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Abstract: This paper studies a heteroscedastic partially linear model based on ρ−-mixing random
errors, stochastically dominated and with zero mean. Under some suitable conditions, the strong
consistency and p-th (p > 0) mean consistency of least squares (LS) estimators and weighted least
squares (WLS) estimators for the unknown parameter are investigated, and the strong consistency
and p-th (p > 0) mean consistency of the estimators for the non-parametric component are also
studied. These results include the corresponding ones of independent, negatively associated (NA),
and ρ∗-mixing random errors as special cases. At last, two simulations are presented to support the
theoretical results.
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1. Introduction

Consider the following heteroscedastic partially linear model:

y(t)(xin, zin) = zinβ+ h(xin) + σinε
(t)(xin), 1 ≤ t ≤ r, 1 ≤ i ≤ n, (1)

where σ2
in = f (uin), zin ∈ R, xin ∈ Rp, uin ∈ Rp, and (xin, zin, uin) are known and nonrandom design

points, β represents an unknown parameter, f (·) and h(·) represent unknown functions, which are
defined on a compact set M ⊂ Rp, y(t)(xin, zin) stands for the t-th variables that can be observable at
points (xin, zin), and

{
ε(t)(xin), 1 ≤ t ≤ r, 1 ≤ i ≤ n

}
stands for random errors.

In order to analyze the effect of temperature on electricity usage, Engle et al. [1] proposed the
partially linear model

yi = x′iβ+ h(zi) + εi, 1 ≤ i ≤ n. (2)

Since then, many statisticians have studied partially linear regression models. The model (2) was
further investigated by Heckman [2], Speckman [3], Gao [4], Härdle et al. [5], Hu et al. [6], Zeng and
Liu [7], and so forth. Some applications of the model were given. Inspired by the model (2), a more
general model was proposed by Gao et al. [8]:

yi = xiβ+ h(zi) + σiεi, 1 ≤ i ≤ n. (3)

Gao et al. [8] established the asymptotic normality of least squares (LS) and weighted least squares
(WLS) estimators for β based on the family of non-parametric estimators for h(·) and f (·) in the model
(3). Baek and Liang [9] investigated the asymptotic property in the model (3) for negatively associated
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errors. Zhou et al. [10] derived the moment consistency for β and h(·) in model (3) under negatively
associated samples. Hu [11] proposed a new partially linear model

y(t)(xin, zin) = zinβ+ h(xin) + ε(t)(xin), 1 ≤ t ≤ r, 1 ≤ i ≤ n, (4)

and derived the strong and moment consistencies with independent and ϕ-mixing errors. Li and
Yang [12,13] studied the moment and strong consistencies for β and h(·) in the model (4) based on
negatively associated samples. Wang et al. [14] and Wu and Wang [15] discussed the moment and
strong consistencies for LS and WLS estimators of β and h(·) with ρ∗-mixing errors. In the present
paper, we will investigate the model (1) based on the model (4). The model (1) can be used in hydrology,
biology, and so on (see [16]).

Now, let us recall some concepts of dependent structures. Assume that N is a set of natural
numbers and S, T ⊂ N are two non-empty disjoint sets. We define that dist(S, T) = min

i∈S, j∈T

∣∣∣i− j
∣∣∣.

Definition 1 ([17]). A finite collection of random variables {Xn, n ≥ 1} is called negatively associated (NA) if
for each pair of disjoint subsets B1, B2 of N,

Cov
{
g1(Xk, k ∈ B1), g2(Xl, l ∈ B2)

}
≤ 0,

where g1 and g2 are any coordinate-wise non-decreasing functions such that the covariance exists.

Definition 2 ([18]). A random sequence {Xn, n ≥ 1} is said to be ρ∗-mixing if

ρ∗(u) = sup
{
ρ(T, U) : T, U ⊂ N, dist(T, U) ≥ u

}
→ 0 (u→∞),

where

ρ(T, U) = sup


∣∣∣E(XY) − E(X)E(Y)

∣∣∣√
Var(X)Var(Y)

: X ∈ L2(σ(T)), Y ∈ L2(σ(U))

,

σ(T) and σ(U) are σ-fields that are generated by
{
X j, j ∈ T

}
and {Xk, k ∈ U} respectively, L2(σ(T)) is the space

of all square integral and σ(T)-measurable random variables, and L2(σ(U)) is defined in the same way.

Definition 3 ([19,20]). A sequence {Xn, n ≥ 1} is said to be ρ−-mixing if

ρ−(u) = sup
{
ρ−(T, U) : T, U ⊂ N, dist(T, U) ≥ u

}
→ 0 (u→∞),

where

ρ−(T, U) = 0∨


Cov

(
g1(Xi, i ∈ T), g2

(
X j, j ∈ U

))
√

Var(g1(Xi, i ∈ T))Var
(
g2

(
X j, j ∈ U

)) : g1, g2 ∈ H

,

0∨ x = max{0, x}, and H is the set of non-decreasing functions.

We can easily see that ρ−(u) ≤ ρ∗(u) and a ρ−-mixing sequence is NA (in particular, independent)
if and only if ρ−(1) = 0. Therefore, ρ−-mixing sequences include ρ∗-mixing sequences and NA
sequences as special cases. However, ρ∗-mixing sequences and NA sequences are not always ρ−-mixing
sequences. Zhang and Wang [19] constructed the following example, which is a ρ−-mixing sequence,
but not NA and also not ρ∗-mixing.
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Example 1 ([19]). Assume that {ξn, n ≥ 1},
{
ηn, n ≥ 1

}
, and {ζn, n ≥ 1} are three independent sequences that

are independent and identically distributed (i.i.d.) standard normal random variables. Denote

Xn =

{
ξt, n = 2t− 1
−ξt, n = 2t

, Yn =


ηt, n = 22t−1

−ηt, n = 22t

ζn, else
,

and Zn = X2
n + Yn. Then, {Zn, n ≥ 1} is ρ−-mixing with ρ−(2) = 0. However, {Zn, n ≥ 1} is neither NA nor

ρ∗-mixing.

On one hand, NA sequences have been widely applied to reliability theorem and multivariate
statistical analysis (see [21,22]). On the other hand, some Markov Chains and moving average processes
are ρ∗-mixing sequences (see [23]). The concept of ρ∗-mixing sequences is important in a lot of areas,
for instance, finance, economics, and other sciences (see [24]). Therefore, studying ρ−-mixing sequences
is of considerable significance.

Since Zhang and Wang [19] proposed the concept of ρ−-mixing sequences, many results on
ρ−-mixing sequences have been established. One can refer to Zhang and Wang [19], Wang and Lu [25],
and Yuan and An [26] for some moment inequalities and some limiting behavior; Zhang [20] and
Zhang [27] for some central limit theorems; Chen et al. [28] for complete convergence for weighted
sums of ρ−-mixing sequences; Zhang [29] for the complete moment convergence for the partial sum of
ρ−-mixing moving average processes; Wu and Jiang [30] for almost sure convergence of ρ−-mixing
sequences; and Xu and Wu [31] for an almost sure central limit theorem for the self-normalized
partial sums.

However, we have not found studies on the model (1) under ρ−-mixing random errors in the
literature. In the present paper, we will study the estimation problem for the model (1) based on the
assumption that the errors are ρ−-mixing sequences that are stochastically dominated and zero mean.
The strong consistency and mean consistency of LS estimators and WLS estimators for β and h(·) are
established respectively based on some suitable conditions. The results obtained in the paper deal
with independent errors as well as dependent errors as special cases.

Next, we will recall the definition of stochastic domination.

Definition 4 ([32]). A random sequence {Yi, i ≥ 1} is stochastically dominated by a random variable Y if

P(|Yi| > y) ≤ cP(|Y| > y)

for some c > 0, every y ≥ 0 and each n ≥ 1.

The remainder of this paper is organized as follows. The LS estimators and WLS estimators of
β based on the family of non-parametric estimators for h(·) and some conditions are introduced in
Section 2. We give the main results in Section 3. Several lemmas are given in Section 4. We provide
the proofs of the main results in Section 5. Two simulations are carried out in Section 6. We conclude
the paper in Section 7. Throughout the paper, let C denote positive constants whose values may be
different in various places. “i.i.d.” stands for independent and identically distributed. ‖ · ‖ stands for
the Euclidean norm.

2. Estimation and Conditions

Assume that
{
y(t)(xin, zin), zin ∈ R, xin ∈M, uin ∈M, 1 ≤ t ≤ r, 1 ≤ i ≤ n

}
satisfies the model (1) and

Wnj(x) = Wnj(x; x1, x2, · · · , xn) is a weight function that is measurable on the compact set M.
For simplicity and convenience, the model (1) can be written as

y(t)i = ziβ+ h(xi) + σiε
(t)
i , 1 ≤ t ≤ r, 1 ≤ i ≤ n. (5)
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We denote z̃ j = z j −
n∑

i=1
Wni

(
x j

)
zi, ỹ j

(k)
= y(k)j −

1
r

r∑
t=1

n∑
i=1

Wni
(
x j

)
y(t)i , γi = 1/σ2

i , 1 ≤ k ≤ r, 1 ≤ j ≤ n,

T̃2
n =

n∑
i=1

z̃2
i , and Ũ2

n =
n∑

i=1
γĩz2

i .

For the model (5), one can get from E
(
ε
(t)
i

)
= 0 that h(xi) = E

(
y(t)i − ziβ

)
for 1 ≤ t ≤ r, 1 ≤ i ≤ n.

Thus, for any given β, we can define the non-parametric estimator of h(·) in terms of

hr,n(x, β) =
1
r

r∑
t=1

n∑
i=1

Wni(x)
(
y(t)i − ziβ

)
. (6)

Hence, the LS estimators of β can be defined by

β̂
(LS)
r,n = arg min

β

r∑
t=1

n∑
i=1

[
y(t)i − ziβ− hr,n(xi, β)

]2
. (7)

By (7), we have

β̂
(LS)
r,n =

1
r

r∑
t=1

n∑
i=1

z̃i ỹ
(t)
i /T̃2

n. (8)

When the random errors are heteroscedastic, we modify β̂(LS)
r,n to a WLS estimator. We can define the

WLS estimators of β in terms of

β̂
(WLS)
r,n = arg min

β

r∑
t=1

n∑
i=1

[(
y(t)i − ziβ− hr,n(xi, β)

)
/σi

]2
. (9)

By (9), we derive that

β̂
(WLS)
r,n =

1
r

r∑
t=1

n∑
i=1

γĩzi ỹ
(t)
i /Ũ2

n. (10)

Taking into account β̂(LS)
r,n and β̂(WLS)

r,n , we define the estimator of h(·) respectively:

ĥr,n(x) =
1
r

r∑
t=1

n∑
i=1

Wni(x)
(
y(t)i − ziβ̂

(LS)
r,n

)
(11)

and

h̃r,n(x) =
1
r

r∑
t=1

n∑
i=1

Wni(x)
(
y(t)i − ziβ̂

(WLS)
r,n

)
. (12)

In order to obtain the relevant theorems, several important conditions are given below.

(C1) (i) lim
n→∞

T̃2
n/n = C;

(ii) 0 < s0 ≤ inf
u∈M

f (u) ≤ sup
u∈M

f (u) ≤ S0 < ∞;

(iii) f (·) and h(·) are continuous functions on compact set M.
(C2) (i) sup

x∈M

∑n
i=1

∣∣∣Wni(x)
∣∣∣ = O(1);

(ii) sup
i≥1,x∈M

∣∣∣Wni(x)
∣∣∣ = O(n−α) for some α > 0.

(C3) (i) sup
x∈M

∣∣∣∑n
i=1 Wni(x) − 1

∣∣∣ = o(1);

(ii) sup
x∈M

∑n
i=1

∣∣∣Wni(x)
∣∣∣I(‖xi − x‖ > δ) = o(1) for any δ > 0.
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(C4) sup
x∈M

∣∣∣∑n
i=1 Wni(x)zi

∣∣∣ = O(1).

Remark 1. Conditions (C1)(i) (ii) are some regular conditions that are often imposed in studies of LS and WLS
estimators in heteroscedastic partially linear models. One can refer to [5,8,9] and so on. (C1) (iii) is mild and
holds for most commonly used functions, such as polynomial and trigonometric functions (see [9]). Conditions
(C2)–(C4) are often applied to investigate strong consistency (see [9,33]) and mean consistency (see [10,16]).
(C2)(ii) is weaker than the corresponding conditions of [16] and [33]. Thus, the above conditions are very mild.
Moreover, by (C1)(i) (ii), one can get that

T̃−2
n

n∑
i=1

∣∣∣̃zi
∣∣∣ ≤ C (13)

and

Ũ−2
n

n∑
i=1

∣∣∣γĩzi
∣∣∣ ≤ C. (14)

3. Main Results

In this paper, let
{
ε
(t)
i , 1 ≤ t ≤ r, 1 ≤ i ≤ n

}
be a ρ−-mixing sequence with zero mean, which is

stochastically dominated by a random variable ε.

Theorem 1. Assume that (C1)-(C3) hold. If E|ε|p < ∞ for some p > 2, then

β̂
(LS)
r,n

a.s.
→ β (15)

as min(r, n)→∞ and
β̂
(WLS)
r,n

a.s.
→ β. (16)

as min(r, n)→∞ .

Theorem 2. Under the conditions of Theorem 1, in addition, if (C4) holds, then

sup
x∈M

∣∣∣ĥr,n(x) − h(x)
∣∣∣ a.s.
→ 0 (17)

as min(r, n)→∞ and
sup
x∈M

∣∣∣∣̃hr,n(x) − h(x)
∣∣∣∣ a.s.
→ 0. (18)

as min(r, n)→∞ .

Theorem 3. Assume that (C1)-(C3) holds. If E|ε|p < ∞ for some p ≥ 2, then

lim
min(r,n)→∞

E
∣∣∣∣β̂(LS)

r,n − β
∣∣∣∣p = 0 (19)

and
lim

min(r,n)→∞
E
∣∣∣∣β̂(WLS)

r,n − β
∣∣∣∣p = 0. (20)

Theorem 4. Under the conditions of Theorem 3, in addition, if (C4) holds, then

lim
min(r,n)→∞

sup
x∈M

E
∣∣∣ĥr,n(x) − h(x)

∣∣∣p = 0 (21)
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and
lim

min(r,n)→∞
sup
x∈M

E
∣∣∣∣̃hr,n(x) − h(x)

∣∣∣∣p = 0. (22)

Remark 2. Since ρ−-mixing sequences include NA (in particular, independent) and ρ∗-mixing sequences,
Theorems 1–4 also apply for NA and ρ∗-mixing sequences.

4. Some Lemmas

From the definition of ρ−-mixing sequences, we can get the first lemma.

Lemma 1. If {Xi, i ≥ 1} is a ρ−-mixing sequence with mixing coefficients ρ−(u), then
{
fi(Xi), i ≥ 1

}
is still

a ρ−-mixing sequence with mixing coefficients not greater than ρ−(u). Here, f1, f2, · · · are non-decreasing
functions (non-increasing functions).

Lemma 2 (Rosenthal-type inequality, [25,29]). If {Xi, i ≥ 1} is a ρ−-mixing sequence of zero mean with
E|Xi|

p < ∞ for some p ≥ 2, then there exists a constant C > 0 depending only on p and ρ−(s) such that

E
(
max
1≤i≤n

|Si|
p
)
≤ C


n∑

i=1

E|Xi|
p +


 n∑

i=1

EX2
i

p/2
p,

for any n ≥ 1, here Si =
i∑

j=1
X j.

Lemma 3 ([32]). If {Xi, i ≥ 1} is a random sequence that is stochastically dominated by a random variable X,
for every a > 0 and β > 0, we have

E|Xi|
βI(|Xi| ≤ a) ≤ c1

[
E|X|βI(|X| ≤ a) + aβP(|X| > a)

]
,

E|Xi|
βI(|Xi| > a) ≤ c2E|X|βI(|X| > a).

Therefore,
E|Xi|

β
≤ cE|X|β,

where c is a positive constant.

Lemma 4. Let
{
ε
(t)
i , 1 ≤ t ≤ r, 1 ≤ i ≤ n

}
be a ρ−-mixing sequence of zero mean. Suppose that{

cni(v), 1 ≤ i ≤ n, n ≥ 1
}

is an array of functions defined on a compact set M such that sup
v∈M

n∑
i=1

∣∣∣cni(v)
∣∣∣ = O(1)

and sup
i≥1,v∈M

∣∣∣cni(v)
∣∣∣ = O(n−γ) for some γ > 0. If E|ε|p < ∞ for some p > 2, then

sup
v∈M

∣∣∣∣∣∣∣1r
r∑

t=1

n∑
i=1

cni(v)ε
(t)
i

∣∣∣∣∣∣∣ a.s.
→ 0 (23)

as min(r, n)→∞ .

Proof. Denote
ε
(t)
1i = −r

1
p I

(
ε
(t)
i < −r

1
p

)
+ ε

(t)
i I

(∣∣∣∣ε(t)i

∣∣∣∣ ≤ r
1
p

)
+ r

1
p I

(
ε
(t)
i > r

1
p

)
,

ε
(t)
2i = ε

(t)
i − ε

(t)
1i =

(
ε
(t)
i + r

1
p

)
I
(
ε
(t)
i < −r

1
p

)
+

(
ε
(t)
i − r

1
p

)
I
(
ε
(t)
i > r

1
p

)
,
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ε′
(t)
i = ε

(t)
1i − Eε(t)1i

and
ε′′

(t)
i = ε

(t)
2i − Eε(t)2i .

Without loss of generality, one can suppose that cni(v) > 0. Hence, we know by Lemma 1 that{
cni(v)ε

(t)
i , 1 ≤ t ≤ r, 1 ≤ i ≤ n

}
,

{
cni(v)ε′

(t)
i , 1 ≤ t ≤ r, 1 ≤ i ≤ n

}
, and

{
cni(v)ε′′

(t)
i , 1 ≤ t ≤ r, 1 ≤ i ≤ n

}
are also ρ−-mixing sequences with zero mean. Note that ε(t)i = ε′

(t)
i + ε′′

(t)
i . Hence, for any v ∈ M,

we have

Ar,n =: P
(∣∣∣∣∣∣ 1

r

r∑
t=1

n∑
i=1

cni(v)ε
(t)
i

∣∣∣∣∣∣ > ε
)

≤ P
(∣∣∣∣∣∣ r∑

t=1

n∑
i=1

cni(v)ε′
(t)
i

∣∣∣∣∣∣ > rε/2
)
+ P

(∣∣∣∣∣∣ r∑
t=1

n∑
i=1

cni(v)ε′′
(t)
i

∣∣∣∣∣∣ > rε/2
)

=:
(
A(1)

r,n + A(2)
r,n

)
.

(24)

The proof of (24) is similar to that of the Lemma 3.3 in Zhou and Hu [34]. By Lemma 3, we have

E
∣∣∣∣ε(t)i

∣∣∣∣p ≤ CE|ε|p < ∞. Hence, for every s > p > 2, from the Markov inequality, Lemma 2 and E|ε|p < ∞,
we get that

A(1)
r,n ≤ Cr−sE

∣∣∣∣∣∣ r∑
t=1

n∑
i=1

cni(v)ε′
(t)
i

∣∣∣∣∣∣s
≤ Cr−s

 r∑
t=1

n∑
i=1

E
∣∣∣∣cni(v)ε′

(t)
i

∣∣∣∣s + ( r∑
t=1

n∑
i=1

E
(
cni(v)ε′

(t)
i

)2
)s/2


≤ Cr−ssup

z∈M

 r∑
t=1

n∑
i=1

E
∣∣∣∣cni(v)ε′

(t)
i

∣∣∣∣s + ( r∑
t=1

n∑
i=1

E
(
cni(v)ε′

(t)
i

)2
)s/2


≤ Cr−s

sup
z∈M

r∑
t=1

n∑
i=1

E
∣∣∣∣cni(v)ε′

(t)
i

∣∣∣∣s + sup
z∈M

(
r∑

t=1

n∑
i=1

E
(
cni(v)ε′

(t)
i

)2
)s/2


≤ Cr−s

(
rs/pn−γ(s−1) + rs/2n−γs/2

)
≤ Cr−s/2

(25)

and

A(2)
r,n ≤ Cr−pE

∣∣∣∣∣∣ r∑
t=1

n∑
i=1

cni(v)ε′′
(t)
i

∣∣∣∣∣∣p
≤ Cr−p

sup
z∈M

r∑
t=1

n∑
i=1

E
∣∣∣∣cni(v)ε′′

(t)
i

∣∣∣∣p + sup
z∈M

(
r∑

t=1

n∑
i=1

E
(
cni(v)ε′′

(t)
i

)2
)p/2


≤ Cr−p

(
rn−γ(p−1) + rp/2n−γp/2

)
≤ C

(
r−p+1 + r−p/2

)
.

(26)

Hence, it follows from (24) through (26) and s > p > 2 that

∞∑
r=1

Ar,n ≤ C
∞∑

r=1

(
r−s/2 + r−p+1 + r−p/2

)
< ∞.

By the Borel–Cantenlli lemma, we obtain for any v ∈M that∣∣∣∣∣∣∣1r
r∑

t=1

n∑
i=1

cni(v)ε
(t)
i

∣∣∣∣∣∣∣ a.s.
→ 0

as min(r, n)→∞ . Therefore, (23) follows. �
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Lemma 5. Let
{
ε
(t)
i , 1 ≤ t ≤ r, 1 ≤ i ≤ n

}
be a ρ−-mixing random sequence of zero mean. Suppose that{

cni(v), 1 ≤ i ≤ n, n ≥ 1
}

is an array of functions defined on a compact set M such that sup
v∈M

n∑
i=1

∣∣∣cni(v)
∣∣∣ = O(1)

and sup
i≥1,v∈M

∣∣∣cni(v)
∣∣∣ = O(n−α). If E|ε|p < ∞ for some p ≥ 2, then

lim
min(r,n)→∞

sup
v∈M

E

∣∣∣∣∣∣∣1r
r∑

t=1

n∑
i=1

cni(v)ε
(t)
i

∣∣∣∣∣∣∣
p

= 0. (27)

Proof. Using the notations in the proof of Lemma 4 and by Cp inequality (let {Xi, i ≥ 1} be a random

sequence, then E

∣∣∣∣∣∣ n∑
i=1

Xi

∣∣∣∣∣∣p ≤ np−1
n∑

i=1
E|Xi|

p for p > 1), one gets that

E

∣∣∣∣∣∣ 1
r

r∑
t=1

n∑
i=1

cni(v)ε
(t)
i

∣∣∣∣∣∣p ≤ 2p−1

E

∣∣∣∣∣∣ 1
r

r∑
t=1

n∑
i=1

cni(v)ε′
(t)
i

∣∣∣∣∣∣p + E

∣∣∣∣∣∣ 1
r

r∑
t=1

n∑
i=1

cni(v)ε′′
(t)
i

∣∣∣∣∣∣p


=: 2p−1
(
G(1)

r,n + G(2)
r,n

)
.

(28)

For every s > p ≥ 2, by Lemma 2, Lemma 3, and E|ε|p < ∞, we derived that

sup
v∈M

G(1)
r,n ≤

sup
v∈M

E

∣∣∣∣∣∣ 1
r

r∑
t=1

n∑
i=1

cni(v)ε′
(t)
i

∣∣∣∣∣∣s
p/s

≤ C

( 1
r

)s
sup

v∈M
E

∣∣∣∣∣∣ r∑
t=1

n∑
i=1

cni(v)ε′
(t)
i

∣∣∣∣∣∣s
p/s

≤ C
(

1
r

)p
(
sup
v∈M

r∑
t=1

n∑
i=1

E
∣∣∣∣cni(v)ε′

(t)
i

∣∣∣∣s +[
sup
v∈M

(
r∑

t=1

n∑
i=1

E
(
cni(v)ε′

(t)
i

)2
)]s/2p/s

≤ C
(

1
r

)p(
rs/pn−γ(s−1) + rs/2n−γs/2

)p/s

≤ Cr−p/2

(29)

and

sup
v∈M

G(2)
r,n ≤ C

(
1
r

)p
(
sup
v∈M

r∑
t=1

n∑
i=1

E
∣∣∣∣cni(v)ε′′

(t)
i

∣∣∣∣p
+

[
sup
v∈M

(
r∑

t=1

n∑
i=1

E
(
cni(v)ε′

(t)
i

)2
)]p/2

≤ C
(

1
r

)p(
rn−γ(p−1) + rp/2n−γp/2

)
≤ Cr−p/2.

(30)

Therefore, (27) follows from (28) through (30). �

5. Proofs of the Main Results

By (5), (8), and (10), we derive that

β̂
(LS)
r,n − β = T̃−2

n

1
r

r∑
t=1

n∑
i=1

z̃ĩe
(t)
i +

n∑
i=1

z̃i
^
h (xi)

 (31)

and

β̂
(WLS)
r,n − β = Ũ−2

n

1
r

r∑
t=1

n∑
i=1

γĩzĩe
(t)
i +

n∑
i=1

γĩzi
^
h (xi)

 , (32)
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where ẽ(k)j = e(k)j −
1
r

r∑
t=1

n∑
i=1

Wni
(
x j

)
e(t)i ,

^
h (x) = h(x) −

n∑
j=1

Wnj(x)h
(
x j

)
and e(t)i = σiε

(t)
i , 1 ≤ k ≤ r,

1 ≤ j ≤ n.

Proof of Theorem 1. We only need to prove (16) since the proof of (15) is analogous. By (32), we can
get that

β̂
(WLS)
r,n − β = Ũ−2

n

 1
r

r∑
t=1

n∑
i=1

γĩziσiε
(t)
i −

n∑
j=1

γ j̃z j

(
1
r

r∑
t=1

n∑
i=1

Wni
(
x j

)
σiε

(t)
i

)
+

n∑
i=1

γĩzi
^
h (xi)


=: I(1)r,n − I(2)r,n + I(3)r,n

≤

∣∣∣∣I(1)r,n

∣∣∣∣+ ∣∣∣∣I(2)r,n

∣∣∣∣+ ∣∣∣∣I(3)r,n

∣∣∣∣.
(33)

Observe that I(1)r,n = 1
r

r∑
t=1

n∑
i=1

(
Ũ−2

n γiσĩzi
)
ε
(t)
i ,

1
r

r∑
t=1

n∑
i=1

aniε
(t)
i . Hence, it follows from (C1)(i) and (ii) and

(14) that
max
1≤i≤n

|ani| ≤ Cmax
1≤i≤n

∣∣∣γĩzi
∣∣∣Ũ−1

n · Ũ
−1
n = O

(
n−1/2

)
(34)

and
n∑

i=1

|ani| ≤ C
n∑

i=1

∣∣∣γĩzi
∣∣∣Ũ−2

n = O(1). (35)

Thus, by Lemma 4, we have ∣∣∣∣I(1)r,n

∣∣∣∣ a.s.
→ 0 (36)

as min(r, n)→∞ . Note that

I(2)r,n =
1
r

r∑
t=1

n∑
i=1

 n∑
j=1

Ũ−2
n γ jσĩz jWni

(
x j

)ε(t)i =:
1
r

r∑
t=1

n∑
i=1

a′niε
(t)
i .

Hence, it follows from (C1)(ii), (C2), and (14) that

max
1≤i≤n

∣∣∣a′ni
∣∣∣ ≤ C sup

i≥1,x∈M

∣∣∣Wni(x)
∣∣∣ · n∑

i=1

∣∣∣γ j̃z j
∣∣∣Ũ−2

n = O(n−α) (37)

and
n∑

i=1

∣∣∣a′ni
∣∣∣ ≤ Csup

x∈M

n∑
i=1

∣∣∣Wni(x)
∣∣∣ · n∑

i=1

∣∣∣γ j̃z j
∣∣∣Ũ−2 = O(1), (38)

where α is the same as that in (C2)(ii).
Thus, by Lemma 4, one can get that ∣∣∣∣I(2)r,n

∣∣∣∣ a.s.
→ 0 (39)

as min(r, n)→∞ . By (14), we derive that

∣∣∣∣I(3)r,n

∣∣∣∣ ≤ sup
x∈M

∣∣∣∣∣^h (x)∣∣∣∣∣ n∑
i=1

∣∣∣γizi
∣∣∣/Ũ2

n ≤ Csup
x∈M

∣∣∣∣∣^h (x)∣∣∣∣∣. (40)

By (C1)(iii), (C2)(i), and (C3), we obtain that
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sup
x∈M

∣∣∣∣∣^h (x)∣∣∣∣∣ ≤ sup
x∈M

∣∣∣∣∣∣ n∑
j=1

Wnj(x) − 1

∣∣∣∣∣∣∣∣∣h(x)∣∣∣+ sup
x∈M

n∑
j=1

∣∣∣Wnj(x)
∣∣∣∣∣∣∣h(x) − h

(
x j

)∣∣∣∣
≤ sup

x∈M

∣∣∣∣∣∣ n∑
j=1

Wnj(x) − 1

∣∣∣∣∣∣∣∣∣h(x)∣∣∣
+sup

x∈M

n∑
j=1

∣∣∣Wnj(x)
∣∣∣∣∣∣∣h(x) − h

(
x j

)∣∣∣∣I(‖x− x j‖ > δ
)

+sup
x∈M

n∑
j=1

∣∣∣Wnj(x)
∣∣∣∣∣∣∣h(x) − h

(
x j

)∣∣∣∣I(‖x− x j‖ ≤ δ
)

= o(1).

(41)

Thus, by (40) and (41), we have ∣∣∣∣I(3)r,n

∣∣∣∣→ 0 (42)

as min(r, n)→∞ . Therefore, (16) follows from (33), (36), (39), and (42). �

Proof of Theorem 2. We only need to prove (18) since the proof of (17) is analogous. In light of (12),
we have

h̃r,n(x) − h(x) = 1
r

r∑
t=1

n∑
i=1

Wni(xi)
(
ziβ+ h(xi) + σiε

(t)
i − ziβ̂

(WLS)
r,n

)
− h(x)

= 1
r

r∑
t=1

n∑
i=1

Wni(x)zi

(
β− β̂

(WLS)
r,n

)
−

^
h (x) + 1

r

r∑
t=1

n∑
i=1

Wni(x)σiε
(t)
i .

(43)

Hence,

sup
x∈M

∣∣∣∣̃hr,n(x) − h(x)
∣∣∣∣ ≤ sup

x∈M

∣∣∣∣∣∣ n∑
i=1

Wni(x)zi

∣∣∣∣∣∣∣∣∣∣β− β̂(WLS)
r,n

∣∣∣∣+ sup
x∈M

∣∣∣∣∣^h (x)∣∣∣∣∣
+sup

x∈M

∣∣∣∣∣∣ 1
r

r∑
t=1

n∑
i=1

Wni(x)σiε
(t)
i

∣∣∣∣∣∣
= : J(1)r,n + J(2)r,n + J(3)r,n .

(44)

By (16) and (C4), we have
J(1)r,n

a.s.
→ 0 (45)

as min(r, n)→∞ . From (41), it follows that

J(2)r,n → 0 (46)

as min(r, n)→∞ . By (C1)(ii) and (C2), we can get that

sup
i≥1,x∈M

∣∣∣Wni(x)σi
∣∣∣ ≤ C sup

i≥1,x∈M

∣∣∣Wni(x)
∣∣∣ = O(n−α),

and

sup
x∈M

n∑
i=1

∣∣∣Wni(x)σi
∣∣∣ ≤ Csup

x∈M

n∑
i=1

∣∣∣Wni(x)
∣∣∣ = O(1).

Hence, from Lemma 4, it follows that
J(3)r,n

a.s.
→ 0. (47)

as min(r, n)→∞ . Therefore, (18) follows from (44) through (47). �
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Proof of Theorem 3. We only need to prove (20) since the proof of (19) is analogous. By (33), we have

β̂
(WLS)
r,n − β = Ũ−2

n

 1
r

r∑
t=1

n∑
i=1

γĩziσiε
(t)
i −

n∑
j=1

γ j̃z j

(
1
r

r∑
t=1

n∑
i=1

Wni
(
x j

)
σiε

(t)
i

)
+

n∑
i=1

γĩzi
^
h (xi)


=: I(1)r,n − I(2)r,n + I(3)r,n .

Hence, it follows by Cp inequality that

E
∣∣∣∣β̂(WLS)

r,n − β
∣∣∣∣p ≤ 3p−1

(
E
∣∣∣∣I(1)r,n

∣∣∣∣p + E
∣∣∣∣I(2)r,n

∣∣∣∣p + E
∣∣∣∣I(3)r,n

∣∣∣∣p). (48)

The rest of the proof is similar to the proof of (16), so we omitted the details here. �

Proof of Theorem 4. We only need to prove (22) since the proof of (21) is analogous. By (43),
we derive that

h̃r,n(x) − h(x) = 1
r

r∑
t=1

n∑
i=1

Wni(x)
(
ziβ+ h(x) + σiε

(t)
i − ziβ̂

(WLS)
r,n

)
− h(x)

= 1
r

r∑
t=1

n∑
i=1

Wni(x)zi

(
β− β̂

(WLS)
r,n

)
−

^
h (x) + 1

r

r∑
t=1

n∑
i=1

Wni(x)σiε
(t)
i

=: J(1)r,n − J(2)r,n + J(3)r,n .

Hence, by Cp inequality, we derive that

E
∣∣∣∣̃hr,n(x) − h(x)

∣∣∣∣p ≤ 3p−1
(
E
∣∣∣∣J(1)r,n

∣∣∣∣p + E
∣∣∣∣J(2)r,n

∣∣∣∣p + E
∣∣∣∣J(3)r,n

∣∣∣∣p). (49)

Since
∣∣∣∣J(1)r,n

∣∣∣∣p ≤ (
sup
x∈M

∣∣∣∣∣∣ n∑
i=1

Wni(x)zi

∣∣∣∣∣∣
)p∣∣∣∣β− β̂(WLS)

r,n

∣∣∣∣p, together with (20) and (C4), we can get that

lim
min(r,n)→∞

sup
x∈M

E
∣∣∣∣J(1)r,n

∣∣∣∣p = 0. (50)

From (41), it follows that

lim
min(r,n)→∞

sup
x∈M

E
∣∣∣∣J(2)r,n

∣∣∣∣p = 0. (51)

By (C1)(ii) and (C2), we can get that

sup
i≥1,x∈M

∣∣∣Wni(x)σi
∣∣∣ ≤ C sup

i≥1,x∈M

∣∣∣Wni(x)
∣∣∣ = O(n−α),

and

sup
x∈M

n∑
i=1

∣∣∣Wni(x)σi
∣∣∣ ≤ Csup

x∈M

n∑
i=1

∣∣∣Wni(x)
∣∣∣ = O(1).

Hence, by Lemma 5, one can get that

lim
min(r,n)→∞

sup
x∈M

E
∣∣∣∣J(3)r,n

∣∣∣∣p = 0. (52)

Therefore, (22) follows from (49) through (52). �

6. Numerical Simulations

In this section, we will verify the validity of the theoretical results by two simulations.
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6.1. Simulation 1

We will simulate a partially linear model

y(t)i = ziβ+ h(xi) + σiε
(t)
i , r = n/2, 1 ≤ i ≤ n, (53)

where β = 2.5, h(x) = sin(2πx), zi = (−1)i
·

i
n , σi = 1, 1 ≤ i ≤ n, and random errors

{
ε
(t)
i

}
have the

common distribution as that of {Zn} in Example 1 of Section 1. Then,
{
ε
(t)
i

}
is a ρ−-mixing sequence,

and it is neither NA nor ρ∗-mixing.
In particular, we take the weight function Wni(·) as the following nearest neighbor weight function

(see [11,35]). Without loss of generality, denote M = [0, 1] and xi =
i
n (1 ≤ i ≤ n). For each x ∈ M,

we rewrite
|x1 − x|, |x2 − x|, · · · , |xn − x|

as follows: ∣∣∣xR1(x) − x
∣∣∣ ≤ ∣∣∣xR2(x) − x

∣∣∣ ≤, · · · ,≤
∣∣∣xRn(x) − x

∣∣∣.
Take kn =

[
n0.8

]
and define the nearest neighbor weight function as

Wni(x) =
{ 1

kn
, if|xi − x| ≤

∣∣∣xRkn
− x

∣∣∣,
0, else.

where the sample sizes are taken as n = 100, 600, 1200, 1900, 2700, and 3600 and the points x are
taken as x = 0.2, 0.4, 0.6, and 0.8, respectively. We compute β̂(LS)

r,n − β and ĥr,n(x) − h(x) for 1000 times,

respectively. The boxplots of β̂(LS)
r,n − β are provided in Figures 1–4, the violin plots of ĥr,n(x) − h(x) are

provided in Figures 5–8, the curves of h(x) and ĥr,n(x) are provided in Figure 9, and the mean squared
errors (MSE) of β̂(LS)

r,n and ĥr,n(x) are presented in Tables 1 and 2, respectively.
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Table 1. The MSEs of ( )
,

ˆ LS
r nβ  with 2.5β =  and ( ) ( )sin 2h x xπ=  

x 1 0 0n = 600n = 1200n = 1900n = 2700n = 3600n =
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Figure 9. Curves of h(x) = sin(2πx) and ĥr,n(x) with β = 2.5 and n = 1200.

Table 1. The MSEs of β̂(LS)
r,n with β = 2.5 and h(x) = sin(2πx).

x n = 100 n = 600 n = 1200 n = 1900 n = 2700 n = 3600

0.2 0.029564 0.0040429 0.0027393 0.0017879 0.0011778 0.00096205
0.4 0.027563 0.0048107 0.002557 0.0013618 0.0012225 0.00083697
0.6 0.032418 0.0045437 0.0030247 0.0017816 0.001016 0.0007695
0.8 0.026715 0.0049648 0.0026033 0.0014911 0.00099622 0.00083525
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Table 2. The MSEs of ĥr,n(x) with β = 2.5 and h(x) = sin(2πx).

x n = 100 n = 600 n = 1200 n = 1900 n = 2700 n = 3600

0.2 0.072899 0.0132846 0.0064122 0.00450755 0.00408198 0.00309342
0.4 0.064407 0.012605 0.0061076 0.0040173 0.0037297 0.0027017
0.6 0.0651945 0.01143844 0.0061647 0.0048246 0.0031893 0.002914
0.8 0.067254 0.0134688 0.0701644 0.00515616 0.00397691 0.0030646

6.2. Simulation 2

We will simulate a partially linear model

y(t)i = ziβ+ h(xi) + σiε
(t)
i , r = n/2, 1 ≤ i ≤ n, (54)

where β = 3.5, h(x) = cos(πx), zi = (−1)i
·

i
n , σi = 1, 1 ≤ i ≤ n, and random errors

{
ε
(t)
i

}
have the same

distribution as {Zn} in Example 1 of Section 1. Then,
{
ε
(t)
i

}
is a ρ−-mixing sequence, and it is neither

NA nor ρ∗-mixing.
Using the same estimating methods as model (53), we compute β̂(LS)

r,n − β and ĥr,n(x) − h(x) for

1000 times in model (54) under different values of n, respectively. The boxplots of β̂(LS)
r,n − β are provided

in Figures 10–13, the violin plots of ĥr,n(x) − h(x) are provided in Figures 14–17, the curves of h(x)
and ĥr,n(x) are provided in Figure 18, and the MSEs of β̂(LS)

r,n and ĥr,n(x) are presented in Tables 3
and 4, respectively.
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Figure 12. Boxplots of β̂(LS)
r,n − β with β = 3.5 and x = 0.6.
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Symmetry 2020, 12, x FOR PEER REVIEW 23 of 27 

 

 

Figure 14. Violin plots of ( ) ( ),r̂ nh x h x−  with 3.5β =  and 0.2x =  

 

Figure 15. Violin plots of ( ) ( ),r̂ nh x h x−  with 3.5β =  and 0.4x =  

Figure 14. Violin plots of ĥr,n(x) − h(x) with β = 3.5 and x = 0.2.



Symmetry 2020, 12, 1188 18 of 21

Symmetry 2020, 12, x FOR PEER REVIEW 23 of 27 

 

 

Figure 14. Violin plots of ( ) ( ),r̂ nh x h x−  with 3.5β =  and 0.2x =  

 

Figure 15. Violin plots of ( ) ( ),r̂ nh x h x−  with 3.5β =  and 0.4x =  
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Figure 17. Violin plots ĥr,n(x) − h(x) with β = 3.5 and x = 0.8.
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Table 3. The MSEs of β̂(LS)
r,n with β = 3.5 and h(x) = cos(πx).

x n = 100 n = 600 n = 1200 n = 1900 n = 2700 n = 3600

0.2 0.028735 0.0046935 0.002547 0.0017209 0.0010944 0.00085433
0.4 0.032703 0.0053621 0.0022595 0.0015934 0.001206 0.0008074
0.6 0.027853 0.0048229 0.0025756 0.0014096 0.0011848 0.00084765
0.8 0.03042 0.004848 0.002352 0.0014649 0.0011824 0.00084588

Table 4. The MSEs of ĥr,n(x) with β = 3.5 and h(x) = cos(πx).

x n = 100 n = 600 n = 1200 n = 1900 n = 2700 n = 3600

0.2 0.025536 0.0068733 0.0035259 0.0025282 0.0019082 0.0015027
0.4 0.029859 0.0061945 0.0032347 0.0022321 0.002002 0.0016778
0.6 0.02415 0.005475 0.0040859 0.0026873 0.0017436 0.0014589
0.8 0.027164 0.0055904 0.0036775 0.0024326 0.0017396 0.0014935

It can be seen from Figures 1–8 and Figures 10–17 that regardless of the values of x, β̂(LS)
r,n − β and

ĥr,n(x) − h(x) fluctuate to zero and the ranges of β̂(LS)
r,n − β and ĥr,n(x) − h(x) decrease as n increases.

From Tables 1–4, one can see that regardless of the values of x, the MSEs decrease gradually as n
increases. Hence the estimators get closer and closer to their real values as n increases. Figures 9 and 18
further show that the estimators of function h(x) have good effects. The simulation results directly
reflect our theoretical results.

7. Conclusions

In this paper, we mainly investigated the asymptotic properties of the estimators for the unknown
parameter and non-parametric component in the heteroscedastic partially linear model (1). A lot
of authors have derived the asymptotic properties of the estimators in partially linear models with
independent random errors (see [4–6,8,33]). However, in many applications, the random errors are not
independent. Here, we assumed that the random errors are ρ−-mixing, which includes independent,
NA, and ρ∗-mixing random variables as special cases. Under some suitable conditions, the strong
consistency and p-th (p > 0) mean consistency of the LS estimator and WLS estimator for the unknown
parameter β were investigated, and the strong consistency and p-th (p > 0) mean consistency of the
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estimators for the non-parametric component h(·) were also studied. The results obtained in this
paper include the corresponding ones of independent random errors, NA random errors (see [16]),
andρ∗-mixing random errors as special cases. Furthermore, for the model (1), we carried out simulations
to study the numerical performance of the asymptotic properties for the estimators of the unknown
parameter and non-parametric component for the first time. ρ−-mixing sequences are widely used
dependent sequences. Therefore, investigating the limit properties of the estimators in regression
models under ρ−-mixing errors in future studies is an interesting subject.
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