
symmetryS S

Article

Testing of a Virtualized Distributed Processing
System for the Execution of Bio-Inspired
Optimization Algorithms

Nancy Gélvez 1 , Helbert Espitia 1,* and Jhon Bayona 2

1 Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, 11021-110231588 Bogotá, Colombia;
nygelvezg@udistrital.edu.co

2 Facultad de Ingeniería, Universidad Escuela Colombiana de Carreras Industriales, 111311 Bogotá, Colombia;
jbayonan@ecci.edu.co

* Correspondence: heespitiac@udistrital.edu.co

Received: 26 May 2020; Accepted: 13 July 2020; Published: 17 July 2020
����������
�������

Abstract: Due to the stochastic characteristics of bio-inspired optimization algorithms,
several executions are often required; then a suitable infrastructure must be available to run these
algorithms. This paper reviews a virtualized distributed processing scheme to establish an adequate
infrastructure for the execution of bio-inspired algorithms. In order to test the virtualized distributed
system, the well known versions of genetic algorithms, differential evolution and particle swarm
optimization, are used. The results show that the revised distributed virtualized schema allows
speeding up the execution of the algorithms without altering their result in the objective function.

Keywords: evolutionary computing; distributed; optimization; virtualization

1. Introduction

Artificial intelligence and processing technologies are important tools to improve the analysis of
the different phenomena in nature; it is important to have an efficient infrastructure for data processing
and analysis, which must be platform-independent [1]. In relation to one of the techniques used
in artificial intelligence, bio-inspired optimization algorithms have proven to be a suitable tool for
troubleshooting engineering; however, because of their stochastic behavior they often require a large
number of iterations such as a number of executions to get a useful solution. Therefore, it is necessary
to establish an adequate infrastructure to run such algorithms—a virtualized distributed system being
a suitable option.

1.1. Bio-Inspired Optimization

Bio-inspired optimization techniques (heuristics) are a suitable alternative when traditional
methods cannot determine appropriate results or have limitations. In the field of bio-inspired
optimization, there are different proposals based on behaviors and phenomena that exist in nature [2].
In this regard, approaches of individuals among the algorithms are stochastic hill climbing (SHC) and
simulated annealing (SA). Among the methods based on several individuals (populations), the genetic
algorithms (GA), differential evolution (DE), ant colony optimization (ACO), bacterial chemotaxis
(BCO), and particle swarm optimization (PSO). The stochastic hill climbing algorithm is based on
the stochastic selection of neighboring solutions, which are accepted in cases wherein there is an
improvement in the target function [3]. Simulated annealing is a method that emulates the crystalline
formation of a material by heating and cooling it, seeking to move from a higher to a lower energy
state [3]. Genetic algorithms and differential evolution seek to emulate the process of nature by

Symmetry 2020, 12, 1192; doi:10.3390/sym12071192 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-3334-6959
https://orcid.org/0000-0002-0742-6069
https://orcid.org/0000-0001-6688-1988
http://dx.doi.org/10.3390/sym12071192
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/7/1192?type=check_update&version=2


Symmetry 2020, 12, 1192 2 of 31

improving a species over time [3]. On the other hand, algorithms based on ant colonies, bacterial
chemotaxis, and swarms of particles are inspired by the behavior of living beings searching for
food [4–6].

In order to test the processing system, we used the standard versions of genetic algorithms,
differential evolution, and particle swarm optimization, which are widely known.

1.2. Distributed Processing Systems

Aggregate computing is an emerging approach to complex coordination engineering that results
in distributed systems. This approach is based on the interactions of the visualization system in terms
of information that is propagated across device groups and their interactions with their peers and
environment [7]. Some applications that involve data analysis typically perform the calculations in a
data center or cloud environment. As these applications grow in scale, this centralized approach leads
to bandwidth requirements and potentially impractical computational latencies. This has generated
interest in computing wherein processing is in a distributed manner [8].

According to [9], the development of this technology shows the importance of teaching the
aspects of parallel computing. In this regard, the authors of [9] present a model for incorporating
parallel and distributed computing (PDC) throughout an undergraduate computer science (CS)
curriculum, presenting students with computer topics of distributed and parallel computation in
the intermediate level.

Parallel and distributed computing is of importance when handling a large amount of data and
the ability to process it; some applications of parallel computing are described below.

An application on renewable energy generation can be seen in [10], where a distributed data
processing system is presented to improve the estimation of urban solar potential by directly using
a dense set of scanning points obtained from aerial laser scans (ALS) that allow incorporating true,
complex, and heterogeneous elements common in most urban areas.

Another application on renewable energy can be seen in [11], where a hybrid distributed
computing system is used in Apache Spark for wind speed forecasting, which corresponds to an
arduous task given the randomness of the wind speed. Using the distributed computing strategy,
the system can divide large wind speed datasets into groups and use them in parallel.

In relation to a geomatics application, in [1] a distributed computer framework is provided,
allowing data collection and processing. According to the authors, the proposed system can support
efficient range queries and large-scale spatial data processing in a Spark cluster and another in Flink,
providing an effective cross-platform distributed computing solution for fast processing of large-scale
spatial data.

Finally, an application in the field of agriculture can be seen in [12], where it is necessary to
evaluate the spatial distributions of crop yields under current and future climatic conditions. This task
generally requires considerable effort in order to prepare the input data and post-process the results,
which is why the authors developed a simulation support system to automate repetitive and tedious
tasks using virtual machines connected over a local network, allowing for a clustered computer without
workstations having to be dedicated.

1.3. Virtualization Systems

The concept of virtualization is applied in cloud computing systems to help users and owners
achieve better use and efficient management of the cloud at the lowest cost [13]. Live migration
of virtual machines (VM) is an essential feature of virtualization, allowing one to migrate virtual
machines from one location to another without suspending them. This process has many advantages
for data centers, such as load balancing, inline maintenance, power management, and proactive
fault tolerance [13]. When a system such as a processor, memory, or I/O device is virtualized,
its interface and all visible resources are mapped to a virtual interface in such a way that the
actual system is transformed into a different virtual or even a set of multiple virtual systems [14].



Symmetry 2020, 12, 1192 3 of 31

Virtualization technologies allow decoupling the architecture and user-perceived behavior of hardware
and software resources from the physical deployment [15].

According to [16], virtualization has made it possible to completely isolate virtual machines
from each other. When applications running inside virtual machines have real-time restrictions,
threads that deploy virtual cores must be programmed in a predictable way over physical cores.
Meanwhile, reference [17] states that real-time virtual machines are suitable for tightly coupled
computer systems wherein tasks are executed from the associated language. Here is an approach to
support the transfer of tasks between freely attached computers in a real-time environment to add
more features without updating the software.

Essentially, energy consumption is an important aspect of virtualization; in line with [18], the high
power consumption of cloud data centers presents a significant challenge from both an economic and
environmental perspective. Server consolidation using virtualization technology is widely used to
reduce the power consumption rates of data centers. The efficient virtual machine placement (VMP)
of virtual machines plays an important role in server consolidation technology, this being a difficult
problem of type NP (nondeterministic polynomial time) for which the optimal solutions are not
possible. In addition, reference [19] states that the assignment of a virtual to a physical machine affects
the power consumption, manufacturing, and downtime of physical machines. According to [20],
the demand for power for cloud data centers has increased markedly; therefore, the consolidation of
dynamic virtual machines, as one of the effective methods to reduce energy consumption, is widely
used in large data centers in the cloud.

On energy-related work, a hybrid VMP algorithm based on an improved genetic algorithm using
permutation and a multidimensional resource allocation strategy is proposed in [18]. The proposed
VMP algorithm aims to improve the rate of high power consumption of cloud data centers by
minimizing the number of active servers that host virtual machines; it also seeks to achieve balanced use
of resources (CPU, RAM, and bandwidth) of active servers, which in turn reduces wasted resources.
Meanwhile, in [19], the problem is formulated as an optimization of packaging to minimize the
energy costs of operating machines and inactive machines. When considering the CPU and memory
requirements of a virtual machine, the allocation is limited by the capabilities of the physical machine.
Another work can be seen in [20], where, in order to efficiently ensure quality of service (QoS),
a VM approach is proposed that considers the current and future uses of resources through host
overload detection.

1.4. Document Organization

Distributed processing and virtualization technologies are suitable tools when computing power
is needed, as is the case with bio-inspired optimization algorithms, as their stochastic characteristics
require running several times with different settings of their parameters. Therefore, this paper reviews
a virtualized parallel processing scheme for the execution of bio-inspired optimization algorithms.
The document is organized as follows. The first part reviews concepts on distributed computer systems
and virtualization, and also presents the computer system used; then it describes the optimization of
bio-inspired algorithms and the test functions considered, and subsequently presents the statistical
results obtained, showing the configurations of the algorithms; finally, the conclusions of the work
are established.

The objective of this work was to evaluate the virtualized distributed processing system located
at the High Performance Computing Center (Centro de Computación de Alto Desempeño—CECAD) of the
Universidad Distrital Francisco José de Caldas (UDFJC) which provides a distributed computing service
in a virtualized way to the researchers of the UDFJC. The aim was to look at the characteristics of this
system for the execution of bio-inspired optimization algorithms and the advantages that it has in
relation to processing time.



Symmetry 2020, 12, 1192 4 of 31

2. Distributed Processing Systems

According to [21], a distributed system is a collection of autonomous computer elements (nodes)
visible to users as a single consistent system. Each of the computer elements can behave independently
and can be hardware devices or a software process. In this way, users (people or applications) think
they are dealing with a single system; this implies that collaboration between nodes must be presented,
which is an important aspect in the development of distributed systems [21]. A distributed system
must have the following features to provide maximum performance to users:

Openness: This attribute ensures that a subsystem is continuously open to interaction with other
systems, such as those designed to perform inter-machine interactions over a network by allowing
distributed systems to expand and scale.

Scalable: A distributed system can function properly even if some aspect of the system scales
to a larger size. Three components should be considered: the number of users and other entities
that are part of the system, the distance between the farthest nodes of the system, and the number of
organizations that exercise administrative control over parts of the system.

Predictable performance: Predictable performance is the ability to provide the desired
responsiveness in a timely manner, according to a performance metric that may be the response time
associated with the time elapsed between a query in a computer system and response. Another metric
corresponds to the rate at which a network sends or receives data. Metrics associated with system
utilization and network capacity can also be used to establish the performance.

Security: Security features are primarily intended to provide confidentiality, integrity,
and availability; thus, distributed systems must allow communication between programs, users,
and resources on different computers by applying the necessary security tools.

Fault-tolerant: Distributed systems consist of a large number of hardware and software
modules that can fail in the long-term. Such component failures can result in a lack of
service. Therefore, systems should be able to recover from component failures without performing
erroneous actions.

Transparency: Distributed systems should be perceived by users and application developers as
a whole and not as a collection of cooperating components. In this way, for the user the locations
of the computer systems involved in the operations, data replication, failures, system recovery, etc.,
are not visible.

Types of Parallel Architecture

On the classification of parallel architectures, Michael Flynn proposed a taxonomy that simplified
the categorization of different classes of architectures and control methods based on the relationships
of data and instruction (control) with respect to the parallelism of the data flow [22,23].

There are different ways CPUs can be connected together; Flynn’s classification considers
machines by the number of instruction flows and the number of data flows. Multiple instruction
sequences mean that different statements can be executed simultaneously [22,23]. Data flows refer to
memory operations whose four combinations are:

• SISD (single instruction stream, single data stream): This classification corresponds to the
traditional single-processor computer. It represents the conventional sequential (serial) processor
structure where a single control thread, the flow of instructions, guides the sequence of operations
performed on a single data set, one operating at a time.

• SIMD (single instruction stream, multiple data streams): This architecture supports
multiple streams of data to be processed simultaneously by replicating computer hardware.
Single statement means that all data streams are processed using the same calculation logic. It can
be seen as an array processor, where a single instruction operates in many data units in parallel.

• MISD (multiple instruction stream, single data stream): Corresponds to a rare architecture,
which operates in a single data flow but has multiple computing engines that use the same data



Symmetry 2020, 12, 1192 5 of 31

flow. That is multiple processors, each with their own flow of instructions, working on the same
data with which all the other processors operate. They could be used to provide fault tolerance
with heterogeneous systems operating with the same data.

• MIMD (multiple instruction stream, multiple data stream): This is the most generic
parallel processing architecture where any type of distributed application is programmed.
Multiple stand-alone processors running in parallel work in separate data flows. The logic
of the applications running on these processors can also be very different. All distributed systems
are recognized as MIMD architectures. At any time, a lot of operations are performed, but they do
not have to be the same and are mostly different.

Shared memory and distributed memory systems are two main types of MIMD. In a shared
memory system (Figure 1), a collection of stand-alone processors is connected to a memory system
over an interconnected network, and each processor can access each memory location. In a shared
memory system, processors are usually implicitly communicated by accessing shared data structures.

Memory

Interconnect

CPU CPU CPU· · ·

Figure 1. Shared memory systems.

In a distributed memory system (Figure 2), each processor is coupled with its own private memory,
and processor-memory pairs communicate over an interconnected network. On distributed memory
systems, processors generally communicate explicitly by sending messages or using special functions
that provide access to the memory of another processor [24].

Memory

Interconnect

CPU

Memory

CPU

Memory

CPU

· · ·

Figure 2. Distributed memory systems.

3. Description of Virtualization Systems and Process

The strengthening of the cloud computing model has oriented bets on technological resources
towards virtualization, and today this methodology has positioned itself as a computational
requirement that all kinds of organizations demand for operation, due to the ability to access the
information at all times and with the advantage that it allows them to significantly reduce the operating
costs in terms of software and hardware resources.

When a cloud computing model becomes extensible, the use of virtualization is increasingly
necessary; it is also essential to create new design and integration standards that regulate it.
"Virtual infrastructure solutions are ideal for part-to-production environments because they run
on industry-standard servers and desktops and are compatible with a wide range of operating systems
and application environments, as well as infrastructure and storage" [25].



Symmetry 2020, 12, 1192 6 of 31

In the field of computer applications, the infrastructure corresponds to the set of elements that
are necessary for the development of an activity [25,26]. In general, two types of infrastructure are
identified: hardware (physical) infrastructure and software (logical) infrastructure. The first consists of
elements as diverse as air conditioners, sensors, cameras, servers, routers, firewalls, laptops, printers,
phones, etc.

The set of logical or software elements ranges from operating systems (Linux, Windows, etc.) to
general applications that enable the operation of other specific computer systems of services, such as
databases, application servers, or office tools for the suite of applications and computer tools used in
the office to optimize, automate, and improve related procedures or tasks.

On the other hand, the term virtualization can be understood as creating through software a
virtual version of some technological resource such as a hardware platform, an operating system,
a storage device, or another resource network [27].

Nowadays, the consolidation of the cloud computing model has steered towards virtualization
as a daily requirement within the technological resources that all kinds of companies require for
their operation, permanently accessing and reducing their capital expenditures. The advantages
of this model are summarized in three factors: economy, flexibility, and security. A cloud solution
can add or remove workstations and servers, and modify their capabilities or configurations almost
immediately [28].

A virtualized system includes a new software layer, namely, a virtual machine manager (VMM).
The primary function of VMMs is to arbitrate access to resources on the underlying physical host
platform so that multiple operating systems (which are VMM guests) can share them. VMM presents
each host OS (operating system) with a set of virtual platform interfaces that constitute a virtual
machine. Despite once being confined to specialized servers and owners, and high-end mainframe
systems, virtualization is now increasingly available. The resulting VMM can support a wider range of
legacy and future operating systems while maintaining high performance [29].

The classic benefits of virtualization include better utilization, manageability, and reliability of
core framework systems. Multiple users with different operating system requirements can more easily
share a virtualized server, operating system updates can be organized on virtual machines to minimize
downtime, and the failures of the guest software can be isolated on the virtual machines on which they
are produced. While these benefits have traditionally been considered valuable in high-end server
systems, recent academic research and new VMM-based emerging products suggest that the benefits
of virtualization have greater attractiveness in a wide range of both server and client systems [29].

Virtualization can improve overall system security and reliability by isolating multiple software
stacks into self proper virtual machines. Security can be improved because the instructions can be
limited to the VM on which they occur, while reliability can be improved because the software failures
on one VM do not affect the other VMs [29].

Virtualization allows running the two environments on the same machine, as can be seen in
Figure 3, so that these two environments are completely isolated from each other.

Hardware

Virtual Machine Monitor

OS-1 OS-2

Algorithm

A

Statistic

Analysis

VM 1 VM 2

Figure 3. Example of the virtualization process [30].



Symmetry 2020, 12, 1192 7 of 31

In the case of optimization algorithms, the GA algorithm runs on the OS1 operating system and
the statistical analysis is executed on the OS2 operating system. Both operating systems run on top
of the virtual machine monitor. VMM virtualizes all resources (for example, processors, memory,
secondary storage, and networks) and allocates them to the various virtual machines running over
VMM [30].

Figure 4 depicts the virtualization process, where the VMM creates an abstraction layer between
the host hardware and the virtual machine operating system, appropriately managing its core resources
(CPU, memory, storage, and network connections).

CPU

Memory

Storage

Network
connection

Guest 1

Guest 2

Guest n

Host

Hardware Abstraction layer Abstraction Environments
of resources execution

Virtual Machine Monitor

Figure 4. Representation of the virtualization process [25].

4. Virtualized Distributed Processing System Used

This section describes the virtualized distributed platform for executing bio-inspired optimization
algorithms. The computer system consists of network modules, storage, and processing. In Figure 5a
is the network module, while Figure 5b shows the storage, and finally, Figure 5c shows the
processing system.

This computer system corresponds to the High Performance Computing Center (Centro de
Computación de Alto Desempeño—CECAD) of the Universidad Distrital Francisco José de Caldas (UDFJC)
which provides a distributed computing service in a virtualized way to the researchers of the UDFJC.
Once the resources requested by the researcher are allocated, access to the system can be done remotely.

(a) (b) (c)

Figure 5. Virtualized distributed processing system used. (a) Network equipment used; (b) storage
equipment used; (c) processing equipment used.



Symmetry 2020, 12, 1192 8 of 31

Infrastructure Used

The characteristics of the infrastructure used are:

• Operating system: Ubuntu Version 18.04.
• RAM memory (GB): 14.5.
• Number of processors: 16.
• Main storage (GB): 80 GB.
• Secondary storage (GB): not used.
• Software used: Octave.

Figure 5c shows the physical appearance of the server used. The features of the R610 Server are:

• 16 processors (Xeon E5570, 2.93 GHz).
• 16 GB DDR3.
• 73 GB hard disk.

The CECAD private cloud has multiple R610 compute nodes, when using Openstack to provide
infrastructure as a service (similar to Amazon EC2); this technology takes one of these servers to
deploy the requested instance, in this case the "AlgoritmosB" instance. On the other hand, even though
the server storage is apparently limited (73 GB), it has been configured through an architecture that
uses the CEPH File System tool, a feature that allows allocating higher storage, in this case of 250 GB,
since CEPH is configured to allow nodes to access 100 TB storage from the CECAD SAN. Figure 6
shows the instances using Openstack. The characteristics of the instance used are presented in Figure 7.

Figure 6. Instances using Openstack.

Figure 7. Description of the instances used.

5. Bio-Inspirated Optimization Algorithms

The bio-inspired optimization algorithms considered for the testing of the processing system
are: genetic algorithms, differential evolution, and optimization based on swarms of particles.
The following is the description of these algorithms; then the parameter configuration used is shown.

5.1. Genetic Algorithms

Genetic algorithms (GA) are one of the approaches to stochastic optimization, which is a
reference to evolutionary computing algorithms that are based on principles of natural evolution and
survival [31]. A GA seeks to improve a population by establishing a point at which the performance
function is optimized; thus, simultaneously, multiple candidate solutions are considered [31].
The general steps of a genetic algorithm are as follows:

1. Start the population randomly.



Symmetry 2020, 12, 1192 9 of 31

2. Evaluate the performance of each individual.
3. Stochastically select the best individuals.
4. Apply the elitism operator.
5. Apply the crossover operator.
6. Apply the mutation operator.
7. If the completion criterion is not met, return to step 2.
8. Finish by meeting the stop criterion and establish the final solution.

In the first step an initial population is generated randomly and the fitness function is evaluated
for each individual. Then it can use an elitist selection strategy where the best individuals determined
by the aptitude assessment move on to the next generation. The next step is to stochastically apply
the crossover operator where the parents are selected according to the aptitude value; in this way,
individuals who have higher fitness values are selected more frequently. For each pair of parents,
the respective crossing is made at random; when not crossing, two children are formed that are
copies of the two parents. Subsequently, the operator of the mutation is applied where an element
of the individual encoding that has been obtained in the previous step is changed randomly. Finally,
the values of the objective function are calculated for the new population and the algorithm is
terminated if the stop criterion is met [31,32].

5.2. Differential Evolution Algorithm

The differential evolution (DE) algorithm was initially proposed by Storn and Price [33,34];
this corresponds to an evolutionary computing algorithm where the next population is
established considering the subtraction between individuals of the current population using a
crossover/recombination operator after the mutation [35]. The main steps of a DE algorithm are
as follows:

1. Initialize the population in the solution space.
2. Apply the subtraction operator.
3. Apply the recombination operator.
4. Evaluate the performance of each individual.
5. Perform the selection process.
6. If the completion criterion is not met, return to step 2.
7. Finish by meeting the stop criterion and establishing the final solution.

In a first instance, the population is started randomly; then the subtraction operator is applied,
followed by the recombination operator; in the next step, the selection process is performed.
These processes are performed until the criterion is met.

Taking two randomly chosen individuals q1 and q2 from the population, the subtraction operator
incorporates the difference between these individuals into a third individual q3 in such a way that it
has a new pi individual which corresponds to:

pi = q1 + µ(q2 − q3) (1)

Using the mutation constant µ > 0, the subtraction between individuals is set. After the mutation,
a recombination operation is performed on each qi individual to generate a ui individual which is
constructed by mixing the pi and qi components. This is what a random number is used for P ∈ [0, 1]
having the follow equation:

ui =

{
pi(l), if rand < P;

qi(l), otherwise.
(2)

If an improvement of the objective function is achieved with the intermediate individual ui,
this replaces the individual qi; otherwise, it remains qi in the next generation.



Symmetry 2020, 12, 1192 10 of 31

5.3. Particle Swarm Optimization Algorithm

The concept of swarm-based optimization was proposed by James Kennedy and Russell Eberhart
based on the social behavior of bird flocks [6]. In general, the steps involved in the PSO (particle swarm
optimization) algorithm are as follows:

1. Initialize the swarm in the solution space.
2. Evaluate the performance of each individual.
3. Find the best individual and collective performances.
4. Calculate the speed and position of each individual.
5. Move each individual to the new position.
6. If the completion criterion is not met, return to step 2.
7. Finish by meeting the stop criterion and establishing the final solution.

As it is appreciated, in a first instance the swarm is initialized in the solution space; then the
performance of each individual is evaluated by finding the best individual and collective performances;
with these values the speed of each particle is calculated. That is used to determine the displacement
of each individual to the new position. The above processes are carried out until a completion criterion.
The following expression is used to establish the position of each individual:

~xi[n + 1] = ~xi[n] +~vi[n + 1] (3)

For the calculation of the speed there are different alternatives, one of the most representative
ones being the one which incorporates an inertia factor described by the following equation:

~vi[n + 1] = w~vi[n] + αp[βpi(~xpi −~xi[n])] + αg[βgi(~xg −~xi[n])] (4)

In the above equations, ~vi and ~xi correspond to the velocity and position of the individual i-th.
On the other hand, ~xpi is the best position found by the i-th individual, and ~xg is the best position
found by the swarm. Additionally, βpi and βgi are random numbers in the range [0, 1]. Finally, w is an
inertia value, αp acceleration constant of the social part and αg acceleration of the cognitive part.

6. Experiments Configuration

The configuration of the algorithms is done considering two representative cases, which are
executed on eight test functions with and without virtualization. With these experiments we sought to
show that the virtualization scheme allows reducing the execution times of the algorithms without
altering their performances.

6.1. Configuration for Genetic Algorithms

Two recommended standard configurations are used for the case considered. The first
configuration uses 50 individuals with mutation probability of 0.001 and crossover probability of
0.6 [36]. The second configuration has 30 individuals, mutation probability of 0.01, and probability
associated to the genes exchanged between individuals equal to 0.9 [37]. Table 1 summarizes the
deployed configurations.

Table 1. Parameters configurations for the genetic algorithm.

Configuration
Parameters

Population Mutation (Prob.) Crossover (Prob.)

AG-C1 50 0.001 0.6
AG-C2 30 0.01 0.9



Symmetry 2020, 12, 1192 11 of 31

6.2. Configuration for Differential Evolution

The method of differential evolution starts from a randomly initialized population, with which
the following population establishes itself, considering the difference between individuals of that
population. Two configurations of the differential evolution algorithm were used for this algorithm,
considering the recommendations proposed by [38].

The first configuration has 40 members, probability of crossing equal to 0.9784, and the step size
of 0.6876; for the second configuration, taking into account the rule given by Price and Storn [33],
the number of members is 20, the probability of crossing is 1 since the high values guarantee the
appropriate contour conditions for the evolution algorithm [34], and the step size is 0.85. The summary
of the configurations is presented in Table 2.

Table 2. Parameters’ configurations for the differential evolution algorithm.

Configuration
Parameters

Population Crossover (Prob.) Step Size

DE-C1 48 0.9784 0.6876
DE-C2 20 1 0.85

6.3. Particle Swarm Optimization Configuration

For PSO, the two configurations proposed by [39] are used for the PSO algorithm with inertia
factor. Parameter selection is based on an analysis of the dynamic behavior of the swarm. Both cases
use 30 particles; Table 3 shows the selected configurations.

Table 3. Parameter configuration for particle swarm optimization.

Configuration
Parameters

w αp αg

PSO-C1 0.600 1.7 1.7
PSO-C2 0.729 1.494 1.494

7. Tests Functions

Ideally, the test functions chosen to evaluate an optimization algorithm should contain features
similar to the real-world problem. However, specialized literature is characterized by the use of
artificial functions to perform tests on these optimization algorithms.

The multi-dimensional test functions can be seen in Table 4; the selection was made considering
the reports [40–43], wherein they are used for testing with bio-inspired algorithms. The characteristics
of the test functions can be seen in Table 5. This table shows that the functions employed have different
limits of the search space.



Symmetry 2020, 12, 1192 12 of 31

Table 4. Generalized test functions used.

Name Dim Limits Equation

Spherical D [−100, 100]D f1(~x) =
D
∑

i=1
x2

i

Levy D [−10, 10]D f2(~x) = sin2(πw1) +
D−1
∑

i=1
(wi − 1)2[1 + 10 sin2(πwi + 1)] + (wD − 1)2[1 + sin2(2πwD)],

where, wi = 1 + xi−1
4

Styblinski
Tang

D [−5.12, 5.12]D f3(~x) = 1
2

D
∑

i=1

(
x4

i − 16x2
i + 5xi

)
Rosenbrock
Rotate

D [−30, 30]D f4(~x) =
D−1
∑

i=1

[
100(xi+1 + x2

i )
2 + (xi + 1)2]2

Griewank D [−50, 50]D f5(~x) = 1 + 1
4000

D
∑

i=1
x2

i −
D
∏
i=1

cos
(

xi√
i

)
Rastrigin D [−5.12, 5.12]D f6(~x) =

D
∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

Schaffer D [−30, 30]D f7(~x) =
D−1
∑

i=1
(x2

i + x2
i+1)

0.25
[
sin2(50(x2

i + x2
i+1)

0.1) + 1
]

Ackley D [−30, 30]D f8(~x) = e + 20− 20 exp

(
−0.2

√
1
D

D
∑

i=1
xD

i

)
− exp

(
1
D

D
∑

i=1
cos(2πxi)

)

As noted in Table 5, the test functions f2, f3, and f4 have the minimum localized value at a
non-zero point, while for all other test functions the global minimum is located at zero.

Table 5. Features of the test functions used.

Name Dim Multi-Modal Optimal Point Limits Optimal Value

Spherical D No (0.0)D [−100, 100]D 0
Levy D Yes (1.0)D [−10, 10]D 0
Styblinski Tang D Yes (−2.903534)D [−5.12, 5.12]D −39.16599D
Rosenbrock Rotate D Yes (−1.0)D [−30, 30]D 0
Griewank D Yes (0.0)D [−50, 50]D 0
Rastrigin D Yes (0.0)D [−5.12, 5.12]D 0
Schaffer D Yes (0.0)D [−30, 30]D 0
Ackley D Yes (0.0)D [−30, 30]D 0

8. Experimental Results

This section compares the performances of the selected bio-inspired algorithms with and without
the virtualization scheme. The results are first reviewed considering the value obtained from the target
function, and then the results obtained from the execution time (run-time) are analyzed.

In these results M2 corresponds to the distributed processing scheme, while M1 refers to the
dedicated PC (personal computer) with the following characteristics.

• Operating System: Windows 8.
• RAM Memory (GB): 6 .
• Processor: i5 2.60 GHz.
• Main storage (GB): 680 GB.
• Software used: Octave.

In both cases, the algorithms and data collection were performed in the free Octave software.
Each configuration ran 50 times for each test function (taking 10 dimensions).

In order to identify the results, the first part of the respective tag refers to the class of algorithm
AG, DE, or PSO; then the type of configuration C1 or C2 is indicated; finally, the machine is M1 or M2,
with which the algorithm was executed.



Symmetry 2020, 12, 1192 13 of 31

Here are used different source files for experiments; for the implementation of GA the source
from GitHub posted by user "shenbennwdsl" in [44] was used; in the case of DE, the files developed by
Rainer Storn, Ken Price, Arnold Neumaier, and Jim Van Zandt posted in [45]; for PSO the source file
developed by Matthew P. Kelly downloaded from [46]; for test functions, the archives developed by
Brian Birge from [47] were used; and Sonja Surjanovic and Derek Bingham posted in [48]. Finally, all
archives used in this work to implement the experiments and present the results can be downloaded
from GitHub in [49].

8.1. GA Algorithm Results

Table 6 shows the results when performing the execution of the genetic algorithm for the value of
the target function, and Table 7 shows the results for the run-time. Graphically, the results obtained
for the values of the target function can be seen in a diagram of stems and sheets in Figures 8 and 9
for run-time. In Figure 8 the configurations associated to M1 and M2 present similar results for the
objective functions; meanwhile, in Figure 9 in all cases the processing time associated with machine
M2 is less that than of M1.

Table 6. Statistical results for the value of the objective function using GA.

f1 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max 803.1 851.1 693.48 878.87
Min 110.12 231.66 96.881 198.67

Average 396.34 512.71 363.63 524.55
STD 164.16 145.59 165.86 165.07

f2 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max 4.0682 2.8756 4.1886 2.9012
Min 0.43532 0.73858 0.50167 0.49925

Average 2.0062 1.6742 1.7204 1.6712
STD 1.094 0.43556 0.91603 0.49293

f3 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max −361.86 −369.18 −360.01 −366.04
Min −385.82 −390.21 −389.06 −385.25

Average −376.93 −378.57 −377.46 −378.18
STD 5.3254 4.3697 5.5337 4.2567

f4 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max 7.484× 105 2.6675× 105 6.5106× 105 2.7881× 105

Min 11809 22674 10592 14904
Average 2.1762× 105 1.2786× 105 2.032× 105 1.1931× 105

STD 1.81× 105 61355 1.6132× 105 59792

f5 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max 1.0079 0.90574 1.0422 0.95218
Min 0.13795 0.51898 0.13518 0.4226

Average 0.62559 0.72619 0.64354 0.72477
STD 0.29169 0.10053 0.27751 0.11398

f6 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max 26.967 22.369 26.161 23.734
Min 9.0212 11.351 6.8412 7.9241

Average 18.404 17.323 16.87 17.45
STD 4.2545 2.6509 4.1317 3.2635

f7 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max 15.554 15.825 15.913 16.091
Min 5.81 9.5476 6.1036 9.749

Average 9.7471 13.107 9.4184 13.142
STD 2.1818 1.3576 2.1384 1.3547

f8 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max 3.4624 5.2211 3.8739 5.3901
Min 0.88282 3.3081 1.2655 3.0742

Average 2.4774 4.2857 2.7235 4.253
STD 0.5349 0.44425 0.55014 0.53566



Symmetry 2020, 12, 1192 14 of 31

Table 7. Statistical results for the execution time (run-time), using GA.

f1 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max 24.144 14.818 23.045 13.121
Min 21.58 14.109 19.585 12.583

Average 22.567 14.376 20.548 12.98
STD 0.83158 0.21588 0.78465 0.14111

f2 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max 53.419 33.995 43.846 28.084
Min 52.5 32.746 42.469 27.325

Average 52.705 33.576 43.305 27.68
STD 0.19373 0.45674 0.40224 0.29811

f3 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max 33.675 21.241 27.961 16.951
Min 32.444 20.753 27.693 16.249

Average 32.656 20.933 27.829 16.625
STD 0.2189 0.12987 0.051181 0.19769

f4 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max 26.432 17.195 23.177 14.662
Min 25.832 16.809 22.28 14.579

Average 26.12 16.988 22.806 14.625
STD 0.12577 0.10671 0.3793 0.021441

f5 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max 56.463 37.643 25.431 15.981
Min 51.667 32.043 24.527 15.403

Average 52.609 32.336 25.207 15.777
STD 0.98871 0.79033 0.28878 0.2308

f6 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max 23.767 15.585 20.968 13.325
Min 22.686 14.818 20.182 12.843

Average 23.014 14.918 20.424 12.898
STD 0.22193 0.13802 0.30039 0.063915

f7 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max 26.147 17.097 23.718 15.003
Min 25.505 16.514 23.571 14.883

Average 25.675 16.608 23.661 14.943
STD 0.1198 0.087461 0.031198 0.023558

f8 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2
Max 28.488 18.888 25.426 16.091
Min 27.7 17.862 25.294 15.904

Average 27.885 18.179 25.365 15.948
STD 0.15947 0.21193 0.032987 0.029009



Symmetry 2020, 12, 1192 15 of 31

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2

100

200

300

400

500

600

700

800

900

f1

V
al
u
es

(a)

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2

0.5

1

1.5

2

2.5

3

3.5

4

f2

V
al
u
es

(b)

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2

−390

−385

−380

−375

−370

−365

−360

f3

V
al
u
es

(c)

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2

0

1

2

3

4

5

6

7

x 10
5 f4

V
al
u
es

(d)

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f5

V
al
u
es

(e)

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2

10

15

20

25

f6

V
al
u
es

(f)

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2

6

8

10

12

14

16

f7

V
al
u
es

(g)

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

f8

V
al
u
es

(h)

Figure 8. Box plot considering the value of the objective function using GA, where the results for M1
and M2 do not present the difference between the respective configurations C1 and C2. (a) Diagram for
f1. (b) Diagram for f2. (c) Diagram for f3. (d) Diagram for f4. (e) Diagram for f5. (f) Diagram for f6.
(g) Diagram for f7. (h) Diagram for f8.



Symmetry 2020, 12, 1192 16 of 31

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2

14

16

18

20

22

24

f1

T
im

e

(a)

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2

30

35

40

45

50

f2

T
im

e

(b)

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2

16

18

20

22

24

26

28

30

32

34

f3

T
im

e

(c)

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2
14

16

18

20

22

24

26

f4

T
im

e

(d)

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2

15

20

25

30

35

40

45

50

55

f5

T
im

e

(e)

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2

14

16

18

20

22

24

f6

T
im

e

(f)

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2

16

18

20

22

24

26

f7

T
im

e

(g)

GA−C1−M1 GA−C2−M1 GA−C1−M2 GA−C2−M2

16

18

20

22

24

26

28

f8

T
im

e

(h)

Figure 9. Box plot for the value of run-time using GA, where the results for M1 and M2 show the
difference between the respective configurations C1 and C2. (a) Diagram for f1. (b) Diagram for f2.
(c) Diagram for f3. (d) Diagram for f4. (e) Diagram for f5. (f) Diagram for f6. (g) Diagram for f7.
(h) Diagram for f8.



Symmetry 2020, 12, 1192 17 of 31

8.2. DE Algorithm Results

The execution of the differential evolution algorithm in Table 8 shows the summary of the
statistical results for the value of the target function, while Table 9 has the run-time. The graphical
presentation of the results obtained is shown in Figure 10; the diagrams of stems and sheets for the
value of the target function are also shown. Figure 11 provides the diagrams of stems and sheets for
the run-time. The results of Figure 10 show that configuration C1 of the DE algorithm executed in
machine M1 has similar results to those obtained in machine M2 for the value of objective function;
the same happens using configuration C2 when executed in M1 and M2. Meanwhile, considering the
run-time, Figure 11 shows that when executing the configuration C1 in machine M2, less run-time is
observed compared to the same execution using machine M1; for configuration C2 there is also less
run-time when using M2.

Table 8. Statistical results for the value of the objective function using DE.

f1 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max 3.0967× 10−36 2189.2 6.7457× 10−36 3135.8
Min 1.1902× 10−38 33.487 3.852× 10−39 5.1453

Average 4.4506× 10−37 637.3 5.6028× 10−37 738.21
STD 6.8787× 10−37 508.86 1.1785× 10−36 680.65

f2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max 1.4997× 10−32 5.303 1.4998× 10−32 4.4089
Min 1.4997× 10−32 0.33872 1.4998× 10−32 0.31488

Average 1.4997× 10−32 1.8351 1.4998× 10−32 1.6916
STD 2.7647× 10−48 1.2641 8.2941× 10−48 0.99901

f3 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max −377.52 −282.82 −377.52 −276.36
Min −391.66 −362.53 −391.66 −379.17

Average −390.53 −322.34 −391.1 −324.16
STD 3.8741 17.26 2.7983 24.568

f4 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max 3.9866 5.9015× 105 3.9866 2.8148× 105

Min 0 221.75 1.0452× 10−29 85.7
Average 0.31893 79546 0.079732 51649

STD 1.0925 1.322× 105 0.56379 71056

f5 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max 0.47846 0.90603 0.54541 0.8534
Min 0.0098573 0.11603 0 0.14461

Average 0.17114 0.37272 0.15415 0.36911
STD 0.12517 0.16561 0.12216 0.17738

f6 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max 18.436 61.339 22.189 89.495
Min 1.9899 7.284 2.9849 7.5864

Average 7.6318 26.926 8.9962 30.295
STD 3.5215 12.042 4.4606 15.282

f7 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max 0.00025313 26.502 0.00023235 31.125
Min 4.4825× 10−6 6.2426 2.782× 10−6 7.3592

Average 3.1826× 10−5 16.616 4.163× 10−5 16.469
STD 3.8948× 10−5 4.8337 4.6877× 10−5 4.8209

f8 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max 3.1086× 10−15 15.395 3.1086× 10−15 13.672
Min 3.1086× 10−15 1.8371 3.1086× 10−15 2.0741

Average 3.1086× 10−15 8.5284 3.1086× 10−15 7.9863
STD 0 2.8974 0 3.0219



Symmetry 2020, 12, 1192 18 of 31

Table 9. Statistical results for the execution time using DE.

f1 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max 16.266 7.5975 13.654 5.8533
Min 15.431 6.7975 11.854 5.2711

Average 15.772 7.038 12.245 5.343
STD 0.18457 0.14197 0.38329 0.078526

f2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max 57.416 23.251 34.549 15.018
Min 48.193 20.763 33.857 14.653

Average 49.606 21.304 34.325 14.75
STD 1.8648 0.58789 0.20726 0.049601

f3 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max 27.869 12.068 18.801 8.2856
Min 26.586 11.451 18.492 8.1547

Average 27.24 11.765 18.633 8.2207
STD 0.23964 0.13481 0.068874 0.031299

f4 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max 20.083 9.6074 15.165 6.5915
Min 18.842 8.8058 14.626 6.4609

Average 19.604 8.9937 14.947 6.5287
STD 0.22143 0.13871 0.17267 0.032574

f5 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max 28.155 12.564 21.205 7.9327
Min 21.609 9.5708 16.104 7.3504

Average 23.728 10.065 16.841 7.4283
STD 1.3008 0.57603 0.82097 0.080032

f6 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max 20.134 10.592 15.865 7.8398
Min 16.432 7.5325 12.441 5.7978

Average 17.298 8.1412 12.988 6.0956
STD 0.59429 0.8543 0.66904 0.54322

f7 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max 20.159 11.566 15.484 8.8737
Min 19.054 8.5482 15.042 6.7808

Average 19.593 9.0394 15.397 7.171
STD 0.33105 0.70994 0.088293 0.57938

f8 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2
Max 23.642 12.882 17.531 7.8927
Min 22.782 9.805 17.011 7.4364

Average 23.23 10.159 17.413 7.5943
STD 0.19133 0.44989 0.13786 0.069855



Symmetry 2020, 12, 1192 19 of 31

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

0

500

1000

1500

2000

2500

3000

f1

V
al
u
es

(a)

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

0

1

2

3

4

5

f2

V
al
u
es

(b)

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

−380

−360

−340

−320

−300

−280

f3

V
al
u
es

(c)

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

0

1

2

3

4

5

6

x 10
5 f4

V
al
u
es

(d)

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f5

V
al
u
es

(e)

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

0

10

20

30

40

50

60

70

80

90

f6

V
al
u
es

(f)

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

0

5

10

15

20

25

30

f7

V
al
u
es

(g)

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

0

2

4

6

8

10

12

14

16

f8

V
al
u
es

(h)

Figure 10. Box plot considering the value of the objective function using DE, where the results for M1
and M2 do not present the differences between the respective configurations C1 and C2. (a) Diagram
for f1. (b) Diagram for f2. (c) Diagram for f3. (d) Diagram for f4. (e) Diagram for f5. (f) Diagram for f6.
(g) Diagram for f7, (h) Diagram for f8.



Symmetry 2020, 12, 1192 20 of 31

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

6

8

10

12

14

16

f1

T
im

e

(a)

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

15

20

25

30

35

40

45

50

55

f2

T
im

e

(b)

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

10

15

20

25

f3

T
im

e

(c)

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

6

8

10

12

14

16

18

20

f4

T
im

e

(d)

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

10

15

20

25

f5

T
im

e

(e)

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

6

8

10

12

14

16

18

20

f6

T
im

e

(f)

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

8

10

12

14

16

18

20

f7

T
im

e

(g)

DE−C1−M1 DE−C2−M1 DE−C1−M2 DE−C2−M2

8

10

12

14

16

18

20

22

24

f8

T
im

e

(h)

Figure 11. Box plot for the value of run-time using DE, where the results for M1 and M2 show the
difference between the respective configurations C1 and C2. (a) Diagram for f1. (b) Diagram for f2.
(c) Diagram for f3. (d) Diagram for f4. (e) Diagram for f5. (f) Diagram for f6. (g) Diagram for f7.
(h) Diagram for f8.



Symmetry 2020, 12, 1192 21 of 31

8.3. PSO Algorithm Results

Tables 10 and 11 display the statistical results for the value of the target function and the run-time
for the PSO algorithm. The stem and leaf diagrams of the results can be seen in Figures 12 and 13
for the values of the objective function and the execution time respectively. As observed in Figure 12,
the value of the target function is not affected by the distributed processing scheme, while the run-time
is reduced by using this schema (Figure 13).

Table 10. Statistical results for the value of the objective function using PSO.

f1 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 3.4482× 10−128 3.4909× 10−92 2.0141× 10−127 8.0804× 10−92

Min 4.0135× 10−136 1.1576× 10−99 5.7269× 10−136 4.0316× 10−100

Average 2.3691× 10−129 1.0474× 10−93 7.6416× 10−129 2.6889× 10−93

STD 6.8822× 10−129 5.0295× 10−93 3.1639× 10−128 1.1853× 10−92

f2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 0.45432 1.1605 3.3738 0.45432
Min 1.4997× 10−32 1.4997× 10−32 1.4998× 10−32 1.4998× 10−32

Average 0.036212 0.044963 0.18755 0.023545
STD 0.11155 0.18929 0.60021 0.091378

f3 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max −335.11 −335.11 −320.98 −335.11
Min −391.66 −391.66 −391.66 −391.66

Average −363.95 −371.02 −365.37 −371.02
STD 17.127 15.698 17.608 14.898

f4 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 7.7008 150.43 125.9 97.773
Min 0.001011 0.00075109 9.3565× 10−5 8.2241× 10−5

Average 2.3245 5.2944 4.0551 5.0642
STD 2.2494 21.749 17.666 17.601

f5 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 0.2658 0.17454 0.22621 0.18699
Min 0.017236 0.007396 0 0.01969

Average 0.082166 0.067271 0.073552 0.081583
STD 0.045771 0.032932 0.046 0.036983

f6 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 13.929 12.934 15.919 15.919
Min 0 1.9899 0 0.99496

Average 7.1836 6.507 7.9995 6.6861
STD 3.1674 2.942 3.5275 3.5107

f7 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 4.6907 5.0196 5.8513 5.4093
Min 0.010729 5.7752× 10−23 0.010729 1.0224× 10−23

Average 0.89475 0.72333 1.2073 0.74679
STD 1.2023 1.2346 1.6043 1.2825

f8 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 1.1551 1.6462 2.0133 1.1551
Min 3.1086× 10−15 3.1086× 10−15 3.1086× 10−15 3.1086× 10−15

Average 0.11551 0.056027 0.26784 0.069309
STD 0.35006 0.28167 0.55746 0.27712



Symmetry 2020, 12, 1192 22 of 31

Table 11. Statistical results for the execution time using PSO.

f1 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 4.6436 4.7827 4.3586 3.9628
Min 4.466 4.4134 3.5466 3.4743

Average 4.5714 4.4524 3.6805 3.5202
STD 0.055407 0.052652 0.19825 0.10977

f2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 23.016 23.072 18.011 17.645
Min 22.316 22.126 16.911 16.916

Average 22.479 22.46 17.142 17.17
STD 0.14235 0.37272 0.22887 0.21337

f3 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 10.115 10.237 7.9032 7.8065
Min 9.9116 9.9536 7.3107 7.3321

Average 9.9801 10.03 7.3871 7.4062
STD 0.038899 0.045719 0.1402 0.12795

f4 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 6.7835 6.3802 7.1389 5.6697
Min 5.9945 5.9169 5.083 4.9944

Average 6.3626 6.1397 5.5549 5.2585
STD 0.17224 0.073056 0.36878 0.175

f5 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 21.211 21.321 6.8068 7.8462
Min 20.771 20.815 6.2976 6.3105

Average 20.893 21.037 6.3604 6.502
STD 0.10099 0.063159 0.087315 0.42114

f6 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 5.253 4.9498 4.5053 4.5329
Min 4.8052 4.7852 4.0516 4.0585

Average 4.8528 4.8239 4.1035 4.1364
STD 0.066958 0.036578 0.096493 0.1393

f7 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 7.0562 7.6148 6.3973 6.1467
Min 6.3352 6.3872 5.4016 5.4081

Average 6.5793 6.5748 5.7444 5.6745
STD 0.12996 0.18931 0.27627 0.18781

f8 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 8.1745 8.0003 7.0702 6.945
Min 7.3989 7.4915 6.2898 6.3109

Average 7.5151 7.5544 6.3969 6.3699
STD 0.13768 0.068633 0.16506 0.1237

8.4. Algorithm Comparison

It is worth pointing that this work is focused in the observations of the changes amidst the
execution of each algorithm in the machines employed (M1 and M2); therefore, the results are presented
separately for each algorithm; nevertheless, it is also important to bear in mind that after defining the
hardware to implement the experiments, the study should be focused on the algorithm comparison
(variation among them), which requires the organization of the results in a single table. As an example,
Table 12 displays the summary of results considering the objective function while Table 13 displays the
results for the execution time.



Symmetry 2020, 12, 1192 23 of 31

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2

0

1

2

3

4

5

6

7

8

x 10
−92 f1

V
al
u
es

(a)

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2

0

0.5

1

1.5

2

2.5

3

3.5

f2

V
al
u
es

(b)

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2

−390

−380

−370

−360

−350

−340

−330

−320

f3

V
al
u
es

(c)

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2

0

50

100

150

f4

V
al
u
es

(d)

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2

0

0.05

0.1

0.15

0.2

0.25

f5

V
al
u
es

(e)

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2

0

2

4

6

8

10

12

14

16

f6

V
al
u
es

(f)

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2

0

1

2

3

4

5

6

f7

V
al
u
es

(g)

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2

0

0.5

1

1.5

2

f8

V
al
u
es

(h)

Figure 12. Box plot considering the value of the objective function using PSO, where the results for
M1 and M2 do not present the difference for the respective configurations C1 and C2. (a) Diagram for
f1. (b) Diagram for f2. (c) Diagram for f3. (d) Diagram for f4. (e) Diagram for f5. (f) Diagram for f6.
(g) Diagram for f7. (h) Diagram for f8.



Symmetry 2020, 12, 1192 24 of 31

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2

3.6

3.8

4

4.2

4.4

4.6

4.8

f1

T
im

e

(a)

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2

17

18

19

20

21

22

23

f2

T
im

e

(b)

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2

7.5

8

8.5

9

9.5

10

f3

T
im

e

(c)

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2

5

5.5

6

6.5

7

f4

T
im

e

(d)

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2

6

8

10

12

14

16

18

20

22

f5

T
im

e

(e)

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2
4

4.2

4.4

4.6

4.8

5

5.2

f6

T
im

e

(f)

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2

5.5

6

6.5

7

7.5

f7

T
im

e

(g)

PSO−C1−M1 PSO−C2−M1 PSO−C1−M2 PSO−C2−M2

6.5

7

7.5

8

f8

T
im

e

(h)

Figure 13. Box plot for the value of run-time using PSO, where the results for M1 and M2 show
the difference for the respective configurations C1 and C2. (a) Diagram for f1. (b) Diagram for f2.
(c) Diagram for f3. (d) Diagram for f4. (e) Diagram for f5. (f) Diagram for f6. (g) Diagram for f7.
(h) Diagram for f8.



Symmetry 2020, 12, 1192 25 of 31

Table 12. General statistical results for the value of the objective function.

f1 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 803.1 851.1 693.48 878.87 3.10× 10−36 2189.2 6.75× 10−36 3135.8 3.45× 10−128 3.49× 10−92 2.01× 10−127 8.08× 10−92

Min 110.12 231.66 96.881 198.67 1.19× 10−38 33.487 3.85× 10−39 5.1453 4.01× 10−136 1.16× 10−99 5.73× 10−136 4.03× 10−100

Average 396.34 512.71 363.63 524.55 4.45× 10−37 637.3 5.60× 10−37 738.21 2.37× 10−129 1.05× 10−93 7.64× 10−129 2.69× 10−93

STD 164.16 145.59 165.86 165.07 6.88× 10−37 508.86 1.18× 10−36 680.65 6.88× 10−129 5.03× 10−93 3.16× 10−128 1.19× 10−92

f2 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 4.0682 2.8756 4.1886 2.9012 1.50× 10−32 5.303 1.50× 10−32 4.4089 0.45432 1.1605 3.3738 0.45432
Min 0.43532 0.73858 0.50167 0.49925 1.50× 10−32 0.33872 1.50× 10−32 0.31488 1.50× 10−32 1.50× 10−32 1.50× 10−32 1.50× 10−32

Average 2.0062 1.6742 1.7204 1.6712 1.50× 10−32 1.8351 1.50× 10−32 1.6916 0.036212 0.044963 0.18755 0.023545
STD 1.094 0.43556 0.91603 0.49293 2.76× 10−48 1.2641 8.29× 10−48 0.99901 0.11155 0.18929 0.60021 0.091378

f3 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max −361.86 −369.18 −360.01 −366.04 −377.52 −282.82 −377.52 −276.36 −335.11 −335.11 −320.98 −335.11
Min −385.82 −390.21 −389.06 −385.25 −391.66 −362.53 −391.66 −379.17 −391.66 −391.66 −391.66 −391.66

Average −376.93 −378.57 −377.46 −378.18 −390.53 −322.34 −391.1 −324.16 −363.95 −371.02 −365.37 −371.02
STD 5.3254 4.3697 5.5337 4.2567 3.8741 17.26 2.7983 24.568 17.127 15.698 17.608 14.898

f4 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 7.48× 105 2.67× 105 6.51× 105 2.79× 105 3.9866 5.90× 105 3.9866 2.81× 105 7.7008 150.43 125.9 97.773
Min 11809 22674 10592 14904 0 221.75 1.05× 10−29 85.7 0.001011 0.00075109 9.36× 10−5 8.22× 10−5

Average 2.18× 105 1.28× 105 2.03× 105 1.19× 105 0.31893 79546 0.079732 51649 2.3245 5.2944 4.0551 5.0642
STD 1.81× 105 61355 1.61× 105 59792 1.0925 1.32× 105 0.56379 71056 2.2494 21.749 17.666 17.601

f5 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 1.0079 0.90574 1.0422 0.95218 0.47846 0.90603 0.54541 0.8534 0.2658 0.17454 0.22621 0.18699
Min 0.13795 0.51898 0.13518 0.4226 0.0098573 0.11603 0 0.14461 0.017236 0.007396 0 0.01969

Average 0.62559 0.72619 0.64354 0.72477 0.17114 0.37272 0.15415 0.36911 0.082166 0.067271 0.073552 0.081583
STD 0.29169 0.10053 0.27751 0.11398 0.12517 0.16561 0.12216 0.17738 0.045771 0.032932 0.046 0.036983

f6 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 26.967 22.369 26.161 23.734 18.436 61.339 22.189 89.495 13.929 12.934 15.919 15.919
Min 9.0212 11.351 6.8412 7.9241 1.9899 7.284 2.9849 7.5864 0 1.9899 0 0.99496

Average 18.404 17.323 16.87 17.45 7.6318 26.926 8.9962 30.295 7.1836 6.507 7.9995 6.6861
STD 4.2545 2.6509 4.1317 3.2635 3.5215 12.042 4.4606 15.282 3.1674 2.942 3.5275 3.5107

f7 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 15.554 15.825 15.913 16.091 0.00025313 26.502 0.00023235 31.125 4.6907 5.0196 5.8513 5.4093
Min 5.81 9.5476 6.1036 9.749 4.48× 10−6 6.2426 2.78× 10−6 7.3592 0.010729 5.78× 10−23 0.010729 1.02× 10−23

Average 9.7471 13.107 9.4184 13.142 3.18× 10−5 16.616 4.16× 10−5 16.469 0.89475 0.72333 1.2073 0.74679
STD 2.1818 1.3576 2.1384 1.3547 3.89× 10−5 4.8337 4.69× 10−5 4.8209 1.2023 1.2346 1.6043 1.2825

f8 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 3.4624 5.2211 3.8739 5.3901 3.11× 10−15 15.395 3.11× 10−15 13.672 1.1551 1.6462 2.0133 1.1551
Min 0.88282 3.3081 1.2655 3.0742 3.11× 10−15 1.8371 3.11× 10−15 2.0741 3.11× 10−15 3.11× 10−15 3.11× 10−15 3.11× 10−15

Average 2.4774 4.2857 2.7235 4.253 3.11× 10−15 8.5284 3.11× 10−15 7.9863 0.11551 0.056027 0.26784 0.069309
STD 0.5349 0.44425 0.55014 0.53566 0 2.8974 0 3.0219 0.35006 0.28167 0.55746 0.27712



Symmetry 2020, 12, 1192 26 of 31

Table 13. General statistical results for the run time.

f1 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 24.144 14.818 23.045 13.121 16.266 7.5975 13.654 5.8533 4.6436 4.7827 4.3586 3.9628
Min 21.58 14.109 19.585 12.583 15.431 6.7975 11.854 5.2711 4.466 4.4134 3.5466 3.4743

Average 22.567 14.376 20.548 12.98 15.772 7.038 12.245 5.343 4.5714 4.4524 3.6805 3.5202
STD 0.83158 0.21588 0.78465 0.14111 0.18457 0.14197 0.38329 0.078526 0.055407 0.052652 0.19825 0.10977

f2 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 53.419 33.995 43.846 28.084 57.416 23.251 34.549 15.018 23.016 23.072 18.011 17.645
Min 52.5 32.746 42.469 27.325 48.193 20.763 33.857 14.653 22.316 22.126 16.911 16.916

Average 52.705 33.576 43.305 27.68 49.606 21.304 34.325 14.75 22.479 22.46 17.142 17.17
STD 0.19373 0.45674 0.40224 0.29811 1.8648 0.58789 0.20726 0.049601 0.14235 0.37272 0.22887 0.21337

f3 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 33.675 21.241 27.961 16.951 27.869 12.068 18.801 8.2856 10.115 10.237 7.9032 7.8065
Min 32.444 20.753 27.693 16.249 26.586 11.451 18.492 8.1547 9.9116 9.9536 7.3107 7.3321

Average 32.656 20.933 27.829 16.625 27.24 11.765 18.633 8.2207 9.9801 10.03 7.3871 7.4062
STD 0.2189 0.12987 0.051181 0.19769 0.23964 0.13481 0.068874 0.031299 0.038899 0.045719 0.1402 0.12795

f4 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 26.432 17.195 23.177 14.662 20.083 9.6074 15.165 6.5915 6.7835 6.3802 7.1389 5.6697
Min 25.832 16.809 22.28 14.579 18.842 8.8058 14.626 6.4609 5.9945 5.9169 5.083 4.9944

Average 26.12 16.988 22.806 14.625 19.604 8.9937 14.947 6.5287 6.3626 6.1397 5.5549 5.2585
STD 0.12577 0.10671 0.3793 0.021441 0.22143 0.13871 0.17267 0.032574 0.17224 0.073056 0.36878 0.175

f5 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 56.463 37.643 25.431 15.981 28.155 12.564 21.205 7.9327 21.211 21.321 6.8068 7.8462
Min 51.667 32.043 24.527 15.403 21.609 9.5708 16.104 7.3504 20.771 20.815 6.2976 6.3105

Average 52.609 32.336 25.207 15.777 23.728 10.065 16.841 7.4283 20.893 21.037 6.3604 6.502
STD 0.98871 0.79033 0.28878 0.2308 1.3008 0.57603 0.82097 0.080032 0.10099 0.063159 0.087315 0.42114

f6 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 23.767 15.585 20.968 13.325 20.134 10.592 15.865 7.8398 5.253 4.9498 4.5053 4.5329
Min 22.686 14.818 20.182 12.843 16.432 7.5325 12.441 5.7978 4.8052 4.7852 4.0516 4.0585

Average 23.014 14.918 20.424 12.898 17.298 8.1412 12.988 6.0956 4.8528 4.8239 4.1035 4.1364
STD 0.22193 0.13802 0.30039 0.063915 0.59429 0.8543 0.66904 0.54322 0.066958 0.036578 0.096493 0.1393

f7 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 26.147 17.097 23.718 15.003 20.159 11.566 15.484 8.8737 7.0562 7.6148 6.3973 6.1467
Min 25.505 16.514 23.571 14.883 19.054 8.5482 15.042 6.7808 6.3352 6.3872 5.4016 5.4081

Average 25.675 16.608 23.661 14.943 19.593 9.0394 15.397 7.171 6.5793 6.5748 5.7444 5.6745
STD 0.1198 0.087461 0.031198 0.023558 0.33105 0.70994 0.088293 0.57938 0.12996 0.18931 0.27627 0.18781

f8 GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2 DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2 PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2
Max 28.488 18.888 25.426 16.091 23.642 12.882 17.531 7.8927 8.1745 8.0003 7.0702 6.945
Min 27.7 17.862 25.294 15.904 22.782 9.805 17.011 7.4364 7.3989 7.4915 6.2898 6.3109

Average 27.885 18.179 25.365 15.948 23.23 10.159 17.413 7.5943 7.5151 7.5544 6.3969 6.3699
STD 0.15947 0.21193 0.032987 0.029009 0.19133 0.44989 0.13786 0.069855 0.13768 0.068633 0.16506 0.1237



Symmetry 2020, 12, 1192 27 of 31

Usually, these tables highlight the best value reached by one of the algorithms (for each test
function) in a way that a global comparison can be made for both the obtained value of the objective
function and the execution time for the algorithms employed. Tables 12 and 13 show an example each
of the way by which the best obtained values can be noted.

8.5. Execution Time Analysis

As previously observed in the results obtained, the values of the target function for configurations
C1 and C2 are not affected by the type of processing system—executed in M1 or M2, but the processing
time is affected. For the above, this section only performs an analysis of the execution times of the
algorithms, this in order to observe the difference present in the execution time.

First, Table 14 contains the total run-time values for each configuration of the GA algorithm in
each target function. Secondly, the total results for the time of execution of the DE algorithm can be
seen in Table 15. Finally, the total run-time values of the PSO algorithm are presented in the Table 16.

Table 14. Total values for the execution time using a genetic algorithm.

f GA-C1-M1 GA-C2-M1 GA-C1-M2 GA-C2-M2

f1 1128.4 718.81 1027.4 649.02
f2 2635.3 1678.8 2165.2 1384
f3 1632.8 1046.7 1391.4 831.26
f4 1306 849.38 1140.3 731.26
f5 2630.5 1616.8 1260.3 788.87
f6 1150.7 745.89 1021.2 644.9
f7 1283.8 830.4 1183 747.14
f8 1394.2 908.95 1268.2 797.4

Total 13,162 839.6 10,457 6574

Table 15. Total values for the execution time using differential evolution.

f DE-C1-M1 DE-C2-M1 DE-C1-M2 DE-C2-M2

f1 788.58 351.9 612.27 267.15
f2 2480.3 1065.2 1716.3 737.48
f3 1362 588.25 931.63 411.04
f4 980.19 449.69 747.37 326.44
f5 1186.4 503.27 842.07 371.42
f6 864.88 407.06 649.41 304.78
f7 979.64 451.97 769.87 358.55
f8 1161.5 507.97 870.66 379.72

Total 9803.5 4325.3 7139.6 3156.6

Table 16. Total values for the execution time using particle swarm optimization.

f PSO-C1-M1 PSO-C2-M1 PSO-C1-M2 PSO-C2-M2

f1 228.57 222.62 184.03 176.01
f2 1124 1123 857.1 858.52
f3 499.01 501.5 369.35 370.31
f4 318.13 306.98 277.74 262.93
f5 1044.6 1051.8 318.02 325.1
f6 242.64 241.19 205.18 206.82
f7 328.97 328.74 287.22 283.73
f8 375.75 377.72 319.84 318.5

Total 4161.7 4153.6 2818.5 2801.9

The total values for the execution times of each algorithm can be seen in Table 17. In this way,
a total difference of 11,054 s that corresponds to 3.07 h in the execution of all algorithms can be
seen, equivalent to 25.12%. In this order, the percentage corresponds to time gained for GA which is



Symmetry 2020, 12, 1192 28 of 31

10.28% for DE 8.72% and 6.12% for PSO. The percentage of time gained (TG) is calculated using the
following equation:

TG =
Difference

Total time for M1
100% (5)

Table 17. Total values for the execution time of the algorithms (in seconds).

Algorithm M1 M2 Difference Percentage TG

GA 21,557 17,031 4526 10.28%
DE 14,129 10,296 3833 8.72%

PSO 8315 5620 2695 6.12%
Total 44,001 32,947 11,054 25.12%

9. Discussion

In the results, it can be seen that on average, the values obtained from the objective functions
are not affected, which allows the experiments to be reproduced on different machines. It is also
appreciated that when using the CECAD machine the processing time decreases, which was sought to
verify with this work.

It should be noted that in this work that the effects of the parameters of the algorithms on the
objective function were not closely analyzed, since we sought to observe that the same result was
obtained on average for the two machines used. In order to carry out performance tests between
algorithms, we first seek to establish the most appropriate computing system.

Although we observed the advantage that the virtualized distributed processing system has for
the execution of the algorithms considered, only one possible configuration offered by CECAD was
used, which was limited to the requests of the researchers at the time of executing the algorithms.
To consider this aspect in additional work, the availability of resources held in CECAD for an average
researcher as well as the time allocated for their use can be included in the study. About this, it is
necessary to take in account the request in the way that the administration can manage these resources
and not leave other researchers without access.

For further research, the report [50,51] can be taken as a reference since greater size and complexity
of the test functions can be considered for testing the efficacy of the distributed system. In the first
place, the report [50] can be considered for the testing of bio-inspired algorithms using parallel PC
cluster systems for large-scale multimodal functions; secondly, the functions discussed in [51] can be
used to observe the problem complexity.

Considering the restrictions of CECAD for extending this work, other computing systems can be
considered, such as a non-homogeneous cluster of PCs; and a cluster with mini PCs, such as small
single-board computers like Raspberry Pi. Additionally, we could consider evaluate various ways of
distributing the execution of bio-inspired optimization algorithms.

10. Conclusions

Aiming at a wide range of experiments, the tests were performed with three bio-inspired
algorithms under different parameter configurations using eight test functions which had different
characteristics. To have comparable results, the well-known bio-inspired optimization algorithms GA,
DE, and PSO were used.

The results showed that the value of the target function is not affected by the distributed
virtualization scheme, while the run-time is reduced by using the distributed virtualization system.
Thus, the algorithms can be executed on different machines without affecting the result.

Distributed and virtualization technologies can optimize performance and simplify the
management of the information infrastructure, as they do when running bio-inspired optimization
algorithms. As seen in the results, the processing time decreases when using the CECAD.



Symmetry 2020, 12, 1192 29 of 31

In the development of this work it was observed that the distributed virtualization system under
consideration is an adequate platform for the execution of bio-inspired optimization algorithms.
However, in the case of CECAD, the amount of resources and the computing capacity are subjected to
the number of requests made by the researchers.

Author Contributions: Conceptualization, N.G., H.E., and J.B.; methodology, N.G. and H.E.; project
administration, J.B.; supervision, J.B.; validation, N.G.; writing—original draft, H.E.; writing—review and
editing, N.G., H.E., and J.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors express gratitude to the Universidad Distrital Francisco José de Caldas, and also to
the CECAD (Centro de Computación de Alto Desempeño) High Performance Computing Center and the engineer
Pedro J. Vargas Barrios.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. He, Z.; Liu, G.; Ma, X.; Chen, Q. GeoBeam: A distributed computing framework for spatial data.
Comput. Geosci. 2019, 131, 15–22. [CrossRef]

2. Espitia, H.; Sofrony, J. Statistical analysis for vortex particle swarm optimization. Appl. Soft Comput. 2018, 67,
370–386. [CrossRef]

3. Weise, T. Global Optimization Algorithms—Theory and Application; Self-Published Thomas Weise: 2009.
Available online: http://www.it-weise.de/projects/book.pdf (accessed on 7 July 2020)

4. Dorigo, M.; Di-Caro, G.; Gambardella, L. Ant algorithms for discrete optimization. Artif. Life 1999, 5, 137–172.
[CrossRef]

5. Passino, K. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control. Syst. Mag.
2002, 22, 52–67.

6. Russell, E.; James, K. Particle swarm optimization. In Proceedings of the ICNN’95—IEEE Proceedings
Neural Networks, Perth, WA, Australia, 27 November–1 December 1995.

7. Viroli, M.; Beal, J.; Damiani, F.; Audrito, G.; Casadei, R.; Pianini, D. From distributed coordination to field
calculus and aggregate computing. J. Log. Algebr. Methods Program. 2019, 109, 100486. [CrossRef]

8. Cooke, R.A.; Fahmy, S.A. A model for distributed in-network and near-edge computing with heterogeneous
hardware. Future Gener. Comput. Syst. 2020, 105, 395–409. [CrossRef]

9. Newhall, T.; Danner, A.; Webb, K.C. Pervasive parallel and distributed computing in a liberal arts college
curriculum. J. Parallel Distrib. Comput. 2017, 105, 53–62. [CrossRef]

10. Vo, A.V.; Laefer, D.F.; Smolic, A.; Zolanvari, S.M.I. Per-point processing for detailed urban solar estimation
with aerial laser scanning and distributed computing. ISPRS J. Photogramm. Remote Sens. 2019, 155, 119–135.
[CrossRef]

11. Xu, Y.; Liu, H.; Long, Z. A distributed computing framework for wind speed big data forecasting on Apache
Spark. Sustain. Energy Technol. Assess. 2020, 37, 100582. [CrossRef]

12. Kim, J.; Park, J.; Hyun, S.; Fleisher, D.H.; Kim, K.S. Development of an automated gridded crop growth
simulation support system for distributed computing with virtual machines. Comput. Electron. Agric. 2020,
169, 105196. [CrossRef]

13. Noshy, M.; Ibrahim, A.; Ali, H.A. Optimization of live virtual machine migration in cloud computing:
A survey and future directions. J. Netw. Comput. Appl. 2018, 110, 1–10. [CrossRef]

14. Smith, J.E.; Nair, R. Virtual Machines, Versatile Platforms for Systems and Processes; Morgan Kaufmann:
Burlington, MA, USA, 2005.

15. Figueiredo, R.; Dinda, P.A.; Fortes, J. Resource Virtualization Renaissance. Computer 2005, 38, 28–31.
[CrossRef]

16. Abeni, L.; Biondi, A.; Bini, E. Hierarchical scheduling of real-time tasks over Linux-based virtual machines.
J. Syst. Softw. 2019, 149, 234–249. [CrossRef]

17. Elsedfy, M.O.; Murtada, W.A.; Abdulqawi, E.F.; Gad-Allah, M. A real-time virtual machine for task placement
in loosely-coupled computer systems. Heliyon 2019, 5, e01998. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.cageo.2019.06.003
http://dx.doi.org/10.1016/j.asoc.2018.03.002
http://www.it-weise.de/projects/book.pdf
http://dx.doi.org/10.1162/106454699568728
http://dx.doi.org/10.1016/j.jlamp.2019.100486
http://dx.doi.org/10.1016/j.future.2019.11.040
http://dx.doi.org/10.1016/j.jpdc.2017.01.005
http://dx.doi.org/10.1016/j.isprsjprs.2019.06.009
http://dx.doi.org/10.1016/j.seta.2019.100582
http://dx.doi.org/10.1016/j.compag.2019.105196
http://dx.doi.org/10.1016/j.jnca.2018.03.002
http://dx.doi.org/10.1109/MC.2005.159
http://dx.doi.org/10.1016/j.jss.2018.12.008
http://dx.doi.org/10.1016/j.heliyon.2019.e01998
http://www.ncbi.nlm.nih.gov/pubmed/31309162


Symmetry 2020, 12, 1192 30 of 31

18. Abohamama, A.S.; Hamouda, E. A hybrid energy-Aware virtual machine placement algorithm for cloud
environments. Expert Syst. Appl. 2020, 150, 113306. [CrossRef]

19. Wei, C.; Hu, Z.H.; Wang, Y.G. Exact algorithms for energy-efficient virtual machine placement in data centers.
Future Gener. Comput. Syst. 2020, 106, 77–91. [CrossRef]

20. Hsieh, S.Y.; Liu, C.S.; Buyya, R.; Zomaya, A.Y. Utilization-prediction-aware virtual machine consolidation
approach for energy-efficient cloud data centers. J. Parallel Distrib. Comput. 2020, 139, 99–109. [CrossRef]

21. Van Steenm, M.; Tanenbaum, A.S. A brief introduction to distributed systems. Computing 2016, 98, 967–1009.
[CrossRef]

22. Sitaram, D.; Manjunath, G. Chapter 5—Paradigms for Developing Cloud Applications. In Moving to the
Cloud Developing Apps in the New World of Cloud Computing; Elsevier: Amsterdam, The Netherlands, 2012;
pp. 205–253.

23. Sterling, T.; Anderson, M.; Brodowicz, M. Chapter 2—HPC Architecture 1: Systems and Technologies.
In High Performance Computing Modern Systems and Practices; Morgan Kaufmann: Burlington, MA, USA, 2018;
pp. 43–82.

24. Pacheco, P.S. Chapter 2—Parallel Hardware and Parallel Software. In An Introduction to Parallel Programming;
Elsevier: Amsterdam, The Netherlands, 2011; pp. 15–81.

25. Gélvez, N.; Moreno, C.; Ruiz, D. La virtualización, un enfoque empresarial hacia el futuro. Redes de Ingeniería
2013, 4, 116–126. [CrossRef]

26. Holm, N.T. A Cosmology for a Different Computer Universe: Data Model, Mechanisms, Virtual Machine
and Visualization Infrastructure. J. Digit. Inf. 2004, 5, 77.

27. Turban, E.; King, D.; Lee, J.; Viehland, D. Chapter 19: Building E-Commerce Applications and Infrastructure.
In Electronic Commerce A Managerial Perspective, 5th ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2008;
pp. 1–29.

28. Dillon, T.; Chen, W.; Chang, E. Cloud Computing: Issues and Challenges. In Proceedings of the 24th IEEE
International Conference on Advanced Information Networking and Applications, Perth, WA, Australia,
20–23 April 2010.

29. Uhlig, R.; Neiger, G.; Rodgers, D.; Santoni, A.L.; Martins, F.C.M.; Anderson, A.V.; Bennett, S.M.; Kagi, A.;
Leung, F.H.; Smith, L. Intel virtualization technology. Computer 2005, 38, 48–56. [CrossRef]

30. Menascé, D.A. Virtualization: Concepts, Applications, and Performance Modeling. In Proceedings of the
31th International Computer Measurement Group Conference, Orlando, FL, USA, 4–9 December 2005;
pp. 407–414.

31. Spall, J. Stochastic optimization. In Handbook of Computational Statistics; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 170–194.

32. Mitchell, M. An introduction to genetic algorithms. In A Bradford Book; The MIT Press: Cambridge, MA,
USA, 1998.

33. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over
continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

34. Price, K.; Storn, R.; Lampinen, J. Differential Evolution A Practical Approach to Global Optimization;
Springer Natural Computing Series: Berlin/Heidelberg, Germany, 2005.

35. Bansal, J.C.; Singh, P.K.; Saraswat, M.; Verma, A.; Jadon, S.; Abraham, A. Inertia Weight Strategies in Particle
Swarm Optimization. In Proceedings of the IEEE Third World Congress on Nature and Biologically Inspired
Computing, Salamanca, Spain, 19–21 October 2011.

36. De-Jong, K.; Spears, W. An Analysis of the Interacting Roles of Population Size and Crossover in Genetic
Algorithms. In Procedings of the First Workshop Parallel Problem Solving from Nature, Dortmund, Germany,
1–3 October 1990.

37. Grefenstette, J.J. Optimization of Control Parameters for Genetic Algorithms. IEEE Trans. Syst. Man Cybern.
1986, 16, 122–128. [CrossRef]

38. Hvass, M. Good Parameters for Differential Evolution; Technical Report no. HL1002; Hvass Laboratories:
2010. Available online: https://pdfs.semanticscholar.org/48aa/36e1496c56904f9f6dfc15323e0c45e34a4c.pdf
(accessed on 7 July 2020)

39. Trelea, I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection.
Inf. Process. Lett. 2003, 85, 317–325. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2020.113306
http://dx.doi.org/10.1016/j.future.2019.12.043
http://dx.doi.org/10.1016/j.jpdc.2019.12.014
http://dx.doi.org/10.1007/s00607-016-0508-7
http://dx.doi.org/10.14483/2248762X.6421
http://dx.doi.org/10.1109/MC.2005.163
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/TSMC.1986.289288
https://pdfs.semanticscholar.org/48aa/36e1496c56904f9f6dfc15323e0c45e34a4c.pdf
http://dx.doi.org/10.1016/S0020-0190(02)00447-7


Symmetry 2020, 12, 1192 31 of 31

40. Bratton, D.; Kennedy, J. Defining a standard for particle swarm optimization. In Proceedings of the IEEE
Swarm Intelligence Symposium (SIS), Honolulu, HI, USA, 1–5 April 2007.

41. Evers, G. An Automatic Regrouping Mechanism to Deal with Stagnation in Particle Swarm Optimization.
Master’s Thesis, University of Texas-Pan American, Edinburg, TX, USA, 2009.

42. Hvass, M. Tuning & Simplifying Heuristical Optimization. Ph.D. Thesis, University of Southampton,
Southampton, UK, 2010.

43. Kennedy, J.; Eberhart, R.; Shi, Y. Swarm Intelligence; Morgan Kaufmann Publishers: Burlington, MA,
USA, 2001.

44. GitHub. Available online: https://gist.github.com/shenbennwdsl/a2aa06de6f841e98e187 (accessed on 5
November 2019).

45. GitHub. Available online: https://github.com/sriki18/MDEpBX-Matlab/blob/master/deopt.m (accessed
on 5 November 2019).

46. GitHub. Available online: https://github.com/MatthewPeterKelly/ParticleSwarmOptimization (accessed
on 5 November 2019).

47. MathWorks. Available online: https://www.mathworks.com/matlabcentral/fileexchange/7506-particle-
swarm-optimization-toolbox (accessed on 5 November 2019).

48. Virtual Library of Simulation Experiments. Available online: http://www.sfu.ca/~ssurjano/optimization.
html (accessed on 5 November 2019).

49. Available online: https://github.com/IngGelvezGarcia/Experimental-test-Evolutive-Algorithms
(accessed on 9 July 2020).

50. Fan, S.-K.S.; Chang, J.-M. Dynamic multi-swarm particle swarm optimizer using parallel PC cluster systems
for global optimization of large-scale multimodal functions. Eng. Optim. 2010, 42, 431–451. [CrossRef]

51. Fan, S.-K.S.; Zahara, E. A Hybrid Simplex Search and Particle Swarm Optimization for Unconstrained
Optimization. Eur. J. Oper. Res. 2007, 181, 527–548. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://gist.github.com/shenbennwdsl/a2aa06de6f841e98e187
https://github.com/sriki18/MDEpBX-Matlab/blob/master/deopt.m
https://github.com/MatthewPeterKelly/ParticleSwarmOptimization
https://www.mathworks.com/matlabcentral/fileexchange/7506-particle-swarm-optimization-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/7506-particle-swarm-optimization-toolbox
http://www.sfu.ca/~ssurjano/optimization.html
http://www.sfu.ca/~ssurjano/optimization.html
https://github.com/IngGelvezGarcia/Experimental-test-Evolutive-Algorithms
http://dx.doi.org/10.1080/03052150903247736
http://dx.doi.org/10.1016/j.ejor.2006.06.034
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Bio-Inspired Optimization
	Distributed Processing Systems
	Virtualization Systems
	Document Organization

	Distributed Processing Systems
	Description of Virtualization Systems and Process
	Virtualized Distributed Processing System Used
	Bio-Inspirated Optimization Algorithms
	Genetic Algorithms
	Differential Evolution Algorithm
	Particle Swarm Optimization Algorithm

	Experiments Configuration
	Configuration for Genetic Algorithms
	Configuration for Differential Evolution
	Particle Swarm Optimization Configuration

	Tests Functions
	Experimental Results
	GA Algorithm Results
	DE Algorithm Results
	PSO Algorithm Results
	Algorithm Comparison
	Execution Time Analysis

	Discussion
	Conclusions
	References

