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Abstract: We define helical (i.e., helicoidal) hypersurfaces depending on the axis of rotation in
Minkowski four-space E{. There are three types of helicoidal hypersurfaces. We derive equations for
the curvatures (i.e., Gaussian and mean) and give some examples of these hypersurfaces. Finally, we
obtain a theorem classifying the helicoidal hypersurface with timelike axes satisfying A'"H = AH.
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1. Introduction

Chen [1] served the problem of classifying finite type surfaces in the 3-dimensional Euclidean
space E3. If its coordinate functions are a finite sum of eigenfunctions of its Laplacian A, a Euclidean
submanifold is called of Chen finite type.

Moreover, the notion of finite type may be extended to any smooth function on a submanifold
of a Euclidean space or a pseudo-Euclidean space. The submanifolds theory of finite type has been
discussed by mathematicians.

Takahashi [2] obtained that minimal surfaces and spheres are the only surfaces in [E? satisfying
the condition Ar = Ar, A € R. Ferrandez, Garay, and Lucas [3] introduced the surfaces of E3 satisfying
AH = AH, A € Mat(3,3) are either minimal, or an open piece of sphere or of a right circular cylinder.
Choi and Kim [4] worked the minimal helicoid in terms of pointwise 1-type Gauss map of the first
kind.

Dillen, Pas, and Verstraelen [5] gave the only surfaces in E? satisfying Ar = Ar+ B, A €
Mat(3,3), B € Mat(3,1) are the minimal surfaces, the spheres and the circular cylinders. Dillen,
Fastenakels, and Van der Veken [6] studied rotation hypersurfaces of S” x R and H" x R. Beneki,
Kaimakamis, and Papantoniou [7] worked helicoidal surfaces with spacelike, timelike and lightlike
axis in three-dimensional Minkowski space. Senoussi and Bekkar [8] focused helicoidal surfaces in E3
which are of finite type in the sense of Chen with respect to the fundamental forms I, I] and II1.

The right helicoid (resp. catenoid) is the only ruled (resp. rotational) surface which is minimal.
Hence, we meet Bour’s theorem in [9]. Do Carmo and Dajczer [10] proved that, by using Bour [9],
there exists a two-parameter family of helicoidal surfaces isometric to a given helicoidal surface. Giiler
and Vanli [11] worked Bour’s theorem in Minkowski three-space. Using Bour’s theorem in Minkowski
geometry, Giiler [12] investigated helicoidal surface with lightlike profile curve. Mira and Pastor [13]
studied helicoidal maximal surfaces in Lorentz-Minkowski three-space.

Lawson [14] gave the general definition of the Laplace-Beltrami operator. Magid, Scharlach,
and Vrancken [15] introduced the affine umbilical surfaces in E* Hasanis and Vlachos [16]
considered hypersurfaces in 4-space with harmonic mean curvature vector field. Scharlach [17]
studied the affine geometry of surfaces and hypersurfaces in E*. Cheng and Wan [18] considered
complete hypersurfaces of four-space with CMC. Arslan, Deszcz, and Yaprak [19] studied Weyl
pseudosymmetric hypersurfaces. Turgay and Upadhyay [20] considered biconservative hypersurfaces
in 4-dimensional Riemannian space forms.
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Arvanitoyeorgos, Kaimakamis, and Magid [21] showed that if the mean curvature vector field of
Mi’ satisfies the equation AH = aH (« is a constant), then M% has CMC in Minkowski four-space IE‘ll.

General rotational surfaces in E* were originated by Moore [22,23]. Ganchev and Milousheva [24]
considered the counterpart of these hind surfaces in the Minkowski four-space. Kim and Turgay [25]
focused surfaces satisfying L;-pointwise 1-type Gauss map in E*. Moruz and Munteanu [26] gave
minimal translation hypersurfaces in E2. Verstraelen, Walrave, and Yaprak [27] studied minimal
translation surfaces in E". Ozkaldi et al [28] worked LC helix on hypersurfaces in Minkowski
space E# 1,

Giiler, Magid, and Yayl [29] defined helicoidal hypersurface and studied the Laplace—Beltrami
operator of the hypersurface in E*. Giiler, Hacisalihoglu, and Kim [30] introduced Gauss map and the
third Laplace-Beltrami operator of the rotational hypersurface in E*. Moreover, Giiler and Turgay [31]
studied Cheng-Yau operator and Gauss map using rotational hypersurfaces in four-space. Giiler and
Kisi [32] worked Dini-type helicoidal hypersurfaces with timelike axis in Minkowski four-space.

In this paper, we introduce the helicoidal hypersurfaces in Minkowski four-space E}. We give
some basic notions of the four dimensional Minkowski geometry in Section 2. In Section 3, we give the
definition of a helicoidal hypersurface with spacelike axis (resp., with timelike axis in Section 4, with
lightlike axis in Section 5.), then calculate the curvatures of it. We describe the helicoidal hypersurfaces
with timelike axis satisfying ATH = AH in Ef in Section 6. Finally, we give some open problems in the
last section.

2. Preliminaries

In this section, we introduce the first and the second fundamental forms, matrix of the shape
operator S, Gaussian curvature K, and the mean curvature H of hypersurface M = M(u, v, w) in
Minkowski four-space E}. Throughout the paper, we shall identify a vector (a,b,c,d) with its transpose
(a,b,c,d).

Let M = M(u, v, w) be an isometric immersion of a hypersurface from M; to Ef = (R*,ds?),
where ds? = dx% + dx% + dx% — dxi is an element of length (Lorentz metric) and x; are the
pseudo-Euclidean coordinates of type (3,1). The vector product of ¥ = (x1,%2,%3,%), | =
(y1,Y2,Y3,Ya), 7 = (z1,22,23,24) In E‘% is defined as follows

€1 € €3 —¢4

X X X X
T x ? X Z = det L
Yi Y2 Y3 Vi
Z1 Zp Z3  Z4

For a hypersurface M(u, v, w) in E‘ll, we have
det] = (EG - F2) C +2ABF — A%G — B2E,
detll = (LN - M2) V +2MPT — PN — T2L,

where E =M, -M,, F =M,-M,,G = My, -My,, A =M, -My, B=M, -My,, C =M,y My,
L=My-e M=Myy-e, N=My-¢e,P=Myy-e,T =Myy-e, V= Myy e, ¢is the Gauss map
(i-e., the unit normal vector)

M, X My X My
IM,;, X My X My||

71 gives the matrix of the shape operator S. Now, we have the formulas of the Gaussian curvature

K =det(S) = C(lfettlll , and the mean curvature H = %tr (S), respectively, as follows

(LN — M?) V 4+ 2MPT — PN — T?L
(EG — F?)C +2ABF — A2G — B2E ’
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and

(EN + GL — 2FM)C + (EG — F?)V — A?N — B’L — 2(APG + BTE — ABM — ATF — BPF)

H =
3((EG — F2)C +2ABF — A%G — B2E)

A hypersurface M is minimal if H = 0 identically on M.

Lety : I C R — Il be a curve in a plane IT and ¢ be a straight line in IT of E}. A rotational
hypersurface in E{ is defined as a hypersurface rotating a curve (profile) y around a line (axis) /. When
the profile curve < rotates around the axis /, it simultaneously displaces parallel lines orthogonal
to the axis ¢, so that the speed of displacement is proportional to the speed of rotation. Resulting
hypersurface is called the helicoidal hypersurface with axis ¢ and pitches a,b € R\{0}.

Therefore, we introduce three type of the helicoidal hypersurfaces in E} throughout next three
sections.

3. Helicoidal Hypersurfaces with Spacelike Axis

Supposing ¢; is the line spanned by the spacelike vector (1,0, 0, 0)’, the orthogonal matrix is given

1 0 0 0

0 coshw 0 sinh w

0 sinhovsinhw coshv sinhvcoshw
0 coshvsinhw sinhv coshvcoshw

Aq(v,w) =

where v, w € R. The matrix A; can be found by solving the following equations, simultaneously,
detA1 =1, Al'gl = 61, AgSAl =g,

where ¢ = diag(1,1,1, —1). When the axis of rotation is ¢, there is an Minkowskian transformation by
which the axis is ¢; transformed to the x;-axis of E}. A parametrization of the profile curve is given by

r(u) = (¢ (u),u,0,0),

where ¢ (1) : I C R — R is a differentiable function for all u € I. Thus, the helicoidal hypersurface
which is spanned by the vector (1,0,0,0) with pitches a,b € R\{0}, is

H(u,v,w) = Ay (v,w)y(u)" + (av+ bw)(1,0,0,0)!

in E}, where u € I, v,w € R. If w = 0, we get helicoidal surface with spacelike axis as in the three
dimensional Minkowski space E3.
When a = b = 0, the surface is just a rotational hypersurface with timelike axis:

R(u,v,w) = (¢(u), usinhw, u sinh v coshw, u coshv coshw).
Next, we obtain the curvatures of a helicoidal hypersurface with spacelike axis

¢(u) +av + bw
usinh w

u sinh v cosh w

u cosh v cosh w

H(u,v,w) = @

where u,a,b € R\ {0} and 0 < v,w < 27. See Figures 1 and 2 to projections of H with spacelike axis
into three-space.
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Figure 1. Projections of (1), ¢ = u?

3

Figure 2. Projections of (1), ¢ = u

Computing the first differentials of (1), we get the first quantities as follows

(P/Z 1 aq)’ bqo’
I= ag/  u?cosh®w + a2 ab ,
by ab u? + b?

where ¢ = ¢(u), ¢’ = Z—(l’;. Thus, we have
det = u? {(uz(q)’z —1) — b?) cosh? w — a?

With the second differentials with respect to u, v, w, we obtain the second quantities as follows

_ u? ¢" coshw au coshw ub coshw
Vdet] Vdet] Vdetl

I = au coshw 12 (ug’ coshw—bsinhw) cosh>w 42 sinh w
Vdetl Vdetl Vdetl

ubcoshw au? sinh w u’ ¢’ coshw
vdetI VdetI vVdetl
and
u* coshw 4P 4 3 3. 29 .2 /)
detll = W[(—u @'“ cosh™ w + bu” ¢’ cosh” w sinh w + a“u* sin w)ﬁ"
etl

—u cosh? w (az + b? cosh? w) ¢' + b° cosh® wsinh w — 2a%b cosh w sinh} .

,w=m/4,b =3, into (Left) xox3x4 space, (Right) x1x3x4 space.

,w=m/4,b =3, into (Left) x;xpx4 space, (Right) x1xpx3 space.

40f16
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Hence, the Gauss map of the helicoidal hypersurface is given by

u? cosh w
o 1 u[(u¢' sinhw — bcoshw)] coshw
H™ " /detl | u[(ug’ coshw — bsinhw) sinhvcoshw — a cosh o]
u [(ug' coshw — bsinhw) cosh v coshw — a sinh v]

Finally, we calculate the Gaussian curvature and the mean curvature of the helicoidal hypersurface
with spacelike axis and state the results in the following propostion:

Proposition 1. For a helicodal hypersurface with spacelike axis in E} the Gaussian and mean curvatures,
respectively, are as follows

_ /\14)/24)//+A2¢/¢//+A34)//+/\4¢/+A5
(det1)>/?

_ 019"+ 009" + 0397 + Lag" + 5

K
3 (det1)%?

, H

7

where
A= —ub cosh® w,
Ay = bu’ sinhw cosh* w,
A3 = a2 cosh w sinh? w,
Ay = uB(b? cosh? w + a?) cosh® w,

As = —bu*(b? cosh? w + 24?) sinh w cosh® w,
7 =ut {(uz + b?) cosh® w + az] cosh w,
0= —2u5 cosh® w,

73 = bu* cosh? wsinh w,
Ty =ud [35[2 + (362 + 2u?) cosh? w} cosh w,
ls = bu? {(u2 +b?) cosh® w — 2112] sinh w.

Corollary 1. When ¢ = ¢ = const., we get

2((2 1 12 2 2] o
_ —bu*(b? cosh? w + 2a?) sinh w cosh? w, o bu {(” +b*) cosh® w — 2a }smhw

K ,
(12 (b2 + u2) cos? w + a2]>/? 3[u2 (b2 + u2) cos? w + a2)]*/?

Corollary 2. When ¢ = c = const. and b = 0, we have K = 0, H = 0.

4. Helicoidal Hypersurfaces with Timelike Axis

Taking /; is the line spanned by the timelike vector (0,0,0,1)", the orthogonal matrix is given by

cosvcosw —sinv —cosvsinw 0
sinvcosw cosv —sinvsinw 0
Ar(v,w) = . ,
sinw 0 cosw 0
0 0 0 1

where v, w € R. The matrix A, can be found by
detA, =1, Aply =4, A§8A2 =g,

where ¢ = diag(1,1,1, —1). When the axis of rotation is ¢, there is an Minkowskian transformation by
which the axis is ¢, transformed to the x,-axis of E{. Parametrization of the profile curve is given by

r(u) = (u,0,0,¢ (),
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where ¢ (u) is a differentiable function for all u € I. Thus, the helicoidal hypersurface which is
spanned by the vector (0,0, 0, 1) with pitches a,b € R\{0}, is as follows

H(u,v,w) = Ay(v,w)y(u)" + (av + bw)(0,0,0,1)"

in E‘ll, where u € I, v,w € [0,27]. If w = 0, we get helicoidal surface with timelike axis as in the three
dimensional Minkowski space E3.
When a = b = 0, the surface is just a rotational hypersurface with timelike axis as follows

R(u,v,w) = (ucosvcosw,usinvcosw,usinw, p(u)).

Now, we obtain the mean curvature and the Gaussian curvature of a helicoidal hypersurface with

timelike axis
1 COS U COS W

usinvcosw
usinw
o(u) 4+ av + bw

H(u,v,w) = , ()

where u,a,b € R\ {0} and 0 < v,w < 27. See Figures 3 and 4 to projections of H with timelike axis
into three-space.

05
0
E g

3

Figure 3. Projections of (2), ¢ = u®, w = t/4, b = 3, into (Left) xpx3x4 space, (Right) x1x3x4 space.

-1 -03

0 05 g

3

Figure 4. Projections of (2), ¢ = u?, w = 7 /4, b = 3, into (Left) x1x,x4 space, (Right) x;x,x3 space.

Computing the first differentials of (2), we find the first quantities
1 ¢ —ag’ ~bg

I= —ag'  u*cos’w—a* —ab ,
—bg’ —ab u
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where ¢ = ¢(u), ¢’ = Z—ZZ. Then, we get

det = u? [(uz(l — ¢"?) — b?) cos* w — aZ} .

With the second differentials with respect to u, v, w, we have the second quantities

_ u2§0” Cos w au cos w ubcosw
\/|detI| v/ |det| \/|det |
I — au cos w _ uz(uqo/ cos w—bsinw) cos® w _aulsinw
v/ |det| \/\detl\ }/\detl\
ub cosw _au’sinw _u ¢’ cosw
+\/ |det ]| \/ |detI]| +/|detI|
and
u* cosw
detll = —— [ —utg”¢" cos* w+ bul ¢’ ¢" cos® wsinw + a?u?¢" sin® w
|det 1)3/2

+ucos® w (—a2 + b? cos? w) ¢ + b3 cos® wsin w — 2a?b cos w sin w} .

Then, the Gauss map of the helicoidal hypersurface is given by

u[(u¢' cosw — bsinw) cosvcosw — asinv)

1 u[(ug' cosw — bsinw) sinv cosw + 4 cos )
© Jdetl u[(u¢'sinw + bcosw)] cosw
u? cosw

Finally, we calculate the Gaussian curvature and the mean curvature of the helicoidal hypersurface
with timelike axis and state the results in the following propostion.

Proposition 2. For a helicodal hypersurface with timelike axis in E} the Gaussian and mean curvatures,
respectively, are as follows

«— Pro”0" + Bag'¢" + Bag" + Bag’ +Bs o _ " + 120" + 139" + 1ag" + 15
|det 11°/2 ' 3|det 1|32

4

where
B1 = —u8 cos® w,
B2 = bu” sinw cos* w,
B3 = au® cos wsin’ w,

Ba = u’(b? cos? w + a?) cos® w,
Bs = —bu*(b? cos? w + 2a%) sinw cos? w,
m = u* ((u* + b?) cos? w + a?) cos w,

112 = 2u° cos® w,

113 = bu* cos? wsinw,
e = —u® (3a% + (3b% + 2u?) cos? w) cos w,
15 = —bu? ((u® — b*) cos® w — 24%) sinw.

Corollary 3. When ¢ = ¢ = const., then we have

_ —but(b?cos? w +2a%) sinwcos’w . —bu? ((u? —b?) cos? w — 24%) sinw

02 [(u2 — b2) cos?w — a2]|>* 3u2 [(u2 — b2) cos? w — a2]|>/?

Corollary 4. When ¢ = ¢ = const. and b = 0, we have the same situation of Corollary 2, i.e. K and H vanish.
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5. Helicoidal Hypersurfaces with Lightlike Axis

Considering /3 is the line spanned by the lightlike vector (0,0, 1, 1)/, the orthogonal matrix is
given by

10 —v v

0 1 —w w
MW= v -1 @) J@+a?) |

v w 3@ +w?) 141 (P +w?)

where v, w € R. The matrix Az can be found by
detAz =1, Azf3 = {3, Ag€A3 =g,

where ¢ = diag(1,1,1, —1). When the axis of rotation is /3, there is an Minkowskian transformation by
which the axis is £3 transformed to the x3x4-axis of E}. Parametrization of the profile curve is given by

v(u) = (0,0,¢ (u),u),
where ¢ (1) : I C R — R is a differentiable function for all u € I. So, the helicoidal hypersurface
which is spanned by the lightlike vector (0,0, 1, 1) with pitches a,b € R\{0}, is as follows:
H(u,v,w) = Az(v,w)y(u)! + (av + bw)(0,0,1,1)!
in ]E‘ll, where u € [, v,w € R. When w = 0, we get helicoidal surface with lightlike axis as in the three

dimensional Minkowski space E3.
When a = b = 0, the surface is just a rotational hypersurface with lightlike axis as follows

uv — ¢(u)v,
uw — @(u)w
R(”r o, w) = %u (’02 + wz) + [1- % (02 + wz)} (P(u)

[~ @+ )] o)

u{l—f—%(vz—i—wz)

Next, we obtain the curvatures of a helicoidal hypersurface with lightlike axis

uv — @(u)v
uw — ¢(u)w
H(u,0,w) = Ju (@ +w?) + |1- % (o + wz)] @(u) + av + bw ’ ©)

u {14— T (@ +w?) |+ [—% (02+w2)} ¢(u) 4+ av+ bw

where u,a,b € R\ {0} and v,w € R. See Figures 5 and 6 to projections of H with lightlike axis into
three-space.

3

Figure 5. Projections of (3), ¢ = u?, w = 7/4, b = 3, into (Left) xpx3x4 space, (Right) x1x3x4 space.
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7( | LA W WL LA B W
12 10 8 6 4 2 0 -2 -4 -6

3

Figure 6. Projections of (3), ¢ = u®, w = 7t/4, b = 3, into (Left) x1x,x4 space, (Right) x1x,x3 space.

Calculating the first differentials of (3), we obtain the first quantities

p?—1 a(¢'—1) b(¢'—1)
I=| a(g'=1) (p—u) 0 :
b(¢'—1) 0 (¢ —u)?

where ¢ = ¢(u), ¢’ = Z—:f. Then, we have

det] = (¢ —u)? [((p —u)? ((p'2 - 1) — (a2 + b2) (¢ — 1)2} .

With the second differentials with respect to u, v, w, we have the second quantities

_(p=w?¢"  alg'=1)’(u—g)  b(¢/~-1)’(u—¢)
\/(életl Vdet] det ]
1= | 2@-D’0—9) _ (e=w’(¢/-1) 0
\/d%tl Vdet]
b(g'~1)*(u—g) 0 _lg=wP(@'~1)
Vdet] det]

Hence, the Gauss map of the hypersurface is given by

0 (hv —a)
ok 5 (hw — b)
B o /detl (v +w?) hé + 2h — 26 (av + bw) |’
(0 4+ w?) hé + 2hg’ — 26 (av + bw)

where § = q)’ — 1, h = ¢ — u. Finally, we calculate the Gaussian curvature and the mean curvature of
the helicoidal hypersurface with lightlike axis, respectively, as follows

_ P8 [(4° — ¢°) ¢" +3uhge” + (a* +17) 5°]

K
(detI)? |det1|'/?

’ 4)

and
1P 4202 2026 (¢* — 1) — 3 (a® + b?) 6]

3det! |detI|"?
We assume that det I > 0. Therefore, the problem now is reduced to finding the solution of this
differential equation in ¢ = ¢(u), where the function K = K(u) is the known smooth function given.
Next, we will examine Equation (4). Let h(u) = ¢(u) — u, then 1/ (u) = ¢'(u) — 1 and h"(u) =

@' (u). Hence, (4) reduces to

H

: ®)
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h/2 (CZh/B» _ hsh//)
[B2h! (W +2) — 22

K(u) = (6)
where ¢? = a% + b2,

In order to get an idea for these hypersurfaces, we study K = 0, K < 0, K > 0, K = const. and
H = 0 for some special functional forms of the curvatures.

Case 1. K(u) = 0. Equation (6) takes the form

w2 (2 = wn") = 0. )
Suppose that
W=t=n= t%. ®)
Then Equation (7) reduces to »
L o =0

The solution of this equation is given by

252
= ——— R.
2c1h2% — %’ ac
From Equation (8) we get
dh 212
du  2cqh? —c2’

Hence, we have

2
c
ﬂ—i-clh:u%-cz, ¢ R,
If ¢y =0, then h(u) = (+ ),andﬁnd
2
= — R.
o(u) 2(u+cz)+u, 0 €

Moreover, we define following one-parameter family of curves

2
Y(u) = v (K(u),c;c0) = (0, 0, Tt + u,u> . )

Therefore, the equation of these helicoidal hypersurfaces H(u, v, w) is given by
uo — 2(u+c y Tu)v
uw — W +u)w
1-1 (vz—l—wz)] (u+cz) —i—u) +av + bw
+ [—% (0 +w?) (2(u+c2) + “) +av+bw

, (10)

—_

Ju (0* + w?) +
u {1+%(vz—|—w2)

where ¢ = Va? + b2.

2
If ¢ # 0 then h(u) = 2= (g:rlm ~26¢2 and we obtain

u+cy £ \/(u +02)% — 2162
o(u) = % +u, ceR.
1
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Then, we define following two-parameter family of curves

2_ 2
v(u) =7 (K(u),c;e1,02) = (0,0, nres \/(u o)~ 20 + u,u) : (11)

2C1

Hence, the equation of these helicoidal hypersurfaces is given by

utcyt/ (u+cp)* =201 ¢ +u)o

2C1

2_ 2
W — u+c2:|:\/(u+c2) 2cqc +u)w

uov —

1, (24 2 10,2 .2 U+C2i\/m b (12)
Ju (@ +w?) + [1-§ (0 +w?)] o +av + bw
u [1 +1 (vz+w2)} + [—% (v? —i—wz)} <”+c2iW > + av + bw

Finally, we observe that given the function K(u) = 0, we can determine a one or two-parameter family
of curves given by (9) or (11), respectively, and define the corresponding Equations (10) or (12) of the
helicoidal hypersurfaces with lightlike axis immersed in Ef.

Case 2(a). When ¢; < 0 and detI > 0, Equation (6) takes the form

h/2 (C2h13 _ h3h//) C5C2
Ku) = 200 (1! 22572 ' 572 < 0 (13)
[W2h (B +2) — c*h”?| ‘Cl (c1 +2) (cru + ) — 22

1

which is satisfied by the function h(u) = cju + ¢, and therefore ¢ = (c1 + 1)u + ¢, where u #

—m (C%CQ +ey/cd (1 +2)+ 2C1C2) ,c1 € R\ {—2,0}.So, given the function K = K(u) by (13)
1

following the same process there exists a family of helicoidal hypersurfaces H(u, v, w) immersed in Ef,
the equation of which is

uv — ((e1 + Du+c2)v
uw — ((cl—i-l)u—l—cz)
bu (@ +w?) + [1— 1 (0 +w?)| (e +1)u+c2) + a0+ buw

u[1+%(v + w?) —1—[ 3 (@? +w)] ((c1 +Du+c) +av+bw

Similarly, when ¢; > 0 and detI > 0, Equation (6) reduces to K(u) > 0.
Case 2(b). Equation (6) takes the form

(2c1u + ¢)? (c2 (2c11t + ¢2)® — 2¢1 (cyu® + cou + C3)3)
K(u) = : )
[(cluz +cou+c3)” (2c1u 4 ¢2) ((2c1u +¢2) +2) — ¢ (2c1u + ¢2) }

which is satisfied by the function h(u) = cju® + cou + c3 and therefore ¢ = ciu? + (cp + 1)u + c3,
where ¢; € R. So, given the function K = K(u) by (14) following the same process there exists a family
of helicoidal hypersurfaces H(u, v, w) immersed in E}, the equation of which is

uv — (c1? + (c2 +1u+c3)v
uw — (c1u +(C2+1)Ll+€3)
u (@ +w?) + |11 (o +u? } ciu? + (ca + 1) u +c3) + av + bw

w14} (@2 +w?) +[ } (02 +w?)] (erw + (2 + D)+ ca) + a0+ bw
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Case 2(c). We consider K = d = const., d € R\{0}. Then we get
5 2
@2 [0 (i +2) = 2| = (1P =) =,
Using the substitution i’ = ¢, the equation reduces to

d>t [(h2 — cz) E+ 2}12}5 — b <c2t2 — h3jli>2 =0.

We could not compute this equation using analytical methods. It is the future problem for us.
Case 3. Now, we think ¢ = ¢(u) such that /' (u) = ¢'(u) — 1 # 0 for every u € R\{0}. So, we
can consider the inverse function u = u(h). Then, Equation (6) can be written as

h/Z (C2h/3 _ h3h”)
[n2n' (W +2) — 2n2]>*

K(u(h)) =

Taking i’ = t, it takes the form

JE hag;l)z —ee (- )i+ =0

If we do not know some particular solution, we can not get its general solution.
Case 4. The mean curvature of the helicoidal hypersurface given by (3) in the Minkowski space
E? is given by (5). The problem now is to find the solution of this equation in ¢ = ¢(u), where
the function H = H(u) is the known smooth function given. Since we may give the solution of the
equation
W+ 20 (2% (97 —1) =3 (2 +52) &°] =0,

we can find the helicoidal minimal hypersurfaces. Taking h(u) = ¢(u) —u, 6 = h'(u) = ¢'(u) — 1,
h"(u) = ¢ (u) then this equation takes the form

PO+ (4% — 622 1P+ 8h*H = 0,
where ¢2 = a2 + b%. So, using 1’ (u) = t(u) it reduces to

pdt 8 4ht—6cth?

t ah + Wt + 5 0.
Setting ¢ = 1/t, we get
dp 8  4h* —6c%h?
an w0
Solution of above equation is
1 40c1h10 — 515 + 24¢?
(P—?— 4Oh2 ’ CleR.

Therefore, we see that h = h(u) (resp. ¢ = ¢(u)) satisfy the following equations:

12800c3h%° — 2200c1h'> — 12800c1 12 + (5760c1c? 4 75) h10
+1600h” — 120c2h> — 6400h* + 1920c%h? — 1152¢* = 0,
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and
12800¢2 (¢ — u)*® —2200¢; (¢ — u)"™® —12800c; (¢ — u)*?

+ (5760c1¢2 +75) (¢ — u)™ +1600 (¢ — u)” —120¢ (¢ — u)°
—6400 (¢ — u)* +1920¢2 (¢ — u)* — 1152¢* = 0.

Hence, for every function ¢ = ¢(u) which satisfies the last equation, there exists a helicoidal minimal
hypersurface with lightlike axis in E} whose parametric representation is given by (3).

We were not able to find the solution of Equation (5) by using analytical methods, so, it is for us,
an open problem. Nevertheless, one could consider special values for the function H = H(u) as we
did earlier for the function K = K(u), and then give solutions of the corresponding equations. For
example, if

444 + 9e3U _ 2e2U

H(T/l) = ’
3 [t + 2031 — c2¢20)/2

where u # In (—1 +V1+ 62) , then (5) reduces to

4e4u 4 983u _ 6C2€2u - h5h// + (4]14 _ 6C2h2) h/3 + 8h4h/2
e + 2631 — 202432 13 (21 (W +2) — 22>

(15)

This equation is satisfied by the function h(u) = " and then ¢(u) = " + u. Here, when H = 0 then

—9++/3(32c2 427
4% 4 9¢% — 622 = (). So, we have u = In %

Given the function H = H(u) by (15), there exists a helicoidal hypersurface with lightlike axis
immersed in E} the equation of which is given by

uv — (e +u)v

uw — (e* +u)w
1—%(024—@02)} (e" +u) 4 av + bw
+ [—% (vz—%wz)} (e" +u) 4 av + bw

H(u,v,w) = Lu (02 + w?) +
u [1+%(vz+w2)

Finally, we give the following theorem:

Theorem 1. Let y(u) = (0,0,¢ (u),u), u € I C R be a profile curve of the helicoidal hypersurface M
immersed in E} given by (3). Then the Gaussian and the mean curvature at the point (0,0, ¢ (1), u) are
functions of the same variable u, ie., K = K(u), H = H(u). Moreover, given constants a,b € I C RT,
c1,¢2 € Rand a smooth function K = K(u) (resp. H = H(u)), u € I we define the family of curves
y(u) = y(K(u),c;c1,¢2) (resp. y(u) = y(H(u),c;c1,¢2)).

6. Helicoidal Hypersurface with Timelike Axis satisfying ATH = AH in E}

The Gauss map of the helicoidal hypersurface with timelike axis (2) is clearly given by

(ug’' cosw — bsinw) cos v cosw — asinv

. 1 (ug' cosw — bsinw) sinv cos w + a.cos v
w (ug' sinw + b cos w) cos w ’
U CoS W

where W = /(u2(1 — ¢'2) — b2) cos? w — a2. We use

—3He = AH,
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and we get

[Q(ug’ cosw) — uayq] cosvecosw — (aQ) + ucoswayy) sinv — (b cos v cos w + uayz) sinw
[Q(ug' cosw) — uay]sinvcosw + (aQ) — u cos wany ) cosv — (bQsinv cos w + uayz) sinw
(ugp’Q cosw — uazz) sinw + (bQ cos w — u sin vasy — 1 cos vazy) cos w
u)cosw

(¢ +av+bw)as
(¢ +av+bw)any
(¢ +av+bw)azy

1 COS U COS Way) + U Sinv cos wayy + udyg sinw + (¢ + av + bw) ay
where A is a4 x 4 matrix, and Q (4, w) = % The equation ATH = AH by means of the first quantities

I, and ATH = —3He leads to the following system of ODEs:

Qug’ cosw — uayy) cosvcosw — (aQ) + u cos wayp) sinv — (b cos v cos w + uaq3) sinw

¢+ av + bw) ayy,

(
(
(Qug' cosw — uay ) sinv cos w + (aQ) — u cos way) cosv — (bQsinv cos w + uans) sinw
(¢ +av+bw) ay,

(Qug’ cosw — uazs) sinw + (bQ cosw — u sinvaz; — u cos vaz; ) coOS W

(¢ +av+bw) az,

uQ) cosw

= UCOSVCOS Wiy + USinvcosway + usinways + (@ + av + bw) ayy.
Differentiating ODE's twice with respect to v, we have
a1y = aps = a314 = ag =0, O (u,w) =0. (16)
From (16), we get

—aA11U COSTVCOSW — A1pU COSW SIN U — ayzusinw =
—ap1U SINV COS W — Aol COS W COS UV — Azl Sin W

7

—0a31U COS TV COS W — A3pU SINTV — d3z3U SIN W
41U COS TV COS W + A4pU SINTV COS W + Ag3U SINW =

7

0
0,
0
0.

cosine and sine are linearly independent functions of v, then we see a;j = 0. Since Q) (u, w) = %, we

have H = 0. Consequently, H is a minimal hypersurface with timelike axis.
Therefore, we have following theorem:

Theorem 2. Let timelike H: M3 —s [ be an isometric immersion given by (2). Then ATH = AH, where A
is a 4 x 4 matrix iff the mean curvature of H vanishes.

7. Open Problems

An umbilical point is an significant geometric qualification, related to lines of curvature. Since
a line of curvature will end at such points, it is a singularity of a line of curvature. It can partially
be because there is an powerful criterion for a smooth (hyper)surface defined by a formula, for both
parametric or implicit (hyper)surfaces:

Lemma 1. A point is an umbilical point iff H> — K = 0 at this point.

Finding the umbilic points, we calculate det(S — AI3) = 0, and also we use the equation in Lemma
1 for three hypersurfaces in this paper. Hence, we have following problems:
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Problem 1. Solve following differential equation for helicoidal hypersurface with spacelike axis (1):

1/2
u[(bz—i—u (1—¢ ))coshzw—i-a] + 3 u? {(bz—i—u (1—¢ ))coshzw—i—a}coshw

2
Lutp?¢" cosh* w — lucosh? w (—buz(p” coshw sinh w + b2 cosh® w + a2> ¢’

sinh w
+ [1a2u2(p” sinh w + (%bz cosh? w + a2) bcoshw]
2

u3¢"® cosh® w — 1bu? ¢ cosh? wsinhw — 3ug’ {(b2 + 2u?) (a® + coshw)z} coshw .

—lu? coshw {(bz + u?) cosh® w + az} " + [az + 1 (¥ + u?) cosh? w} bsinh w

Problem 2. Solve following differential equation for helicoidal hypersurface with timelike axis (2):
u [(u?¢" + b* — u?) cos® w + a°] V2 5 [(? (9" — 1) + b?) cos? w + a?]
—13¢" cos® w + Fbu? ¢ cos? wsinw — 3 ((b? — 3u?) cos? w + a?) ug cosw 2
’ — 3 [(¥* — u?) cos? w + a?] 2q)”cosw+ { (b* — )cos2w+a2}bsinw
Jut@?¢" cos* w — Jucos? w (u?bg” coswsinw + b? cos? w + a?) ¢’ )
1,22 11 112 coe2 2\ pai u”cosw = 0.
+ [ sa‘us@" sinw + (ib cos“w +a )bsmwcosw}

Problem 3. Solve following differential equation for helicoidal hypersurface with lightlike axis (3):
(2402 =3 (u—@)] %+ -3 (a+ bz) +3 -9 9" ’
+ 3@+ )+ -9 ¢ — [(@+1) +3—9)’| + 5 (u—0) 9"
(g —1)/? [((u — @) = (@+1%)) ¢/ + (u— ) +a® + b2r/2
[(a +v:— 2)g0 (a® + bz)—(u—q))z]z
(g =1) [( b2> (¢ =1+ @—9)¢"] =0.

All ¢ solutions in the problems will give umbilic points of the hypersurfaces.
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