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Abstract: We define helical (i.e., helicoidal) hypersurfaces depending on the axis of rotation in
Minkowski four-space E4

1. There are three types of helicoidal hypersurfaces. We derive equations for
the curvatures (i.e., Gaussian and mean) and give some examples of these hypersurfaces. Finally, we
obtain a theorem classifying the helicoidal hypersurface with timelike axes satisfying ∆IH = AH.

Keywords: helicoidal hypersurface; Laplace–Beltrami operator; Gaussian curvature; mean curvature;
Minkowski four-space

1. Introduction

Chen [1] served the problem of classifying finite type surfaces in the 3-dimensional Euclidean
space E3. If its coordinate functions are a finite sum of eigenfunctions of its Laplacian ∆, a Euclidean
submanifold is called of Chen finite type.

Moreover, the notion of finite type may be extended to any smooth function on a submanifold
of a Euclidean space or a pseudo-Euclidean space. The submanifolds theory of finite type has been
discussed by mathematicians.

Takahashi [2] obtained that minimal surfaces and spheres are the only surfaces in E3 satisfying
the condition ∆r = λr, λ ∈ R. Ferrandez, Garay, and Lucas [3] introduced the surfaces of E3 satisfying
∆H = AH, A ∈ Mat(3, 3) are either minimal, or an open piece of sphere or of a right circular cylinder.
Choi and Kim [4] worked the minimal helicoid in terms of pointwise 1-type Gauss map of the first
kind.

Dillen, Pas, and Verstraelen [5] gave the only surfaces in E3 satisfying ∆r = Ar + B, A ∈
Mat(3, 3), B ∈ Mat(3, 1) are the minimal surfaces, the spheres and the circular cylinders. Dillen,
Fastenakels, and Van der Veken [6] studied rotation hypersurfaces of Sn × R and Hn × R. Beneki,
Kaimakamis, and Papantoniou [7] worked helicoidal surfaces with spacelike, timelike and lightlike
axis in three-dimensional Minkowski space. Senoussi and Bekkar [8] focused helicoidal surfaces in E3

which are of finite type in the sense of Chen with respect to the fundamental forms I, I I and I I I.
The right helicoid (resp. catenoid) is the only ruled (resp. rotational) surface which is minimal.

Hence, we meet Bour’s theorem in [9]. Do Carmo and Dajczer [10] proved that, by using Bour [9],
there exists a two-parameter family of helicoidal surfaces isometric to a given helicoidal surface. Güler
and Vanlı [11] worked Bour’s theorem in Minkowski three-space. Using Bour’s theorem in Minkowski
geometry, Güler [12] investigated helicoidal surface with lightlike profile curve. Mira and Pastor [13]
studied helicoidal maximal surfaces in Lorentz–Minkowski three-space.

Lawson [14] gave the general definition of the Laplace–Beltrami operator. Magid, Scharlach,
and Vrancken [15] introduced the affine umbilical surfaces in E4. Hasanis and Vlachos [16]
considered hypersurfaces in 4-space with harmonic mean curvature vector field. Scharlach [17]
studied the affine geometry of surfaces and hypersurfaces in E4. Cheng and Wan [18] considered
complete hypersurfaces of four-space with CMC. Arslan, Deszcz, and Yaprak [19] studied Weyl
pseudosymmetric hypersurfaces. Turgay and Upadhyay [20] considered biconservative hypersurfaces
in 4-dimensional Riemannian space forms.
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Arvanitoyeorgos, Kaimakamis, and Magid [21] showed that if the mean curvature vector field of
M3

1 satisfies the equation ∆H = αH (α is a constant), then M3
1 has CMC in Minkowski four-space E4

1.
General rotational surfaces in E4 were originated by Moore [22,23]. Ganchev and Milousheva [24]

considered the counterpart of these hind surfaces in the Minkowski four-space. Kim and Turgay [25]
focused surfaces satisfying L1-pointwise 1-type Gauss map in E4. Moruz and Munteanu [26] gave
minimal translation hypersurfaces in E4. Verstraelen, Walrave, and Yaprak [27] studied minimal
translation surfaces in En. Özkaldı et al [28] worked LC helix on hypersurfaces in Minkowski
space En+1

1 .
Güler, Magid, and Yaylı [29] defined helicoidal hypersurface and studied the Laplace–Beltrami

operator of the hypersurface in E4. Güler, Hacısalihoğlu, and Kim [30] introduced Gauss map and the
third Laplace–Beltrami operator of the rotational hypersurface in E4. Moreover, Güler and Turgay [31]
studied Cheng–Yau operator and Gauss map using rotational hypersurfaces in four-space. Güler and
Kişi [32] worked Dini-type helicoidal hypersurfaces with timelike axis in Minkowski four-space.

In this paper, we introduce the helicoidal hypersurfaces in Minkowski four-space E4
1. We give

some basic notions of the four dimensional Minkowski geometry in Section 2. In Section 3, we give the
definition of a helicoidal hypersurface with spacelike axis (resp., with timelike axis in Section 4, with
lightlike axis in Section 5.), then calculate the curvatures of it. We describe the helicoidal hypersurfaces
with timelike axis satisfying ∆IH = AH in E4

1 in Section 6. Finally, we give some open problems in the
last section.

2. Preliminaries

In this section, we introduce the first and the second fundamental forms, matrix of the shape
operator S, Gaussian curvature K, and the mean curvature H of hypersurface M = M(u, v, w) in
Minkowski four-space E4

1. Throughout the paper, we shall identify a vector (a,b,c,d) with its transpose
(a,b,c,d)t.

Let M = M(u, v, w) be an isometric immersion of a hypersurface from M3
1 to E4

1 = (R4, ds2),
where ds2 = dx2

1 + dx2
2 + dx2

3 − dx2
4 is an element of length (Lorentz metric) and xi are the

pseudo-Euclidean coordinates of type (3, 1). The vector product of −→x = (x1, x2, x3, x4),
−→y =

(y1, y2, y3, y4),
−→z = (z1, z2, z3, z4) in E4

1 is defined as follows

−→x ×−→y ×−→z = det


e1 e2 e3 −e4

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

 .

For a hypersurface M(u, v, w) in E4
1, we have

det I =
(

EG− F2
)

C + 2ABF− A2G− B2E,

det I I =
(

LN −M2
)

V + 2MPT − P2N − T2L,

where E = Mu ·Mu, F = Mu ·Mv, G = Mv ·Mv, A = Mu ·Mw, B = Mv ·Mw, C = Mw ·Mw,
L = Muu · e, M = Muv · e, N = Mvv · e, P = Muw · e, T = Mvw · e, V = Mww · e, e is the Gauss map
(i.e., the unit normal vector)

e =
Mu ×Mv ×Mw

‖Mu ×Mv ×Mw‖
.

I−1 I I gives the matrix of the shape operator S. Now, we have the formulas of the Gaussian curvature
K = det(S) = det I I

det I , and the mean curvature H = 1
3 tr (S), respectively, as follows

K =

(
LN −M2)V + 2MPT − P2N − T2L
(EG− F2)C + 2ABF− A2G− B2E

,
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and

H =
(EN + GL− 2FM)C + (EG− F2)V − A2N − B2L− 2(APG + BTE− ABM− ATF− BPF)

3 ((EG− F2)C + 2ABF− A2G− B2E)
.

A hypersurface M is minimal if H = 0 identically on M.
Let γ : I ⊂ R −→ Π be a curve in a plane Π and ` be a straight line in Π of E4

1. A rotational
hypersurface in E4

1 is defined as a hypersurface rotating a curve (profile) γ around a line (axis) `. When
the profile curve γ rotates around the axis `, it simultaneously displaces parallel lines orthogonal
to the axis `, so that the speed of displacement is proportional to the speed of rotation. Resulting
hypersurface is called the helicoidal hypersurface with axis ` and pitches a, b ∈ R\{0}.

Therefore, we introduce three type of the helicoidal hypersurfaces in E4
1 throughout next three

sections.

3. Helicoidal Hypersurfaces with Spacelike Axis

Supposing `1 is the line spanned by the spacelike vector (1, 0, 0, 0)t, the orthogonal matrix is given
by

A1(v, w) =


1 0 0 0
0 cosh w 0 sinh w
0 sinh v sinh w cosh v sinh v cosh w
0 cosh v sinh w sinh v cosh v cosh w

 ,

where v, w ∈ R. The matrix A1 can be found by solving the following equations, simultaneously,

det A1 = 1, A1.`1 = `1, At
1εA1 = ε,

where ε = diag(1, 1, 1,−1). When the axis of rotation is `1, there is an Minkowskian transformation by
which the axis is `1 transformed to the x1-axis of E4

1. A parametrization of the profile curve is given by

γ(u) = (ϕ (u) , u, 0, 0) ,

where ϕ (u) : I ⊂ R −→ R is a differentiable function for all u ∈ I. Thus, the helicoidal hypersurface
which is spanned by the vector (1, 0, 0, 0) with pitches a, b ∈ R\{0}, is

H(u, v, w) = A1(v, w)γ(u)t + (av + bw)(1, 0, 0, 0)t

in E4
1, where u ∈ I, v, w ∈ R. If w = 0, we get helicoidal surface with spacelike axis as in the three

dimensional Minkowski space E3
1.

When a = b = 0, the surface is just a rotational hypersurface with timelike axis:

R(u, v, w) = (ϕ(u), u sinh w, u sinh v cosh w, u cosh v cosh w) .

Next, we obtain the curvatures of a helicoidal hypersurface with spacelike axis

H(u, v, w) =


ϕ(u) + av + bw

u sinh w
u sinh v cosh w
u cosh v cosh w

 , (1)

where u, a, b ∈ R \ {0} and 0 ≤ v, w ≤ 2π. See Figures 1 and 2 to projections of H with spacelike axis
into three-space.
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Figure 1. Projections of (1), ϕ = u3, w = π/4, b = 3, into (Left) x2x3x4 space, (Right) x1x3x4 space.

Figure 2. Projections of (1), ϕ = u3, w = π/4, b = 3, into (Left) x1x2x4 space, (Right) x1x2x3 space.

Computing the first differentials of (1), we get the first quantities as follows

I =

 ϕ′2 − 1 aϕ′ bϕ′

aϕ′ u2 cosh2 w + a2 ab
bϕ′ ab u2 + b2

 ,

where ϕ = ϕ(u), ϕ′ = dϕ
du . Thus, we have

det I = u2
[
(u2(ϕ′2 − 1)− b2) cosh2 w− a2

]
.

With the second differentials with respect to u, v, w, we obtain the second quantities as follows

I I =


− u2 ϕ′′ cosh w√

det I
au cosh w√

det I
ub cosh w√

det I
au cosh w√

det I
u2(uϕ′ cosh w−b sinh w) cosh2 w√

det I
au2 sinh w√

det I
ub cosh w√

det I
au2 sinh w√

det I
u3 ϕ′ cosh w√

det I


and

det I I =
u4 cosh w

(det I)3/2

[ (
−u4 ϕ′2 cosh4 w + bu3 ϕ′ cosh3 w sinh w + a2u2 sin2 w

)
ϕ′′

−u cosh2 w
(

a2 + b2 cosh2 w
)

ϕ′ + b3 cosh3 w sinh w− 2a2b cosh w sinh
]
.
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Hence, the Gauss map of the helicoidal hypersurface is given by

eH = − 1√
det I


u2 cosh w

u [(uϕ′ sinh w− b cosh w)] cosh w
u [(uϕ′ cosh w− b sinh w) sinh v cosh w− a cosh v]
u [(uϕ′ cosh w− b sinh w) cosh v cosh w− a sinh v]

 .

Finally, we calculate the Gaussian curvature and the mean curvature of the helicoidal hypersurface
with spacelike axis and state the results in the following propostion:

Proposition 1. For a helicodal hypersurface with spacelike axis in E4
1 the Gaussian and mean curvatures,

respectively, are as follows

K =
λ1 ϕ′2 ϕ′′ + λ2 ϕ′ϕ′′ + λ3 ϕ′′ + λ4 ϕ′ + λ5

(det I)5/2 , H =
ζ1 ϕ′′ + ζ2 ϕ′3 + ζ3 ϕ′2 + ζ4 ϕ′ + ζ5

3 (det I)3/2 ,

where
λ1 = −u8 cosh5 w,
λ2 = bu7 sinh w cosh4 w,
λ3 = a2u6 cosh w sinh2 w,
λ4 = u5(b2 cosh2 w + a2) cosh3 w,
λ5 = −bu4(b2 cosh2 w + 2a2) sinh w cosh2 w,
ζ1 = u4

[(
u2 + b2) cosh2 w + a2

]
cosh w,

ζ2 = −2u5 cosh3 w,
ζ3 = bu4 cosh2 w sinh w,
ζ4 = u3

[
3a2 +

(
3b2 + 2u2) cosh2 w

]
cosh w,

ζ5 = bu2
[(

u2 + b2) cosh2 w− 2a2
]

sinh w.

Corollary 1. When ϕ = c = const., we get

K =
−bu4(b2 cosh2 w + 2a2) sinh w cosh2 w,

[u2(b2 + u2) cos2 w + a2]
5/2 , H =

bu2
[(

u2 + b2) cosh2 w− 2a2
]

sinh w

3 [u2 ((b2 + u2) cos2 w + a2)]
3/2 .

Corollary 2. When ϕ = c = const. and b = 0, we have K = 0, H = 0.

4. Helicoidal Hypersurfaces with Timelike Axis

Taking `2 is the line spanned by the timelike vector (0, 0, 0, 1)t, the orthogonal matrix is given by

A2(v, w) =


cos v cos w − sin v − cos v sin w 0
sin v cos w cos v − sin v sin w 0

sin w 0 cos w 0
0 0 0 1

 ,

where v, w ∈ R. The matrix A2 can be found by

det A2 = 1, A2.`2 = `2, At
2εA2 = ε,

where ε = diag(1, 1, 1,−1). When the axis of rotation is `2, there is an Minkowskian transformation by
which the axis is `2 transformed to the x4-axis of E4

1. Parametrization of the profile curve is given by

γ(u) = (u, 0, 0, ϕ (u)) ,
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where ϕ (u) is a differentiable function for all u ∈ I. Thus, the helicoidal hypersurface which is
spanned by the vector (0, 0, 0, 1) with pitches a, b ∈ R\{0}, is as follows

H(u, v, w) = A2(v, w)γ(u)t + (av + bw)(0, 0, 0, 1)t

in E4
1, where u ∈ I, v, w ∈ [0, 2π] . If w = 0, we get helicoidal surface with timelike axis as in the three

dimensional Minkowski space E3
1.

When a = b = 0, the surface is just a rotational hypersurface with timelike axis as follows

R(u, v, w) = (u cos v cos w, u sin v cos w, u sin w, ϕ(u)) .

Now, we obtain the mean curvature and the Gaussian curvature of a helicoidal hypersurface with
timelike axis

H(u, v, w) =


u cos v cos w
u sin v cos w

u sin w
ϕ(u) + av + bw

 , (2)

where u, a, b ∈ R \ {0} and 0 ≤ v, w ≤ 2π. See Figures 3 and 4 to projections of H with timelike axis
into three-space.

Figure 3. Projections of (2) , ϕ = u3, w = π/4, b = 3, into (Left) x2x3x4 space, (Right) x1x3x4 space.

Figure 4. Projections of (2) , ϕ = u3, w = π/4, b = 3, into (Left) x1x2x4 space, (Right) x1x2x3 space.

Computing the first differentials of (2), we find the first quantities

I =

 1− ϕ′2 −aϕ′ −bϕ′

−aϕ′ u2 cos2 w− a2 −ab
−bϕ′ −ab u2 − b2

 ,
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where ϕ = ϕ(u), ϕ′ = dϕ
du . Then, we get

det I = u2
[
(u2(1− ϕ′2)− b2) cos2 w− a2

]
.

With the second differentials with respect to u, v, w, we have the second quantities

I I =


− u2 ϕ′′ cos w√

|det I|
au cos w√
|det I|

ub cos w√
|det I|

au cos w√
|det I|

− u2(uϕ′ cos w−b sin w) cos2 w√
|det I|

− au2 sin w√
|det I|

ub cos w√
|det I|

− au2 sin w√
|det I|

− u3 ϕ′ cos w√
|det I|


and

det I I =
u4 cos w

|det I|3/2

[
− u4 ϕ′2 ϕ′′ cos4 w + bu3 ϕ′ϕ′′ cos3 w sin w + a2u2 ϕ′′ sin2 w

+u cos2 w
(
−a2 + b2 cos2 w

)
ϕ′ + b3 cos3 w sin w− 2a2b cos w sin w

]
.

Then, the Gauss map of the helicoidal hypersurface is given by

eH =
1√

det I


u [(uϕ′ cos w− b sin w) cos v cos w− a sin v]
u [(uϕ′ cos w− b sin w) sin v cos w + a cos v]

u [(uϕ′ sin w + b cos w)] cos w
u2 cos w

 .

Finally, we calculate the Gaussian curvature and the mean curvature of the helicoidal hypersurface
with timelike axis and state the results in the following propostion.

Proposition 2. For a helicodal hypersurface with timelike axis in E4
1 the Gaussian and mean curvatures,

respectively, are as follows

K =
β1 ϕ′2 ϕ′′ + β2 ϕ′ϕ′′ + β3 ϕ′′ + β4 ϕ′ + β5

|det I|5/2 , H =
η1 ϕ′′ + η2 ϕ′3 + η3 ϕ′2 + η4 ϕ′ + η5

3 |det I|3/2 ,

where
β1 = −u8 cos5 w,
β2 = bu7 sin w cos4 w,
β3 = a2u6 cos w sin2 w,
β4 = u5(b2 cos2 w + a2) cos3 w,
β5 = −bu4(b2 cos2 w + 2a2) sin w cos2 w,
η1 = u4 ((u2 + b2) cos2 w + a2) cos w,
η2 = 2u5 cos3 w,
η3 = bu4 cos2 w sin w,
η4 = −u3 (3a2 +

(
3b2 + 2u2) cos2 w

)
cos w,

η5 = −bu2 ((u2 − b2) cos2 w− 2a2) sin w.

Corollary 3. When ϕ = c = const., then we have

K =
−bu4(b2 cos2 w + 2a2) sin w cos2 w

|u2 [(u2 − b2) cos2 w− a2]|5/2 , H =
−bu2 ((u2 − b2) cos2 w− 2a2) sin w

3 |u2 [(u2 − b2) cos2 w− a2]|3/2 .

Corollary 4. When ϕ = c = const. and b = 0, we have the same situation of Corollary 2, i.e. K and H vanish.
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5. Helicoidal Hypersurfaces with Lightlike Axis

Considering `3 is the line spanned by the lightlike vector (0, 0, 1, 1)t, the orthogonal matrix is
given by

A3(v, w) =


1 0 −v v
0 1 −w w
v w 1− 1

2
(
v2 + w2) 1

2
(
v2 + w2)

v w − 1
2
(
v2 + w2) 1 + 1

2
(
v2 + w2)

 ,

where v, w ∈ R. The matrix A3 can be found by

det A3 = 1, A3.`3 = `3, At
3εA3 = ε,

where ε = diag(1, 1, 1,−1). When the axis of rotation is `3, there is an Minkowskian transformation by
which the axis is `3 transformed to the x3x4-axis of E4

1. Parametrization of the profile curve is given by

γ(u) = (0, 0, ϕ (u) , u) ,

where ϕ (u) : I ⊂ R −→ R is a differentiable function for all u ∈ I. So, the helicoidal hypersurface
which is spanned by the lightlike vector (0, 0, 1, 1) with pitches a, b ∈ R\{0}, is as follows:

H(u, v, w) = A3(v, w)γ(u)t + (av + bw)(0, 0, 1, 1)t

in E4
1, where u ∈ I, v, w ∈ R. When w = 0, we get helicoidal surface with lightlike axis as in the three

dimensional Minkowski space E3
1.

When a = b = 0, the surface is just a rotational hypersurface with lightlike axis as follows

R(u, v, w) =


uv− ϕ(u)v,
uw− ϕ(u)w

1
2 u
(
v2 + w2)+ [1− 1

2
(
v2 + w2)] ϕ(u)

u
[
1 + 1

2
(
v2 + w2)]+ [− 1

2
(
v2 + w2)] ϕ(u)

 .

Next, we obtain the curvatures of a helicoidal hypersurface with lightlike axis

H(u, v, w) =


uv− ϕ(u)v
uw− ϕ(u)w

1
2 u
(
v2 + w2)+ [1− 1

2
(
v2 + w2)] ϕ(u) + av + bw

u
[
1 + 1

2
(
v2 + w2)]+ [− 1

2
(
v2 + w2)] ϕ(u) + av + bw

 , (3)

where u, a, b ∈ R \ {0} and v, w ∈ R. See Figures 5 and 6 to projections of H with lightlike axis into
three-space.

Figure 5. Projections of (3) , ϕ = u3, w = π/4, b = 3, into (Left) x2x3x4 space, (Right) x1x3x4 space.
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Figure 6. Projections of (3) , ϕ = u3, w = π/4, b = 3, into (Left) x1x2x4 space, (Right) x1x2x3 space.

Calculating the first differentials of (3), we obtain the first quantities

I =

 ϕ′2 − 1 a (ϕ′ − 1) b (ϕ′ − 1)
a (ϕ′ − 1) (ϕ− u)2 0
b (ϕ′ − 1) 0 (ϕ− u)2

 ,

where ϕ = ϕ(u), ϕ′ = dϕ
du . Then, we have

det I = (ϕ− u)2
[
(ϕ− u)2

(
ϕ′2 − 1

)
−
(

a2 + b2
) (

ϕ′ − 1
)2
]

.

With the second differentials with respect to u, v, w, we have the second quantities

I I =


− (ϕ−u)2 ϕ′′√

det I
a(ϕ′−1)2

(u−ϕ)√
det I

b(ϕ′−1)2
(u−ϕ)√

det I
a(ϕ′−1)2

(u−ϕ)√
det I

− (ϕ−u)3(ϕ′−1)√
det I

0
b(ϕ′−1)2

(u−ϕ)√
det I

0 − (ϕ−u)3(ϕ′−1)√
det I

 .

Hence, the Gauss map of the hypersurface is given by

eH =
h

2
√

det I


δ (hv− a)
δ (hw− b)(

v2 + w2) hδ + 2h− 2δ (av + bw)(
v2 + w2) hδ + 2hϕ′ − 2δ (av + bw)

 ,

where δ = ϕ′ − 1, h = ϕ− u. Finally, we calculate the Gaussian curvature and the mean curvature of
the helicoidal hypersurface with lightlike axis, respectively, as follows

K =
h5δ2 [(u3 − ϕ3) ϕ′′ + 3uhϕϕ′′ +

(
a2 + b2) δ3]

(det I)2 |det I|1/2 , (4)

and

H =
h5 ϕ′′ + 2h2 [2h2δ

(
ϕ′2 − 1

)
− 3

(
a2 + b2) δ3]

3 det I |det I|1/2 . (5)

We assume that det I > 0. Therefore, the problem now is reduced to finding the solution of this
differential equation in ϕ = ϕ(u), where the function K = K(u) is the known smooth function given.

Next, we will examine Equation (4). Let h(u) = ϕ(u)− u, then h′(u) = ϕ′(u)− 1 and h′′(u) =
ϕ′′(u). Hence, (4) reduces to
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K(u) =
h′2
(
c2h′3 − h3h′′

)
[h2h′ (h′ + 2)− c2h′2]5/2 , (6)

where c2 = a2 + b2.
In order to get an idea for these hypersurfaces, we study K = 0, K < 0, K > 0, K = const. and

H = 0 for some special functional forms of the curvatures.
Case 1. K(u) = 0. Equation (6) takes the form

h′2
(

c2h′3 − h3h′′
)
= 0. (7)

Suppose that

h′ = t ⇒ h′′ = t
dt
dh

. (8)

Then Equation (7) reduces to

c2t5 − h3t3 dt
dh

= 0.

The solution of this equation is given by

t =
2h2

2c1h2 − c2 , c1 ∈ R.

From Equation (8) we get
dh
du

=
2h2

2c1h2 − c2 .

Hence, we have
c2

2h
+ c1h = u + c2, c2 ∈ R.

If c1 = 0, then h(u) = c2

2(u+c2)
, and find

ϕ(u) =
c2

2 (u + c2)
+ u, c2 ∈ R.

Moreover, we define following one-parameter family of curves

γ(u) ≡ γ (K(u), c; c2) =

(
0, 0,

c2

2 (u + c2)
+ u, u

)
. (9)

Therefore, the equation of these helicoidal hypersurfaces H(u, v, w) is given by
uv−

(
c2

2(u+c2)
+ u

)
v

uw−
(

c2

2(u+c2)
+ u

)
w

1
2 u
(
v2 + w2)+ [1− 1

2
(
v2 + w2)] ( c2

2(u+c2)
+ u

)
+ av + bw

u
[
1 + 1

2
(
v2 + w2)]+ [− 1

2
(
v2 + w2)] ( c2

2(u+c2)
+ u

)
+ av + bw

 , (10)

where c =
√

a2 + b2.

If c1 6= 0 then h(u) = u+c2±
√

(u+c2)
2−2c1c2

2c1
, and we obtain

ϕ(u) =
u + c2 ±

√
(u + c2)

2 − 2c1c2

2c1
+ u, c2 ∈ R.
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Then, we define following two-parameter family of curves

γ(u) ≡ γ (K(u), c; c1, c2) =

0, 0,
u + c2 ±

√
(u + c2)

2 − 2c1c2

2c1
+ u, u

 . (11)

Hence, the equation of these helicoidal hypersurfaces is given by

uv−
(

u+c2±
√

(u+c2)
2−2c1c2

2c1
+ u

)
v

uw−
(

u+c2±
√

(u+c2)
2−2c1c2

2c1
+ u

)
w

1
2 u
(
v2 + w2)+ [1− 1

2
(
v2 + w2)] ( u+c2±

√
(u+c2)

2−2c1c2

2c1
+ u

)
+ av + bw

u
[
1 + 1

2
(
v2 + w2)]+ [− 1

2
(
v2 + w2)] ( u+c2±

√
(u+c2)

2−2c1c2

2c1
+ u

)
+ av + bw


. (12)

Finally, we observe that given the function K(u) = 0, we can determine a one or two-parameter family
of curves given by (9) or (11), respectively, and define the corresponding Equations (10) or (12) of the
helicoidal hypersurfaces with lightlike axis immersed in E4

1.
Case 2(a). When c1 < 0 and det I > 0, Equation (6) takes the form

K(u) =
h′2
(
c2h′3 − h3h′′

)
|h2h′ (h′ + 2)− c2h′2|5/2 =

c5
1c2∣∣∣c1 (c1 + 2) (c1u + c2)

2 − c2c2
1

∣∣∣5/2 < 0 (13)

which is satisfied by the function h(u) = c1u + c2 and therefore ϕ = (c1 + 1)u + c2, where u 6=
− 1

c2
1(c1+2)

(
c2

1c2 ± c
√

c3
1 (c1 + 2) + 2c1c2

)
, c1 ∈ R \ {−2, 0} . So, given the function K = K(u) by (13)

following the same process there exists a family of helicoidal hypersurfaces H(u, v, w) immersed in E4
1,

the equation of which is
uv− ((c1 + 1)u + c2)v
uw− ((c1 + 1)u + c2)w

1
2 u
(
v2 + w2)+ [1− 1

2
(
v2 + w2)] ((c1 + 1)u + c2) + av + bw

u
[
1 + 1

2
(
v2 + w2)]+ [− 1

2
(
v2 + w2)] ((c1 + 1)u + c2) + av + bw

 .

Similarly, when c1 > 0 and det I > 0, Equation (6) reduces to K(u) > 0.
Case 2(b). Equation (6) takes the form

K(u) =
(2c1u + c2)

2
(

c2 (2c1u + c2)
3 − 2c1

(
c1u2 + c2u + c3

)3
)

[
(c1u2 + c2u + c3)

2
(2c1u + c2) ((2c1u + c2) + 2)− c2 (2c1u + c2)

2
]5/2 , (14)

which is satisfied by the function h(u) = c1u2 + c2u + c3 and therefore ϕ = c1u2 + (c2 + 1)u + c3,
where ci ∈ R. So, given the function K = K(u) by (14) following the same process there exists a family
of helicoidal hypersurfaces H(u, v, w) immersed in E4

1, the equation of which is
uv− (c1u2 + (c2 + 1)u + c3)v
uw− (c1u2 + (c2 + 1)u + c3)w

1
2 u
(
v2 + w2)+ [1− 1

2
(
v2 + w2)] (c1u2 + (c2 + 1)u + c3) + av + bw

u
[
1 + 1

2
(
v2 + w2)]+ [− 1

2
(
v2 + w2)] (c1u2 + (c2 + 1)u + c3) + av + bw

 .
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Case 2(c). We consider K = d = const., d ∈ R\{0}. Then we get

d2
[

h2h′
(
h′ + 2

)
− c2h′2

]5
− h′4

(
c2h′3 − h3h′′

)2
= 0.

Using the substitution h′ = t, the equation reduces to

d2t5
[(

h2 − c2
)

t + 2h2
]5
− t6

(
c2t2 − h3 dt

dh

)2
= 0.

We could not compute this equation using analytical methods. It is the future problem for us.
Case 3. Now, we think ϕ = ϕ(u) such that h′(u) = ϕ′(u)− 1 6= 0 for every u ∈ R\{0}. So, we

can consider the inverse function u = u(h). Then, Equation (6) can be written as

K(u(h)) =
h′2
(
c2h′3 − h3h′′

)
[h2h′ (h′ + 2)− c2h′2]5/2 .

Taking h′ = t, it takes the form

t6
(

c2t2 − h3 dt
dh

)2
− K2t5

[(
h2 − c2

)
t + 2h2

]5
= 0.

If we do not know some particular solution, we can not get its general solution.
Case 4. The mean curvature of the helicoidal hypersurface given by (3) in the Minkowski space

E4
1 is given by (5) . The problem now is to find the solution of this equation in ϕ = ϕ(u), where

the function H = H(u) is the known smooth function given. Since we may give the solution of the
equation

h5 ϕ′′ + 2h2
[
2h2δ

(
ϕ′2 − 1

)
− 3

(
a2 + b2

)
δ3
]
= 0,

we can find the helicoidal minimal hypersurfaces. Taking h(u) = ϕ(u)− u, δ = h′(u) = ϕ′(u)− 1,
h′′(u) = ϕ′′(u) then this equation takes the form

h5h′′ +
(

4h4 − 6c2h2
)

h′3 + 8h4h′2 = 0,

where c2 = a2 + b2. So, using h′(u) = t(u) it reduces to

t−2 dt
dh

+
8
ht

+
4h4 − 6c2h2

h5 = 0.

Setting φ = 1/t, we get
dφ

dh
− 8

h
φ− 4h4 − 6c2h2

h5 = 0.

Solution of above equation is

φ =
1
t
=

40c1h10 − 5h5 + 24c2

40h2 , c1 ∈ R.

Therefore, we see that h = h(u) (resp. ϕ = ϕ(u)) satisfy the following equations:

12800c2
1h20 − 2200c1h15 − 12800c1h12 +

(
5760c1c2 + 75

)
h10

+1600h7 − 120c2h5 − 6400h4 + 1920c2h2 − 1152c4 = 0,
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and
12800c2

1 (ϕ− u)20 − 2200c1 (ϕ− u)15 − 12800c1 (ϕ− u)12

+
(
5760c1c2 + 75

)
(ϕ− u)10 + 1600 (ϕ− u)7 − 120c2 (ϕ− u)5

−6400 (ϕ− u)4 + 1920c2 (ϕ− u)2 − 1152c4 = 0.

Hence, for every function ϕ = ϕ(u) which satisfies the last equation, there exists a helicoidal minimal
hypersurface with lightlike axis in E4

1 whose parametric representation is given by (3).
We were not able to find the solution of Equation (5) by using analytical methods, so, it is for us,

an open problem. Nevertheless, one could consider special values for the function H = H(u) as we
did earlier for the function K = K(u), and then give solutions of the corresponding equations. For
example, if

H(u) =
4e4u + 9e3u − 6c2e2u

3 [e4u + 2e3u − c2e2u]
3/2 ,

where u 6= ln
(
−1 +

√
1 + c2

)
, then (5) reduces to

4e4u + 9e3u − 6c2e2u

[e4u + 2e3u − c2e2u]
3/2 =

h5h′′ +
(
4h4 − 6c2h2) h′3 + 8h4h′2

h3 [h2h′ (h′ + 2)− c2h′2]3/2 . (15)

This equation is satisfied by the function h(u) = eu and then ϕ(u) = eu + u. Here, when H = 0 then

4e4u + 9e3u − 6c2e2u = 0. So, we have u = ln
(
−9±
√

3(32c2+27)
8

)
.

Given the function H = H(u) by (15), there exists a helicoidal hypersurface with lightlike axis
immersed in E4

1 the equation of which is given by

H(u, v, w) =


uv− (eu + u) v
uw− (eu + u)w

1
2 u
(
v2 + w2)+ [1− 1

2
(
v2 + w2)] (eu + u) + av + bw

u
[
1 + 1

2
(
v2 + w2)]+ [− 1

2
(
v2 + w2)] (eu + u) + av + bw

 .

Finally, we give the following theorem:

Theorem 1. Let γ(u) = (0, 0, ϕ (u) , u), u ∈ I ⊂ R be a profile curve of the helicoidal hypersurface M
immersed in E4

1 given by (3). Then the Gaussian and the mean curvature at the point (0, 0, ϕ (u) , u) are
functions of the same variable u, i.e., K = K(u), H = H(u). Moreover, given constants a, b ∈ I ⊂ R+,
c1, c2 ∈ R and a smooth function K = K(u) (resp. H = H(u)), u ∈ I we define the family of curves
γ(u) ≡ γ(K(u), c; c1, c2) (resp. γ(u) ≡ γ(H(u), c; c1, c2)).

6. Helicoidal Hypersurface with Timelike Axis satisfying ∆IH = AH in E4
1

The Gauss map of the helicoidal hypersurface with timelike axis (2) is clearly given by

e =
1

W


(uϕ′ cos w− b sin w) cos v cos w− a sin v
(uϕ′ cos w− b sin w) sin v cos w + a cos v

(uϕ′ sin w + b cos w) cos w
u cos w

 ,

where W =
√
(u2(1− ϕ′2)− b2) cos2 w− a2. We use

−3He = AH,
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and we get
[Ω(uϕ′ cos w)− ua11] cos v cos w− (aΩ + u cos wa12) sin v− (bΩ cos v cos w + ua13) sin w
[Ω(uϕ′ cos w)− ua22] sin v cos w + (aΩ− u cos wa21) cos v− (bΩ sin v cos w + ua23) sin w

(uϕ′Ω cos w− ua33) sin w + (bΩ cos w− u sin va32 − u cos va31) cos w
uΩ cos w



=


(ϕ + av + bw) a14

(ϕ + av + bw) a24

(ϕ + av + bw) a34

u cos v cos wa41 + u sin v cos wa42 + ua43 sin w + (ϕ + av + bw) a44

 ,

where A is a 4× 4 matrix, and Ω (u, w) = 3H
W . The equation ∆IH = AH by means of the first quantities

I, and ∆IH = −3He leads to the following system of ODEs:(
Ωuϕ′ cos w− ua11

)
cos v cos w− (aΩ + u cos wa12) sin v− (bΩ cos v cos w + ua13) sin w

= (ϕ + av + bw) a14,(
Ωuϕ′ cos w− ua21

)
sin v cos w + (aΩ− u cos wa22) cos v− (bΩ sin v cos w + ua23) sin w

= (ϕ + av + bw) a24,(
Ωuϕ′ cos w− ua33

)
sin w + (bΩ cos w− u sin va32 − u cos va31) cos w

= (ϕ + av + bw) a34,

uΩ cos w

= u cos v cos wa41 + u sin v cos wa42 + u sin wa43 + (ϕ + av + bw) a44.

Differentiating ODE’s twice with respect to v, we have

a14 = a24 = a34 = a44 = 0, Ω (u, w) = 0. (16)

From (16), we get
−a11u cos v cos w− a12u cos w sin v− a13u sin w = 0,
−a21u sin v cos w− a22u cos w cos v− a23u sin w = 0,
−a31u cos v cos w− a32u sin v− a33u sin w = 0,
a41u cos v cos w + a42u sin v cos w + a43u sin w = 0.

cosine and sine are linearly independent functions of v, then we see aij = 0. Since Ω (u, w) = 3H
W , we

have H = 0. Consequently, H is a minimal hypersurface with timelike axis.
Therefore, we have following theorem:

Theorem 2. Let timelike H : M3
1 −→ E4

1 be an isometric immersion given by (2). Then ∆IH = AH, where A
is a 4× 4 matrix iff the mean curvature of H vanishes.

7. Open Problems

An umbilical point is an significant geometric qualification, related to lines of curvature. Since
a line of curvature will end at such points, it is a singularity of a line of curvature. It can partially
be because there is an powerful criterion for a smooth (hyper)surface defined by a formula, for both
parametric or implicit (hyper)surfaces:

Lemma 1. A point is an umbilical point iff H2 − K = 0 at this point.

Finding the umbilic points, we calculate det(S− λI3) = 0, and also we use the equation in Lemma
1 for three hypersurfaces in this paper. Hence, we have following problems:
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Problem 1. Solve following differential equation for helicoidal hypersurface with spacelike axis (1):

u
[(

b2 + u2 (1− ϕ′2
))

cosh2 w + a2
]1/2

+ 9
2 u2

[(
b2 + u2 (1− ϕ′2

))
cosh2 w + a2

]
cosh w

.

 − 1
2 u4 ϕ′2 ϕ′′ cosh4 w− 1

2 u cosh2 w
(
−bu2 ϕ′′ cosh w sinh w + b2 cosh2 w + a2

)
ϕ′

+
[

1
2 a2u2 ϕ′′ sinh w +

(
1
2 b2 cosh2 w + a2

)
b cosh w

] 2

sinh w

.

 u3 ϕ′3 cosh3 w− 1
2 bu2 ϕ′2 cosh2 w sinh w− 3

2 uϕ′
[(

b2 + 2
3 u2) (a2 + cosh w

)2
]

cosh w

− 1
2 u2 cosh w

[(
b2 + u2) cosh2 w + a2

]
ϕ′′ +

[
a2 + 1

2
(
b2 + u2) cosh2 w

]
b sinh w

2

= 0.

Problem 2. Solve following differential equation for helicoidal hypersurface with timelike axis (2):
u
[(

u2 ϕ′2 + b2 − u2) cos2 w + a2]1/2 − 9
2
[(

u2 (ϕ′2 − 1
)
+ b2) cos2 w + a2]

.

(
−u3 ϕ′3 cos3 w + 1

2 bu2 ϕ′2 cos2 w sin w− 3
2
((

b2 − 2
3 u2) cos2 w + a2) uϕ′ cos w

− 1
2
[(

b2 − u2) cos2 w + a2] u2 ϕ′′ cos w +
[

1
2
(
b2 − u2) cos2 w + a2

]
b sin w

)2

.

( 1
2 u4 ϕ′2 ϕ′′ cos4 w− 1

2 u cos2 w
(
u2bϕ′′ cos w sin w + b2 cos2 w + a2) ϕ′

+
[
− 1

2 a2u2 ϕ′′ sin w +
(

1
2 b2 cos2 w + a2

)
b sin w cos w

] )2

u2 cos w = 0.

Problem 3. Solve following differential equation for helicoidal hypersurface with lightlike axis (3): [
a2 + b2 − 2

3 (u− ϕ)2
]

ϕ′3 +
[
−3
(
a2 + b2)+ 2

3 (u− ϕ)2
]

ϕ′2

+
[
3
(
a2 + b2)+ 2

3 (u− ϕ)2
]

ϕ′ −
[(

a2 + b2)+ 2
3 (u− ϕ)2

]
+ 1

3 (u− ϕ)3 ϕ′′

2

. (ϕ′ − 1)1/2
[(

(u− ϕ)2 −
(
a2 + b2)) ϕ′ + (u− ϕ)2 + a2 + b2

]3/2

−
[(

a2 + b2 − (u− ϕ)2
)

ϕ′ −
(
a2 + b2)− (u− ϕ)2

]2

. (ϕ′ − 1)3
[(

a2 − b2) (ϕ′ − 1)3 + (u− ϕ)3 ϕ′′
]
= 0.

All ϕ solutions in the problems will give umbilic points of the hypersurfaces.
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