSRSs and SRLDFSs. The intelligent system, which consists of both technical and economical
criteria in the material handling equipment selection process, is presented in Figure 2.
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Figure 2. Configuration of modules in the material handling equipment selection process.

4.1. Selection of a Sustainable Material Handling Equipment by Using LDFSRSs

We suppose that a manufacturing company wants to increase efficiency and needs to deal with
the materials professionally. The company wants to select that alternative that decreases the lead times
and increases productivity. After some basic assessment, the board of the company constructs the set of
suitable alternatives given as Q̈ = {G1,G2,G3,G4,G5,G6,G7}. To measure the appropriate alternative,
several decision makers from the company’s technical board are organized. They choose some
significant decision variables according to their requirements, given as set Ġ = {℘̇1, ℘̇2, ℘̇3, ℘̇4}, where:

℘̇1 = “Technical: convenience, maintainability, safety required”,

℘̇2 = “Monetary: setting up and operational cost, maintenance cost, purchasing cost”,

℘̇3 = “Operational: fuel consumption, moving speed, capacity”,

℘̇4 = “Strategic: flexibility, level of training required, guarantee”.

We divide the attributes into sub-criteria under the effect of parameterizations. This categorizes
the data and gives us a wide domain for the selection of truth and falsity grades for the alternatives to
the corresponding decision variables. The categorization is given as follows:

• “Technical: convenience, maintainability, safety required” means that the alternative is “highly
technical” or may be “low”.

• “Monetary: setting up and operational cost, maintenance cost, purchasing cost” means that the
alternative may be “expansive” or “inexpensive”.

• “Operational: fuel consumption, moving speed, capacity” means that the alternative is “highly
operational” or may be “low”.

• “Strategic: flexibility, level of training required, guarantee” means that the alternative is “highly
strategic” or may be “low”.

Table 10 represents the sub-attributes of the listed criteria.

Table 10. Properties of selected attributes.

Attributes Characteristics for LDFSR

“Technical: convenience, maintainability, safety required” (〈membership, non-membership〉, 〈high, low〉)
“Monetary: operational cost, maintenance cost, purchasing cost” (〈membership, non-membership〉, 〈expansive, cheap〉)

“Operational: fuel consumption, moving speed, capacity” (〈membership, non-membership〉, 〈high, low〉)
“Strategic: flexibility, level of training required, guarantee” (〈membership, non-membership〉, 〈high, low〉)
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We developed two novel algorithms (Algorithms 1 and 2) for the selection of best material
handling equipment by using LDFSRSs. The flowchart diagram of both algorithms is given in Figure 3.

Figure 3. Flowchart diagram of Algorithms 1 and 2.

Algorithm 1: Selection of a best material handling equipment by using LDFSRSs.
Input:
1. Input the reference set Q̈.
2. Input the assembling of attributes Ġ.
Construction:
3. According to the necessity of the DM, build an LDFSR ð̃ : Q̈ → Ġ.
4. Based on the needs of the decision maker, construct LDF-subset BD of Ġ as an optimal
normal decision set.

Calculation:
5. Calculate the “LDFSR approximation operators” ð̃>(BD ) and ð̃>(BD ) as lower and upper
using Definition 12.

6. By using Definition 13 of the ring sum operation, find the choice of LDFS
ð̃>(BD )⊕ ð̃>(BD ).

Output:
7. We use the definitions of score, quadratic score, and expectation score functions for LDFNs
ÄD = (〈ṫD , ḟD 〉, 〈αD , βD 〉) given in [54] and written respectively as:

L1(ÄD ) =
1
2
[(ṫD − ḟD ) + (αD − βD )]

L2(ÄD ) =
1
2
[(ṫ2

D − ḟ 2
D ) + (α2

D − β2
D )]

L3(ÄD ) =
1
2
[
(ṫD − ḟD + 1)

2
+

(αD − βD + 1)
2

]

of every alternative in ð̃>(BD )⊕ ð̃>(BD ).
8. Rank the alternatives by using calculated score values.
Final decision:
9. Choose the alternative having the maximum score value.
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Algorithm 2: Selection of the best material handling equipment by using LDFSRSs.
Input:
1. Input the reference set Q̈.
2. Input the assembling of attributes Ġ.
Construction:
3. According to the necessity of the DM, build an LDFSR ð̃ : Q̈ → Ġ.
4. Based on the needs of the decision maker, construct LDF-subset BD of Ġ as an optimal
normal decision set.

Calculation:
5. Calculate the “LDFSR approximation operators” ð̃>(BD ) and ð̃>(BD ) as lower and upper
using Definition 12.

6. For “N ” number of experts, calculate upper and lower reducts from the calculated “upper
and lower approximation operators”, respectively.

Output:
7. From the calculated “2N ” reducts, we get “2N ” crisp subsets of the reference set Q̈.
The subsets can be constructed by using the “YES” and “NO” logic. The only alternatives in
the reduct having final decision “YES” will become the object of the crisp subset.

8. Calculate the core set by taking the intersection of all crisp subsets obtained from the
calculated reducts.

Final decision:
9. The alternatives in the core will be our choice for the final decision.

4.1.1. Calculations by Using Algorithm 1

The indiscernibility relation is “the selection of best material handling equipment”. This relation
can be observed by LDFSR, ð̃ : Q̈ → Ġ given as Table 11.

Table 11. LDFSR.

ð̃̃ð̃ð ℘̇1 ℘̇2 ℘̇3 ℘̇4

G1 (〈0.73, 0.41〉, 〈0.31, 0.13〉) (〈0.63, 0.53〉, 〈0.13, 0.23〉) (〈0.73, 0.41〉, 〈0.23, 0.15〉) (〈0.63, 0.53〉, 〈0.31, 0.36〉)
G2 (〈0.63, 0.43〉, 〈0.41, 0.42〉) (〈0.74, 0.32〉, 〈0.63, 0.21〉) (〈0.68, 0.41〉, 〈0.53, 0.21〉) (〈0.71, 0.41〉, 〈0.43, 0.28〉)
G3 (〈0.71, 0.34〉, 〈0.51, 0.31〉) (〈0.63, 0.51〉, 〈0.43, 0.39〉) (〈0.71, 0.41〉, 〈0.31, 0.41〉) (〈0.69, 0.38〉, 〈0.41, 0.31〉)
G4 (〈0.69, 0.59〉, 〈0.61, 0.21〉) (〈0.81, 0.51〉, 〈0.31, 0.42〉) (〈0.83, 0.41〉, 〈0.32, 0.41〉) (〈0.73, 0.49〉, 〈0.41, 0.21〉)
G5 (〈0.72, 0.41〉, 〈0.51, 0.21〉) (〈0.83, 0.41〉, 〈0.42, 0.31〉) (〈0.73, 0.41〉, 〈0.31, 0.42〉) (〈0.83, 0.49〉, 〈0.28, 0.41〉)
G6 (〈0.63, 0.59〉, 〈0.41, 0.31〉) (〈0.78, 0.43〉, 〈0.38, 0.41〉) (〈0.63, 0.48〉, 〈0.28, 0.17〉) (〈0.58, 0.49〉, 〈0.31, 0.42〉)
G7 (〈0.81, 0.58〉, 〈0.49, 0.31〉) (〈0.73, 0.68〉, 〈0.43, 0.49〉) (〈0.69, 0.73〉, 〈0.31, 0.31〉) (〈0.68, 0.51〉, 〈0.43, 0.21〉)

Thus, ð̃ is an LDFSR on Q̈ × Ġ. This relation gives us the numeric values in the form of LDFNs of
each alternative corresponding to every decision variable. For example, for the alternative G1, the
decision variable ℘̇1 (“Technical: convenience, maintainability, safety required”) has numeric value
(〈0.73, 0.41〉, 〈0.31, 0.13〉). This value shows that the alternative G1 is 73% technical and 41% has a
falsity value for technicality. The pair 〈0.31, 0.13〉 represents the reference parameters for the truth and
falsity grades, where we can observe that alternative G1 is 31% highly technical and it has 13% low
technicality. These sub-criteria for the alternatives can be observed from Table 10. All the remaining
values can be constructed according to a similar pattern. We consider that experts give some opinion
about the attributes and rank them according to their requirement. We convert the verbal description
into the LDFS numeric values in the form of LDFS BD . The set BD is the LDF-subset of Ġ and written
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as follows:

BD = {(℘̇1, 〈00.63, 00.41〉, 〈00.31, 00.33〉), (℘̇2, 〈00.71, 00.51〉, 〈00.41, 00.38〉),
(℘̇3, 〈00.75, 00.63〉, 〈00.51, 00.32〉), (℘̇4, 〈00.83, 00.51〉, 〈00.41, 00.21〉)}.

We evaluate the “lower and upper approximations” of LDFS BD on LDFSR ð̃.

ð̃>(BD ) = {(G1, 〈00.73, 00.51〉, 〈00.31, 00.64〉), (G2, 〈00.71, 00.57〉, 〈00.51, 00.58〉), (G3, 〈00.71, 00.51〉, 〈00.41, 00.59〉),

(G4, 〈00.75, 00.41〉, 〈00.41, 00.58〉), (G5, 〈00.83, 00.51〉, 〈00.41, 00.58〉, (G6, 〈00.71, 00.41〉, 〈00.38, 00.58〉,

(G7, 〈00.71, 00.42〉, 〈00.41, 00.51〉)}

ð̃>(BD ) = {(G1, 〈00.63, 00.51〉, 〈00.69, 00.23〉), (G2, 〈00.63, 00.41〉, 〈00.41, 00.33〉), (G3, 〈00.63, 00.51〉, 〈00.49, 00.38〉),

(G4, 〈00.63, 00.51〉, 〈00.39, 00.38〉), (G5, 〈00.63, 00.49〉, 〈00.49, 00.32〉, (G6, 〈00.63, 00.49〉, 〈00.59, 00.38〉,

(G7, 〈00.63, 00.63〉, 〈00.51, 00.38〉)}

ð̃>(BD )⊕ ð̃>(BD ) = {(G1, 〈0.900, 0.260〉, 〈0.780, 0.140〉), (G2, 〈0.890, 0.230〉, 〈0.710, 0.190〉),

(G3, 〈0.890, 0.260〉, 〈0.690, 0.220〉), (G4, 〈0.900, 0.200〉, 〈0.640, 0.220〉),

(G5, 〈0.937, 0.249〉, 〈0.699, 0.185〉, (G6, 〈0.892, 0.200〉, 〈0.745, 0.220〉,

(G7, 〈0.890, 0.260〉, 〈0.710, 0.190〉)}

Now, we calculate the score values, quadratic score values, and expectation score values of the
alternatives in ð̃>(BD )⊕ ð̃>(BD ). The final ranking is given in Table 12.

Table 12. Ranking of alternatives for different score values.

LDFS G1 G2 G3 G4 G5 G6 G7 Ranking Final
Decision

L1 (SF) 0.640 0.590 0.550 0.560 0.601 0.608 0.575 G1 � G6 � G5 � G2 � G7 � G4 � G3 G1
L2 (QSF) 0.665 0.603 0.576 0.565 0.635 0.631 0.596 G1 � G5 � G6 � G2 � G7 � G3 � G4 G1
L3 (ESF) 0.820 0.795 0.775 0.780 0.800 0.804 0.787 G1 � G6 � G5 � G2 � G7 � G4 � G3 G1

From Table 12, we can observe that the alternative G1 is most suitable for the final decision.
The bar chart of the ranking results for alternatives is given in Figure 4.

Figure 4. Bar chart of alternatives under LDFSRS for SF L1, QSF L2, and ESF L3.
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4.1.2. Calculations by Using Algorithm 2

In Algorithm 1, we use the input data in the form of linguistic terms as LDFNs. We only deal with
the truth and falsity grades with their reference parameters, and we have no idea about the expert’s
opinion. Due to the lack of information, we have some uncertainty in our decision. This uncertainty
can be removed by giving some weight to the expert’s opinion. Therefore, we establish upper and
lower reducts for all the experts one by one. The initial five steps of Algorithm 2 are the same as
Algorithm 1. We will proceed next by constructing the upper and lower reducts from “upper and lower
approximations” of LDFS for all the experts. Suppose that we have three experts from the company’s
technical committee given as:

Expert X

Expert Y

Expert Z

The reducts from approximations can be constructed by using the following terms.

T̈D = Truth membership grade,

S̈D = Falsity membership grade,

αD = Reference parameter corresponding to truth membership grade,

βD = Reference parameter corresponding to falsity membership grade,

L3 = Expectation score function value of LDFN,

L̂ = Ranking given by experts to the alternatives from crisp set {0,1},

L ∗ = Selection of alternative by using “YES” or “NO”, i.e., take average of

scores L3 for all the alternatives. The alternatives that have a greater

or equal score L3 than/to the average can be selected as “YES”; those who

have a lesser score than the average value can be neglected as “NO”,

F.D = Final decision

The final decision is based on L̂ and L ∗ given in Table 13.

Table 13. The criteria for the final decision (F.D).

L̂̂L̂L L ∗L ∗L ∗ F.D

0 NO NO
1 YES YES
0 YES NO
1 NO NO

For expert-X, the upper reduct of upper approximation ð̃>(BD ) (calculated in Algorithm 1) of
LDFS BD is given as Table 14. The average of the score values of all the alternatives for ð̃>(BD ) is 0.520.
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Table 14. Upper reduct for expert-X (UX) from ð̃>(BD ).

(UX) T̈D̈TD̈TD S̈DS̈DS̈D αDαDαD βDβDβD L3L3L3 L̂̂L̂L L ∗L ∗L ∗ F.D

G1 0.73 0.51 0.31 0.64 0.472 1 L3 < 0.520→ NO NO
G2 0.71 0.57 0.51 0.58 0.517 0 L3 < 0.520→ NO NO
G3 0.71 0.51 0.41 0.59 0.505 1 L3 < 0.520→ NO NO
G4 0.75 0.41 0.41 0.58 0.542 0 L3 > 0.520→ YES NO
G5 0.83 0.51 0.41 0.58 0.537 1 L3 > 0.520→ YES YES
G6 0.71 0.41 0.38 0.58 0.525 1 L3 > 0.520→ YES YES
G7 0.71 0.42 0.41 0.51 0.547 1 L3 > 0.520→ YES YES

This implies that UX = {G5,G6,G7}. For expert-X, the lower reduct of lower approximation ð̃>(BD )

(calculated in Algorithm 1) of LDFS BD is given as Table 15. The average of the score values of all the
alternatives for ð̃>(BD ) is 0.572.

Table 15. Lower reduct for expert-X (LX) from ð̃>(BD ).

(LX) T̈D̈TD̈TD S̈DS̈DS̈D αDαDαD βDβDβD L3L3L3 L̂̂L̂L L ∗L ∗L ∗ F.D

G1 0.63 0.51 0.69 0.23 0.645 1 L3 > 0.572→ YES YES
G2 0.63 0.41 0.41 0.33 0.575 0 L3 > 0.572→ YES NO
G3 0.63 0.51 0.49 0.38 0.557 1 L3 < 0.572→ NO NO
G4 0.63 0.51 0.39 0.38 0.532 0 L3 < 0.572→ NO NO
G5 0.63 0.49 0.49 0.32 0.577 1 L3 > 0.572→ YES YES
G6 0.63 0.49 0.59 0.38 0.587 1 L3 > 0.572→ YES YES
G7 0.63 0.63 0.51 0.38 0.532 1 L3 < 0.572→ NO NO

This implies that LX = {G1,G5,G6}. For expert-Y, the upper reduct of upper approximation ð̃>(BD )

(calculated in Algorithm 1) of LDFS BD is given as Table 16. The average of the score values of all the
alternatives for ð̃>(BD ) is 0.520.

Table 16. Upper reduct for expert-Y (UY) from ð̃>(BD ).

(UY) T̈D̈TD̈TD S̈DS̈DS̈D αDαDαD βDβDβD L3L3L3 L̂̂L̂L L ∗L ∗L ∗ F.D

G1 0.73 0.51 0.31 0.64 0.472 0 L3 < 0.520→ NO NO
G2 0.71 0.57 0.51 0.58 0.517 1 L3 < 0.520→ NO NO
G3 0.71 0.51 0.41 0.59 0.505 0 L3 < 0.520→ NO NO
G4 0.75 0.41 0.41 0.58 0.542 1 L3 > 0.520→ YES YES
G5 0.83 0.51 0.41 0.58 0.537 1 L3 > 0.520→ YES YES
G6 0.71 0.41 0.38 0.58 0.525 1 L3 > 0.520→ YES YES
G7 0.71 0.42 0.41 0.51 0.547 0 L3 > 0.520→ YES NO

This implies that UY = {G4,G5,G6}. For expert-Y, the lower reduct of lower approximation ð̃>(BD )

(calculated in Algorithm 1) of LDFS BD is given as Table 17. The average of the score values of all the
alternatives for ð̃>(BD ) is 0.572.
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Table 17. Lower reduct for expert-Y (LY) from ð̃>(BD ).

(LY) T̈D̈TD̈TD S̈DS̈DS̈D αDαDαD βDβDβD L3L3L3 L̂̂L̂L L ∗L ∗L ∗ F.D

G1 0.63 0.51 0.69 0.23 0.645 0 L3 > 0.572→ YES NO
G2 0.63 0.41 0.41 0.33 0.575 1 L3 > 0.572→ YES YES
G3 0.63 0.51 0.49 0.38 0.557 0 L3 < 0.572→ NO NO
G4 0.63 0.51 0.39 0.38 0.532 1 L3 < 0.572→ NO NO
G5 0.63 0.49 0.49 0.32 0.577 1 L3 > 0.572→ YES YES
G6 0.63 0.49 0.59 0.38 0.587 1 L3 > 0.572→ YES YES
G7 0.63 0.63 0.51 0.38 0.532 0 L3 < 0.572→ NO NO

This implies that LY = {G2,G5,G6}. For expert-Z, the upper reduct of upper approximation ð̃>(BD )

(calculated in Algorithm 1) of LDFS BD is given as Table 18. The average of the score values of all the
alternatives for ð̃>(BD ) is 0.520.

Table 18. Upper reduct for expert-Z (UZ) from ð̃>(BD ).

(UY) T̈D̈TD̈TD S̈DS̈DS̈D αDαDαD βDβDβD L3L3L3 L̂̂L̂L L ∗L ∗L ∗ F.D

G1 0.73 0.51 0.31 0.64 0.472 1 L3 < 0.520→ NO NO
G2 0.71 0.57 0.51 0.58 0.517 1 L3 < 0.520→ NO NO
G3 0.71 0.51 0.41 0.59 0.505 0 L3 < 0.520→ NO NO
G4 0.75 0.41 0.41 0.58 0.542 0 L3 > 0.520→ YES NO
G5 0.83 0.51 0.41 0.58 0.537 1 L3 > 0.520→ YES YES
G6 0.71 0.41 0.38 0.58 0.525 0 L3 > 0.520→ YES NO
G7 0.71 0.42 0.41 0.51 0.547 1 L3 > 0.520→ YES YES

This implies that UZ = {G5,G7}. For expert-Z, the lower reduct of lower approximation ð̃>(BD )

(calculated in Algorithm 1) of LDFS BD is given as Table 19. The average of the score values of all the
alternatives for ð̃>(BD ) is 0.572.

Table 19. Lower reduct for expert-Z (LZ) from ð̃>(BD ).

(LZ) T̈D̈TD̈TD S̈DS̈DS̈D αDαDαD βDβDβD L3L3L3 L̂̂L̂L L ∗L ∗L ∗ F.D

G1 0.63 0.51 0.69 0.23 0.645 1 L3 > 0.572→ YES YES
G2 0.63 0.41 0.41 0.33 0.575 1 L3 > 0.572→ YES YES
G3 0.63 0.51 0.49 0.38 0.557 0 L3 < 0.572→ NO NO
G4 0.63 0.51 0.39 0.38 0.532 0 L3 < 0.572→ NO NO
G5 0.63 0.49 0.49 0.32 0.577 1 L3 > 0.572→ YES YES
G6 0.63 0.49 0.59 0.38 0.587 0 L3 > 0.572→ YES NO
G7 0.63 0.63 0.51 0.38 0.532 1 L3 < 0.572→ NO NO

This implies that LZ = {G1,G2,G5}. Now, we calculate the core set by taking the intersection of all
upper and lower reducts for all three experts.

core = UX ∩ LX ∩UY ∩ LY ∩UZ ∩ LZ = {G5}

This means that “G5” is the most suitable alternative for the final decision.

4.2. Selection of the Most Appropriate Material Handling Equipment by Using SRLDFSs

Now, we use our second novel structure of SRLDFS and “crisp soft approximation space” for the
selection of the most appropriate material handling equipment. We construct two novel algorithms
(Algorithms 3 and 4) for the selection. The flowchart diagram of both algorithms is given in Figure 5.
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Algorithm 3: Selection of the best material handling equipment by using SRLDFSs.
Input:
1. Input the reference set Q̈.
2. Input the assembling of attributes Ġ.
Construction:
3. According to the necessity of the DM, build a crisp soft relation ˜A over Q̈ × Ġ.
4. Based on the needs of the decision maker, construct LDF-subset H of Ġ as an optimal normal
decision set.

Calculation:
5. Calculate the “SRLDF approximation operators” ˜A>(H) and ˜A >(H) as “lower and upper
approximations” by using Definition 9.

6. By using Definition 13 of the ring sum operation, find the choice of LDFS ˜A>(H)⊕ ˜A >(H).
Output:
7. We use the definitions of the score, quadratic score, and expectation score functions for
LDFNs ÄD = (〈ṫD , ḟD 〉, 〈αD , βD 〉) given in [54] and written respectively as:

L1(ÄD ) =
1
2
[(ṫD − ḟD ) + (αD − βD )]

L2(ÄD ) =
1
2
[(ṫ2

D − ḟ 2
D ) + (α2

D − β2
D )]

L3(ÄD ) =
1
2
[
(ṫD − ḟD + 1)

2
+

(αD − βD + 1)
2

]

of every alternative in ˜A>(H)⊕ ˜A >(H).
8. Rank the alternatives by using calculated score values.
Final decision:
9. Select the object having the highest score value.

Algorithm 4: Selection of the best material handling equipment by using SRLDFSs.
Input:
1. Input the reference set Q̈.
2. Input the assembling of attributes Ġ.
Construction:
3. According to the necessity of the DM, build a crisp soft relation ˜A over Q̈ × Ġ.
4. Based on the needs of the decision maker, construct LDF-subset H of Ġ as an optimal normal
decision set.

Calculation:
5. Calculate the “SRLDF approximation operators” ˜A>(H) and ˜A >(H) as “lower and upper
approximations” by using Definition 9.

6. For “N ” number of experts, calculate upper and lower reducts from the calculated “upper
and lower approximation operators”, respectively.

Output:
7. From calculated “2N ” reducts, we get “2N ” crisp subsets of the reference set Q̈. The subsets
can be constructed by using the “YES” and “NO” logic. The only alternatives in the reduct
having final decision “YES” will become the object of the crisp subset.

8. Calculate the core set by taking the intersection of all crisp subsets obtained from the
calculated reducts.

Final decision:
9. The alternatives in the core will be our choice for the final decision.
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Figure 5. Flowchart diagram of Algorithms 3 and 4.

4.2.1. Calculations by Using Algorithm 3

We consider the indiscernibility relation “selection of best material handling equipment”.
This relation is represented as a crisp soft relation ˜A over Q̈ × Ġ given as Table 20.

Table 20. Crisp soft relation ˜A .

˜A˜A˜A ℘̇1 ℘̇2 ℘̇3 ℘̇4

G1 0 0 1 1
G2 0 1 1 0
G3 1 1 0 0
G4 1 1 1 0
G5 1 1 0 1
G6 1 0 0 1
G7 0 1 1 0

Thus, ˜A over Q̈ × Ġ is a crisp soft relation. Table 20 shows that we have:

˜As(G1) = {℘̇3, ℘̇4}
˜As(G2) = {℘̇2, ℘̇3}
˜As(G3) = {℘̇1, ℘̇2}
˜As(G4) = {℘̇1, ℘̇2, ℘̇3}
˜As(G5) = {℘̇1, ℘̇2, ℘̇4}
˜As(G6) = {℘̇1, ℘̇4}
˜As(G7) = {℘̇2, ℘̇3}

We consider that experts give some opinion about the attributes and rank them according to their
requirements. We convert the verbal description into the LDFS numeric values in the form of LDFS H.
The set H is the LDF-subset of Ġ and written as follows:

H = {(℘̇1, 〈0.63, 0.41〉, 〈0.31, 0.33〉), (℘̇2, 〈0.71, 0.51〉, 〈0.41, 0.38〉),

(℘̇3, 〈0.75, 0.63〉, 〈0.51, 0.32〉), (℘̇4, 〈0.83, 0.51〉, 〈0.41, 0.21〉)}.
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Now, we find “upper and lower approximations” of setH over the relation ˜A by using Definition 9
given as:

˜A >(H) = {(G1, 〈00.83, 00.51〉, 〈00.51, 00.21〉), (G2, 〈00.75, 00.51〉, 〈00.51, 00.32〉), (G3, 〈00.71, 00.41〉, 〈00.41, 00.33〉),

(G4, 〈00.75, 00.41〉, 〈00.51, 00.32〉), (G5, 〈00.83, 00.41〉, 〈00.41, 00.21〉, (G6, 〈00.83, 00.41〉, 〈00.41, 00.21〉,

(G7, 〈00.75, 00.51〉, 〈00.51, 00.32〉)}
˜A>(H) = {(G1, 〈00.75, 00.63〉, 〈00.41, 00.32〉), (G2, 〈00.71, 00.63〉, 〈00.41, 00.38〉), (G3, 〈00.63, 00.51〉, 〈00.31, 00.38〉),

(G4, 〈00.63, 00.63〉, 〈00.31, 00.38〉), (G5, 〈00.63, 00.51〉, 〈00.31, 00.38〉, (G6, 〈00.63, 00.51〉, 〈00.31, 00.33〉,

(G7, 〈00.71, 00.63〉, 〈00.41, 00.38〉)}

˜A>(H)⊕ ˜A >(H) = {(G1, 〈0.957, 0.321〉, 〈0.710, 0.067〉), (G2, 〈0.927, 0.321〉, 〈0.710, 0.121〉),

(G3, 〈0.892, 0.209〉, 〈0.592, 0.125〉), (G4, 〈0.907, 0.258〉, 〈0.661, 0.121〉),

(G5, 〈0.937, 0.209〉, 〈0.592, 0.079〉, (G6, 〈0.937, 0.209〉, 〈0.592, 0.069〉,

(G7, 〈0.927, 0.321〉, 〈0.710, 0.121〉)}

Now, we calculate the score values, quadratic score values, and expectation score values of
alternatives in ˜A>(H)⊕ ˜A >(H). The calculated data with the final ranking is given in Table 21.

Table 21. Ranking of alternatives for different score values.

LDFS G1 G2 G3 G4 G5 G6 G7 Ranking Final Decision

L1 (SF) 0.639 0.597 0.575 0.594 0.620 0.625 0.597 G1 � G6 � G5 � G2 = G7 � G4 � G3 G1
L2 (QSF) 0.656 0.622 0.543 0.589 0.589 0.589 0.622 G1 � G2 = G7 � G5 = G6 = G4 � G3 G1
L3 (ESF) 0.819 0.798 0.787 0.797 0.810 0.812 0.798 G1 � G6 � G5 � G2 = G7 � G4 � G3 G1

From Table 21, we can observe that the alternative G1 is most suitable for the final decision.
The bar chart of the ranking results for alternatives is given in Figure 6.

Figure 6. Bar chart of alternatives under SRLDFS for SF L1, QSF L2, and ESF L3..

4.2.2. Calculations by Using Algorithm 4

In this part, we establish upper and lower reducts for all the experts one by one. The initial five
steps of Algorithm 4 are the same as Algorithm 3. We will proceed next by constructing the upper and
lower reducts from the “upper and lower approximations” of LDFS for all the experts under “crisp soft
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approximation space”. Suppose that we have three experts from the company’s technical committee
given as:

Expert Ẋ

Expert Ẏ

Expert Ż

The characteristics and terms for finding the upper and lower reducts are the same as we used in
Algorithm 2. Therefore, we directly calculate the reducts for experts.

For expert-Ẋ, the upper reduct of upper approximation ˜A >(H) (calculated in Algorithm 3) of
LDFS H is given as Table 22. The average of the score values of all the alternatives for ˜A >(H) is 0.629.

Table 22. Upper reduct for expert-Ẋ, (UẊ) from ˜A >(H).

(UẊ) T̈D̈TD̈TD S̈DS̈DS̈D αDαDαD βDβDβD L3L3L3 L̂̂L̂L L ∗L ∗L ∗ F.D

G1 0.83 0.51 0.51 0.21 0.655 1 L3 > 0.629→ YES NO
G2 0.75 0.51 0.51 0.32 0.607 1 L3 < 0.629→ NO NO
G3 0.71 0.41 0.41 0.33 0.595 0 L3 < 0.629→ NO NO
G4 0.75 0.41 0.51 0.32 0.632 0 L3 > 0.629→ YES NO
G5 0.83 0.41 0.41 0.21 0.655 1 L3 > 0.629→ YES YES
G6 0.83 0.41 0.41 0.21 0.655 1 L3 > 0.629→ YES YES
G7 0.75 0.51 0.51 0.32 0.607 0 L3 < 0.629→ NO NO

This implies that (UẊ) = {G1,G5,G6}. For expert-Ẋ, the lower reduct of lower approximation
˜A>(H) (calculated in Algorithm 3) of LDFS H is given as Table 23. The average of the score values of

all the alternatives for ˜A>(H) is 0.519.

Table 23. Lower reduct for expert-Ẋ (LẊ) from ˜A >(H).

(LẊ) T̈D̈TD̈TD S̈DS̈DS̈D αDαDαD βDβDβD L3L3L3 L̂̂L̂L L ∗L ∗L ∗ F.D

G1 0.75 0.63 0.41 0.32 0.552 1 L3 > 0.519→ YES YES
G2 0.71 0.63 0.41 0.38 0.527 1 L3 > 0.519→ YES YES
G3 0.63 0.51 0.31 0.38 0.512 1 L3 < 0.519→ NO NO
G4 0.63 0.63 0.31 0.38 0.482 0 L3 < 0.519→ NO NO
G5 0.63 0.51 0.31 0.38 0.512 1 L3 < 0.519→ NO NO
G6 0.63 0.51 0.31 0.33 0.525 1 L3 > 0.519→ YES YES
G7 0.71 0.63 0.41 0.38 0.527 0 L3 > 0.519→ YES NO

This implies that LẊ = {G1,G2,G6}. For expert-Ẏ, the upper reduct of upper approximation ˜A >(H)

(calculated in Algorithm 3) of LDFS H is given as Table 24. The average of the score values of all the
alternatives for ˜A >(H) is 0.629.

Table 24. Upper reduct for expert-Ẏ, (UẎ) from ˜A >(H).

(UẎ) T̈D̈TD̈TD S̈DS̈DS̈D αDαDαD βDβDβD L3L3L3 L̂̂L̂L L ∗L ∗L ∗ F.D

G1 0.83 0.51 0.51 0.21 0.655 1 L3 > 0.629→ YES YES
G2 0.75 0.51 0.51 0.32 0.607 0 L3 < 0.629→ NO NO
G3 0.71 0.41 0.41 0.33 0.595 0 L3 < 0.629→ NO NO
G4 0.75 0.41 0.51 0.32 0.632 1 L3 > 0.629→ YES YES
G5 0.83 0.41 0.41 0.21 0.655 1 L3 > 0.629→ YES YES
G6 0.83 0.41 0.41 0.21 0.655 0 L3 > 0.629→ YES NO
G7 0.75 0.51 0.51 0.32 0.607 1 L3 < 0.629→ NO NO
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This implies that (UẎ) = {G1,G4,G5}. For expert-Ẏ, the lower reduct of lower approximation ˜A>(H)

(calculated in Algorithm 3) of LDFS H is given as Table 25. The average of the score values of all the
alternatives for ˜A>(H) is 0.519.

Table 25. Lower reduct for expert-Ẏ (LẎ) from ˜A >(H).

(LẎ) T̈D̈TD̈TD S̈DS̈DS̈D αDαDαD βDβDβD L3L3L3 L̂̂L̂L L ∗L ∗L ∗ F.D

G1 0.75 0.63 0.41 0.32 0.552 1 L3 > 0.519→ YES YES
G2 0.71 0.63 0.41 0.38 0.527 0 L3 > 0.519→ YES NO
G3 0.63 0.51 0.31 0.38 0.512 0 L3 < 0.519→ NO NO
G4 0.63 0.63 0.31 0.38 0.482 1 L3 < 0.519→ NO NO
G5 0.63 0.51 0.31 0.38 0.512 1 L3 < 0.519→ NO NO
G6 0.63 0.51 0.31 0.33 0.525 0 L3 > 0.519→ YES NO
G7 0.71 0.63 0.41 0.38 0.527 1 L3 > 0.519→ YES YES

This implies that LẎ = {G1,G7}. For expert-Ż, the upper reduct of upper approximation ˜A >(H)

(calculated in Algorithm 3) of LDFS H is given as Table 26. The average of the score values of all the
alternatives for ˜A >(H) is 0.629.

Table 26. Upper reduct for expert-Ż, (UŻ) from ˜A >(H).

(UŻ) T̈D̈TD̈TD S̈DS̈DS̈D αDαDαD βDβDβD L3L3L3 L̂̂L̂L L ∗L ∗L ∗ F.D

G1 0.83 0.51 0.51 0.21 0.655 1 L3 > 0.629→ YES YES
G2 0.75 0.51 0.51 0.32 0.607 1 L3 < 0.629→ NO NO
G3 0.71 0.41 0.41 0.33 0.595 0 L3 < 0.629→ NO NO
G4 0.75 0.41 0.51 0.32 0.632 1 L3 > 0.629→ YES YES
G5 0.83 0.41 0.41 0.21 0.655 0 L3 > 0.629→ YES NO
G6 0.83 0.41 0.41 0.21 0.655 1 L3 > 0.629→ YES YES
G7 0.75 0.51 0.51 0.32 0.607 1 L3 < 0.629→ NO NO

This implies that (UŻ) = {G1,G4,G6}. For expert-Ż, the lower reduct of lower approximation
˜A>(H) (calculated in Algorithm 3) of LDFS H is given as Table 27. The average of the score values of

all the alternatives for ˜A>(H) is 0.519.

Table 27. Lower reduct for expert-Ż (LŻ) from ˜A >(H).

(LŻ) T̈D̈TD̈TD S̈DS̈DS̈D αDαDαD βDβDβD L3L3L3 L̂̂L̂L L ∗L ∗L ∗ F.D

G1 0.75 0.63 0.41 0.32 0.552 1 L3 > 0.519→ YES YES
G2 0.71 0.63 0.41 0.38 0.527 1 L3 > 0.519→ YES YES
G3 0.63 0.51 0.31 0.38 0.512 0 L3 < 0.519→ NO NO
G4 0.63 0.63 0.31 0.38 0.482 1 L3 < 0.519→ NO NO
G5 0.63 0.51 0.31 0.38 0.512 0 L3 < 0.519→ NO NO
G6 0.63 0.51 0.31 0.33 0.525 1 L3 > 0.519→ YES YES
G7 0.71 0.63 0.41 0.38 0.527 1 L3 > 0.519→ YES YES

This implies that LŻ = {G1,G2,G6,G7}.
Now, we calculate the core set by taking the intersection of all upper and lower reducts for all

three experts.
core = UẊ ∩ LẊ ∩UẎ ∩ LẎ ∩UŻ ∩ LŻ = {G1}

This means that “G1” is the most suitable alternative for the final decision.
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4.3. Discussion, Comparison, and Symmetrical Analysis

In this part, we compare our models to the existing approaches and discuss the superiority,
authenticity, symmetry, and validity of our proposed structures. The comparison of the proposed
structures with existing models is shown in Tables 28 and 29. Such tables reflect the characteristics and
limitations of certain current hypotheses. We will observe that our presented models are superior and
handle the MCDM techniques efficiently.

Table 28. Comparison of LDFSRS and SRLDFS with the existing concepts.

Concepts Satisfaction Dissatisfaction Reference
Degree Degree Parameterizations

Fuzzy set [46] X × ×
Rough set [55] × × ×

Soft set [56] × × ×
Intuitionistic fuzzy set [47,48] X X ×
Pythagorean fuzzy set [49–51] X X ×

q-rung orthopair fuzzy set [52,53] X X ×
LDFS [54] X X X

LDFSS (proposed) X X X

LDFSRS (proposed) X X X

SRLDFS (proposed) X X X

Concepts Upper and lower Boundary multi-valued
approximations region parameterizations

Fuzzy set [46] × × ×
Rough set [55] X X ×

Soft set [56] × × X

Intuitionistic fuzzy set [47,48] × × ×
Pythagorean fuzzy set [49–51] × × ×

q-rung orthopair fuzzy set [52,53] × × ×
LDFS [54] × × ×

LDFSS (proposed) × × X

LDFSRS (proposed) X X X

SRLDFS (proposed) X X X
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Table 29. Comparison of LDFSRS and SRLDFS with the existing concepts.

Concepts Remarks

Fuzzy set [46] It only deals with the truth values of objects.

Rough set [55] It only deal with the vagueness of input data.

Soft set [56] It only deal with the uncertainties under parameterizations.

Intuitionistic fuzzy set [47] It cannot be applied if 1 < T̈I (G) + S̈I (G) ≤ 2 for some G.

Pythagorean fuzzy set [49–51] It cannot be applied if 1 < T̈ 2
I (G) + S̈2

I (G) ≤ 2 for some G.

q-rung orthopair fuzzy set [52,53] It cannot be applied for smaller values of “q” with
1 < T̈

q
O(G) + S̈

q
O(G) ≤ 2 or if T̈O(G) = S̈O(G) = 1 for some G.

LDFS [54] (1) It can deal with all the cases in which FS, IFS, PFS, and q-ROFS
cannot be applied; (2) it involves a parameterization perspective

and works under the influence of reference or control parameters; (3) satisfaction
and dissatisfaction degrees can be chosen freely from [0, 1].

LDFSS (proposed) It contains all the properties of LDFS with the addition of multi-valued
parameterizations to deal with the uncertainties in a parametric manner.

LDFSRS (proposed) It contains all the properties of LDFSS with the addition of upper
and lower approximations to deal with the roughness of input data

under the effect of “LDFS approximation space”.

SRLDFS (proposed) It contains all the properties of LDFSS with the addition of upper
and lower approximations to deal with the roughness of input data

under the effect of “crisp soft approximation space”.

We constructed four algorithms based on LDFSRSs, SRLDFSs, and their corresponding
approximation spaces. The final results for the decision making problem of material handling
equipment selection obtained from these algorithms are given in Table 30.

Table 30. Comparison of the results obtained from the proposed algorithms.

Proposed Score Core Final
Algorithm Function Set Decision

Algorithm 1 L1 × G1
Algorithm 1 L2 × G1
Algorithm 1 L3 × G1
Algorithm 2 × X G5
Algorithm 3 L1 × G1
Algorithm 3 L2 × G1
Algorithm 3 L3 × G1
Algorithm 4 × X G1

In existing work, the superiority of the proposed model was discussed by examining its
degeneration towards some existing rough set models (see Tables 5 and 9). The proposed algorithms
are based on the SRLDFSs and LDFSRSs and their approximation operators. Algorithms 1 and 3 are
based on the structures with LDFN score values. These algorithms provide us with information about
the best and worst alternative. Algorithms 2 and 4 are focused on the core and reducts of the suggested
structures. This also involves expert opinion and produces an outcome only for the essential alternative.
This does not offer any comparison of the alternatives. Depending on the situation, each algorithm is
essential and useful for real-life issues (see Tables 12 and 21).

By using different score functions and evaluating the reducts and core set, we check the behavior
of “upper and lower approximations”. The final results of Algorithms 1, 3, and 4 are exactly the same.
The result of Algorithm 2 is different from the others. This difference is due to the different formulae
and different ordering strategies used in the proposed algorithms. As we can see, the three algorithms
produce the same decision, so we will go with the alternative G1 for the final decision. Such structures
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demonstrate the symmetry in the findings and provide us with an appropriate, ideal approach for the
problem of decision making.

Validity test:

To demonstrate the validity and symmetry of the results, Wang and Triantaphyllou [36]
constructed the following test criteria.

Test Criterion 1:

“If we replace non-optimal alternative rating values with the worst alternative then the best
alternative should not change, provided the relative weighted criteria remain unchanged”.

Test Criterion 2:

“Process should have transitive nature”.

Test Criterion 3:

“When a given problem is decomposed into smaller ones and the same MCDM method has
been applied, then the combined ranking of alternatives should be identical to the ranking of
un-decomposed one”.

Via these parameters, when we test our results, we see that our findings are correct and reliable
and provide us a satisfactory solution to the MCDM problem. Various researchers used numerous
techniques based on rough set theory and its hybrid structures to solve decision making difficulties
(see [2,3,7,8,17–19,23,24,26,33–35]). Comparing these hypotheses, we found that our proposed models
are reliable, efficient, superior, symmetrical, and valid in comparison with those current models.

5. Conclusions

There are two viewpoints in rough set theory knowledge: positive and axiomatic methods, and it
is the same for LDFSRSs and SRLDFSs. This manuscript is a crystal reflection of both aspects of it.
We have practiced fundamental ingredients of rough sets, soft sets, and LDFSs and established the
proposed structures. With their accompanying illustrations, we provided some findings of such models.
Many of the barriers to decision making in the input dataset include unclear, ambiguous, and imprecise
details. These models can control these ambiguities better than the fuzzy sets, IFSs, PFSs, q-ROFSs,
and LDFSs due to their mathematical formulation, variations, symmetry, and novelty. We introduced
several level cut sets of LDFSs and related the recommended approximation operators with these
level cut relations. We established various illustrations and results based on LDFSRSs and SRLDFSs
approximation operators and corresponding approximations based on level cut sets. We utilized
two different approximation spaces to produce variety in the decision making results. We listed
the results of the degeneration of the proposed operators and found that our proposed models are
generalizations of various existing rough set models. By using approximation spaces, score functions,
upper and lower reductions, and core series, we introduced four novel algorithms for the assortment
of sustainable material handling equipment. Depending on the situation, each algorithm is essential
and useful for solving real-life problems. We discussed the advantages and limitations of the proposed
structures with some existing models briefly (see Table 1). In the future, we will expand this research
for topological spaces and solve MCDM problems based on the TOPSIS, VIKOR, and AHP families.
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Abbreviations

FSs Fuzzy sets
IFSs Intuitionistic fuzzy sets
PFSs Pythagorean fuzzy sets
q-ROFSs q-rung orthopair fuzzy sets
LDFSs Linear Diophantine fuzzy sets
LDFNs Linear Diophantine fuzzy numbers
LDFSSs Linear Diophantine fuzzy soft sets
LDFSRSs Linear Diophantine fuzzy soft rough sets
SRLDFSs Soft rough linear Diophantine fuzzy sets
MCDM Multi-criteria decision making

Appendix A

(1) From Definition 9, we can write that:

∼ ˜A >(∼ YD) = {(G, 〈S̈ ˜A>(∼YD )(G), T̈ ˜A>(∼YD )(G)〉, 〈β ˜A>(∼YD )(G), α ˜A>(∼YD )(G)〉) : G ∈ Q̈}

= {(G, 〈 min
℘̇∈ ˜As(G)

(S̈(∼YD )(℘̇)), max
℘̇∈ ˜As(G)

(T̈(∼YD )(℘̇))〉,

〈 min
℘̇∈ ˜As(G)

(β(∼YD )(℘̇)), max
℘̇∈ ˜As(G)

(α(∼YD )(℘̇))〉) : G ∈ Q̈}

= {(G, 〈 min
℘̇∈ ˜As(G)

(T̈YD
(℘̇)), max

℘̇∈ ˜As(G)
(S̈YD

(℘̇))〉, 〈 min
℘̇∈ ˜As(G)

(αYD
(℘̇)), max

℘̇∈ ˜As(G)
(βYD

(℘̇))〉) : G ∈ Q̈}

= {(G, 〈T̈ ˜A>(YD )(G), S̈ ˜A>(YD )(G)〉, 〈α ˜A>(YD )(G), β ˜A>(YD )(G)〉) : G ∈ Q̈}

= ˜A>(YD)

(2) It can be easily proven from Definition 9.
(3) We consider that:

˜A>(YD ∩BD) = {(G, 〈T̈ ˜A>(YD∩BD )(G), S̈ ˜A>(YD∩BD )(G)〉, 〈α ˜A>(YD∩BD )(G), β ˜A>(YD∩BD )(G)〉) : G ∈ Q̈}

= {(G, 〈 min
℘̇∈ ˜As(G)

T̈(YD∩BD )(℘̇), max
℘̇∈ ˜As(G)

S̈(YD∩BD )(℘̇)〉,

〈 min
℘̇∈ ˜As(G)

α(YD∩BD )(℘̇), max
℘̇∈ ˜As(G)

β(YD∩BD )(℘̇)〉) : G ∈ Q̈}

= {(G, 〈 min
℘̇∈ ˜As(G)

(T̈YD
(℘̇) ∧ αT̈ BD

(℘̇)), max
℘̇∈ ˜As(G)

(S̈YD
(℘̇) ∨ αS̈BD

(℘̇))〉,

〈 min
℘̇∈ ˜As(G)

(αYD
(℘̇) ∧ αT̈ BD

(℘̇)), max
℘̇∈ ˜As(G)

(βYD
(℘̇) ∨ αS̈BD

(℘̇))〉)}

= {(G, 〈 min
℘̇∈ ˜As(G)

(T̈YD
(℘̇)) ∧ min

℘̇∈ ˜As(G)
(T̈BD

(℘̇)), max
℘̇∈ ˜As(G)

(S̈YD
(℘̇)) ∨ max

℘̇∈ ˜As(G)
(S̈BD

(℘̇))〉,

〈 min
℘̇∈ ˜As(G)

(αYD
(℘̇)) ∧ min

℘̇∈ ˜As(G)
(αBD

(℘̇)), max
℘̇∈ ˜As(G)

(βYD
(℘̇)) ∨ max

℘̇∈ ˜As(G)
(βBD

(℘̇))〉)}

= {(G, 〈T̈ ˜A>(YD )(G) ∧ T̈ ˜A>(BD )(G), S̈ ˜A>(YD )(G) ∨ S̈ ˜A>(BD )(G)〉,

〈α ˜A>(YD )(G) ∧ α ˜A>(BD )(G), β ˜A>(YD )(G) ∨ β ˜A>(BD )(G)〉) : G ∈ Q̈}

= ˜A>(YD) ∩ ˜A>(BD)
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(4) From Definition 9, we can write that:

˜A>(YD ∩BD) = {(G, 〈T̈ ˜A>(YD∪BD )(G), S̈ ˜A>(YD∪BD )(G)〉, 〈α ˜A>(YD∪BD )(G), β ˜A>(YD∪BD )(G)〉) : G ∈ Q̈}

= {(G, 〈 min
℘̇∈ ˜As(G)

T̈(YD∪BD )(℘̇), max
℘̇∈ ˜As(G)

S̈(YD∪BD )(℘̇)〉,

〈 min
℘̇∈ ˜As(G)

α(YD∪BD )(℘̇), max
℘̇∈ ˜As(G)

β(YD∪BD )(℘̇)〉) : G ∈ Q̈}

= {(G, 〈 min
℘̇∈ ˜As(G)

(T̈YD
(℘̇) ∨ αT̈ BD

(℘̇)), max
℘̇∈ ˜As(G)

(S̈YD
(℘̇) ∧ S̈BD

(℘̇))〉,

〈 min
℘̇∈ ˜As(G)

(αYD
(℘̇) ∨ αT̈ BD

(℘̇)), max
℘̇∈ ˜As(G)

(βYD
(℘̇) ∧ S̈BD

(℘̇))〉)}

⊇ {(G, 〈 min
℘̇∈ ˜As(G)

(T̈YD
(℘̇)) ∨ min

℘̇∈ ˜As(G)
(T̈BD

(℘̇)),
∨

℘̇∈ ˜As(G)
(S̈YD

(℘̇)) ∧ max
℘̇∈ ˜As(G)

(S̈BD
(℘̇))〉,

〈 min
℘̇∈ ˜As(G)

(αYD
(℘̇)) ∨ min

℘̇∈ ˜As(G)
(αBD

(℘̇)), max
℘̇∈ ˜As(G)

(βYD
(℘̇)) ∧ max

℘̇∈ ˜As(G)
(βBD

(℘̇))〉)}

= {(G, 〈T̈ ˜A>(YD )(G) ∨ T̈ ˜A>(BD )(G), S̈ ˜A>(YD )(G) ∧ S̈ ˜A>(BD )(G)〉,

〈α ˜A>(YD )(G) ∨ α ˜A>(BD )(G), β ˜A>(YD )(G) ∧ β ˜A>(BD )(G)〉) : G ∈ Q̈}

= ˜A>(YD) ∪ ˜A>(BD)

Thus, ˜A>(YD ∪BD ) ⊇ ˜A>(YD ) ∪ ˜A>(BD ).
Similarly, we can prove the remaining axioms by following these arguments.
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