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Abstract: Pathfinding is the problem of finding the shortest path between a pair of nodes in a graph.
In the context of uniform-cost undirected grid maps, heuristic search algorithms, such as A⋆ and
weighted A⋆ (WA⋆), have been dominantly used for pathfinding. However, the lack of knowledge
about obstacle shapes in a gird map often leads heuristic search algorithms to unnecessarily explore
areas where a viable path is not available. We refer to such areas in a grid map as blocked areas
(BAs). This paper introduces a preprocessing algorithm that analyzes the geometry of obstacles in
a grid map and stores knowledge about blocked areas in a memory-efficient balanced binary search
tree data structure. During actual pathfinding, a search algorithm accesses the binary search tree
to identify blocked areas in a grid map and therefore avoid exploring them. As a result, the search
time is significantly reduced. The scope of the paper covers maps in which obstacles are represented
as horizontal and vertical line-segments. The impact of using the blocked area knowledge during
pathfinding in A⋆ and WA⋆ is evaluated using publicly available benchmark set, consisting of sixty
grid maps of mazes and rooms. In mazes, the search time for both A⋆ and WA⋆ is reduced by 28%,
on average. In rooms, the search time for both A⋆ and WA⋆ is reduced by 30%, on average. This is
achieved while preserving the search optimality of A⋆ and the search sub-optimality of WA⋆.

Keywords: shortest-path problem; path planning; heuristic algorithms; computational geometry

1. Introduction

Grid-based pathfinding has been the subject of considerable interest in a number of fields such
as video games and robotics navigation. A⋆ [1] is a simple, best-first search algorithm that relies on
a heuristic function to guide the search towards finding the optimal path between a source node and
a goal node in a grid map. To reduce the execution time of the A⋆ algorithm, researchers typically
focus on finding new heuristic functions that reduce the number of visited nodes (i.e., search space)
during pathfinding.

A⋆ is optimal if the used heuristic function is admissible, i.e., never overestimates when predicting
the distance to reach the goal [2]. Weighted A⋆ (WA⋆) [3] relaxes the admissibility rule and multiplies
the heuristic function by a factor ε > 1. While doing so might lead to finding sub-optimal paths,
inflating the heuristic forces the search algorithm to prioritize exploring more promising paths rather
than exploring every possible path to guarantee optimality. For example, Figure 1 compares the
number of visited nodes in both A⋆ and WA⋆ (with ε = 3) when trying to find the same path in
an 8-neighbor grid map of a 199× 364 maze. Both algorithms use the octile-distance heuristic, which is
a commonly-used admissible heuristic function that allows both straight and diagonal movements.
As shown by Figure 1c, the greedy nature of WA⋆ led it to prioritizing the exploration of the closer
nodes to the goal, which resulted in finding a different, sup-optimal path. By contrast, A⋆ slowly
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explores all similar nodes, i.e., nodes with the same cost, to guarantee optimality (as shown by
Figure 1b).

WA⋆ is a simple yet effective extension of A⋆ and is still in wide use to this day [4,5].
However, WA⋆, as well as A⋆, has no knowledge about the geometry of obstacles in a grid map,
which could mislead the search into exploring paths with blocked ends. For example, Figure 2a shows
twenty two polygon-shaped areas with blocked ends in the maze of Figure 1a. We refer to such shapes
as blocked areas (BAs) because they are bound by obstacles from all directions, except for the one
direction where the search may enter this area. This paper aims to make knowledge about blocked
areas in a grid map available during pathfinding. By doing so, a search algorithm can avoid exploring
useless paths inside blocked areas, which in turn reduces search time. For example, Figure 1 shows
that both A⋆ and WA⋆ have wastefully explored most of the blocked areas identified in Figure 2a. By
comparison, Figure 2b,c show the potential of using the blocked areas’ knowledge into guiding both
search algorithms to avoid exploring blocked areas and thus significantly reducing the number of
visited nodes while performing pathfinding.

(a) A 199× 364 maze. (b) A⋆ (c) WA⋆

Figure 1. Visited nodes (shown in dark grey) during optimal pathfinding using A⋆ and sub-optimal
pathfinding using weighted A⋆ (WA⋆) (with ε = 3.0) for the path shown in red. Note that the source
node is at the right-bottom and the goal node is the left-bottom of the map.

(a) Blocked areas
(BAs).

(b) A⋆ + BA (c) WA⋆ + BA

Figure 2. The impact of using the blocked areas’ knowledge on reducing the number of visited nodes
in optimal and sub-optimal pathfinding for the same path in Figure 1.

To make use of the blocked areas’ knowledge, we propose the following approach.
First, a preprocessing algorithm investigates the geometry of obstacles in a grid map and identifies
blocked areas. Next, information about blocked areas is stored in a memory-efficient balanced binary
search tree, referred to as the BA-tree. During actual pathfinding, a search algorithm accesses the
BA-tree to determine if a particular node is inside a blocked area. If so, then this node is not explored,
i.e., eliminated from the search space.

An important property of our proposed method is that it does not depend on any specific heuristic
function. Instead, it utilizes the geometry of obstacles to eliminate irrelevant parts to the search, i.e., in
a sense, it reduces a map to a new (more concise) map that a heuristic search algorithm can investigate
at a faster speed using its original heuristic function. Therefore, our method is orthogonal to the search
algorithm itself, and hence can be combined with many heuristic search algorithms in the literature.
As a proof of concept, in this paper, we present and evaluate our proposed method using A⋆ and WA⋆

search algorithms combined with the octile-distance heuristic. Another important property of our
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approach is that it preserves the optimality of a search algorithm. We present mathematical proofs of
this claim in Section 4.

In addition, our approach has a small memory overhead because nodes in a grid map
need not store any information about blocked areas, which would scale poorly for large maps.
Instead, during pathfinding, a search algorithm retrieves this information from the BA-tree, where the
memory requirements are bound by a small fraction of nodes in a grid map, as will be explained by
Section 5.

While the concept of blocked areas can be generalized to any obstacle shape, in this paper,
we consider maps where obstacles are represented as vertical and horizontal line-segments, which in
turn form blocked areas that are polygons. Such cases are commonly found in maps of mazes,
buildings and transportation maps.

We evaluate the impact of using the blocked areas’ knowledge for A⋆ and WA⋆ using a publicly
available benchmark set that includes sixty maps of mazes and rooms [6]. Our evaluation shows
that the search space (i.e., the number of visited nodes during pathfinding) of A⋆ is reduced by 34%,
on average, for both mazes and rooms. This results in a significant reduction in search time for both
A⋆ and WA⋆. Specifically, in mazes, the execution times of both A⋆ and WA⋆ were reduced by 10–35%
(the average is 28%). In rooms, the execution times of both A⋆ and WA⋆ were reduced by 5–57%
(the average is 30%). Our evaluation also demonstrated that the memory overhead associated with
storing blocked areas’ information in memory during preprocessing and the time associated with
accessing this information during pathfinding are both small.

The remainder of this paper is organized as follows: Section 2 surveys related work. Section 3
provides background information about A⋆ and WA⋆ search algorithms. Section 4 presents the
definition of blocked areas. Section 5 describes the proposed preprocessing algorithm for finding
blocked areas in a grid map. Section 6 describes the proposed algorithms for constructing and
accessing the BA-tree. Section 7 evaluates the impact of using the blocked areas’s knowledge in
reducing execution time for both A⋆ and WA⋆. Section 8 concludes the paper.

2. Related Work

Several heuristic search algorithms in the literature, such as A⋆ and WA⋆, assume no prior
knowledge about maps. However, in many grid-based pathfinding domains, maps have static nature,
i.e., their territories remain mostly the same. Examples of such domains are video games and city
maps. Therefore, preprocessing approaches where prior knowledge about grid maps are utilized for
the purpose of speeding up pathfinding has attracted many researchers due to the amortized runtime
overhead (preprocessing needs to be executed only once).

In general, the efficiency of preprocessing approaches for pathfinding depends on the following:
(i) the type of knowledge collected; (ii) the runtime overhead of accessing this knowledge during actual
pathfinding; and (iii) the memory overhead of storing this knowledge. Below, we survey previously
proposed preprocessing methods and describe their difference to our work.

Some researchers proposed preprocessing approaches where optimal paths between all or some
nodes are pre-calculated and stored in a database, which is looked up during actual pathfinding [7–10].
While pathfinding in these approaches is fast and optimal, in general (despite using compression
techniques) memory requirements are huge because memory is proportional to the number of nodes
in a map. By contrast, the memory requirement in our work is bounded by the number of blocked
areas, which is, in practice, a small fraction compared to the total number of nodes in a grid map.

Other researchers suggested using preprocessing to create an abstraction layer (or multiple layers)
for each group of nodes in the map with pre-calculated local paths. During actual pathfinding, a path
is found first using the abstract map. This path is then refined in a subsequent step for the original map.
The returned path is, however, not guaranteed to be optimal. Examples of such works are [11–13].

A related approach to the abstraction method is introduced by [14], where all shortest paths
between all pairs of nodes are abstracted (instead of abstracting each group of nodes in a grid map).
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This is done using a preprocessing step that identifies all subgoals in a map. A subgoal is a sequence
of nodes such that a path between any pair of nodes inside a subgoal is optimal only if it is a part of
the optimal path to the next subgoal. During actual pathfinding, an optimal high-level path between
subgoals is found first. This path is then refined to an optimal low-level path.

Compared to abstraction-based approaches, our approach does not require any additional
refinement steps when performing pathfinding. In addition, it needs not store in memory any
knowledge about pre-computed local distances between nodes.

A similar work to ours is the dead-end heuristic [15], which describes areas that are irrelevant
to the current search. During the preprocessing phase, the map is decomposed into smaller areas
and a high-level abstract graph with nodes representing those small areas is created. During actual
pathfinding, the search is split into two phases. The first phase identifies all nodes in the high-level
graph that are relevant to the shortest path (the other nodes are called the dead-end areas). The second
phase performs actual pathfinding while avoiding dead areas. Due to using an abstract graph,
dead-end heuristic requires an extra step during pathfinding; a step that is not needed in our work.

Another similar work to ours is [16], which uses preprocessing to identify swamps, a collection of
nodes that can be skipped during optimal pathfinding. Conceptually, swamps and blocked areas have
the same definition. In addition, similar to our work, swamps require no additional refinement steps
during search time. However, unlike our work, each node in a map is required to store an identifier that
tells which swamp this node belongs to so that, during pathfinding, search for nodes inside swamps
is blocked. Our approach also blocks search inside the blocked areas, however, without requiring
nodes to store blocked areas’ identifiers (which would be memory-inefficient in large maps).
Instead, this information is retrieved from a memory-efficient binary search tree data structure
during pathfinding.

Similar to A⋆ and WA⋆, there are also other heuristic search algorithms in the literature that
assume no prior knowledge about maps, such as the Explicit Estimation Search [17] and Jump Point
Search [18] algorithms. Our work is complementary to those algorithms, i.e., pre-computed knowledge
about blocked areas can be combined with those algorithms to reduce search time. As a proof of
concept, this paper evaluates the impact of blocked areas’ knowledge on reducing search time for the
A⋆ and WA⋆ algorithms.

The Grid-Based Path Planning Competition (GPPC) [19] was introduced in 2012 to facilitate
comparing different search algorithms using a standard set of maps, some of which were created
artificially and others were taken from commercial video games [6]. We use sixty available maps of
mazes and rooms from the same set to evaluate the proposed approach in this work. Details of the
competing algorithms in the GCCP are summarized by [20].

A noticeable related field to our work is route planning in transportation networks, in which
preprocessing techniques have been proposed to find the shortest paths in road networks [21]. Some of
these techniques have also been used in the context of grid-based pathfinding. For example, in the
GCCP’15 contest, a route planning approach based on the contraction hierarchies (CH) algorithm [22]
achieved competitive performance. During a preprocessing phase, the CH algorithm uses a node
contraction method to augment the shortest paths between each pair of nodes in a graph with shortcuts.
During actual pathfinding, the search makes use of these shortcuts to reduce the execution time.

3. Background

In this paper, a grid map is represented as a 2D array of points (or nodes), where each node is
identified by x and y coordinates. In addition, each node has a flag to indicate if it is either an obstacle
or a non-obstacle node. For a given node n, adjacent(n) is the set of non-obstacle nodes that are
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reachable from n via a single movement, which can be vertical, horizontal or diagonal. Consider node
m ∈ adjacent(n), the movement cost from n to m is represented by the function c(n,m):

c(n, m) =
⎧⎪⎪⎨⎪⎪⎩

1.0, n to m movement is either vertical or horizontal
√

2.0, n to m movement is diagonal

Algorithm 1 shows the pseudo code for the classical A⋆ algorithm, which finds the shortest path
between a source node s and a goal node g in a grid map G. A⋆ is a best-first search algorithm that
gradually expands nodes along the way from s to g while prioritizing exploring node with better
heuristic scores. When expanding a node q, the algorithm defines the following four values: gscore(q),
which is the distance from the source node s to q; hscore(q), which is the algorithm’s “guess" of the
distance from q to the goal node g; f score(q) = gscore(q) + hscore(q), which represents the priority of q
in the search; and parent(q), which is a pointer to the parent of q in the path from s to g.

Algorithm 1 A⋆ pathfinding
Input: Grid map G with a source node s and a goal node g

Output: The shortest path between s and g in G

open⇐ empty list
closed⇐ empty list
add s into open with gscore(s)= 0, f score(s) = hscore(s), parent(s)= null
while open is not empty do

n⇐ get and remove node with minimum f score from open
if n = g then

return path from s to g
end if
add n into closed
for each node q ∈ adjacent(n) and q ∉ closed do

gscore′ ⇐ gscore(n) + c(q,n)
if q ∉ open then

add q into open with gscore(q) = gscore′, f score(q) = gscore(q) + hscore(q), parent(q)= n
else if gscore′ < gscore(q) then

update q in open with gscore(q) = gscore′, f score(q) = gscore(q) + hscore(q), parent(q)= n
end if

end for
end while
return f ailure

The algorithm maintains two lists: open and closed. When expanding a node, it is put in the open
list. Nodes in the open list are then iteratively explored by their increasing order of f score. A node that
has been explored is removed from the open list and is put in the closed list so that it is not explored
again. When the goal node is found, the search terminates and the path is constructed by recursively
following the parent pointers from the goal node to the source node.

The optimality of A⋆ is only guaranteed if the heuristic function is admissible, i.e., estimated
distance by hscore(q) is always less than or equal to the actual distance from q to the goal node g [2].
One simple way of never overestimating hscore(q) is always assuming a straight line movement from
q to g. An example of such a heuristic function is the octile-distance function, which is popularly
used in 8-connected grid maps where horizontal, vertical and diagonal movements are allowed.
Specifically, the octile-distance from node q to a goal node g is equal to the minimum number of
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diagonal steps, plus the minimum number of either vertical or horizontal steps needed to go from q to
g. The octile-distance is given by the equation

hscore(q) =
√

2.0×minimum(∆x, ∆y)+ 1.0× (∆x +∆y −minimum(∆x, ∆y))

where ∆x is the number of horizontal steps and ∆y is the number of vertical steps from q to g. Note that
minimum(∆x,∆y) represents the number of diagonal steps from q to g.

WA⋆ has the same pseudo code in Algorithm 1 with only one modification: it calculates f score(q)
= gscore(q) + ε × hscore(q), ε > 1. As previously explained, this simple yet elegant modification adds
a stronger greedy nature of the search algorithm that leads it to finding a path more quickly, albeit
being a sub-optimal path. It is proven that the cost of the sub-optimal path found by WA⋆ is bounded
by ε × the cost of the optimal path [2].

The speed at which the A⋆ algorithm, as well as the WA⋆ algorithm, finds a path is affected by
the quality of its heuristic function. For example, if the heuristic function computes an inaccurate
estimate of the to-go-distance to the goal node, then the search algorithm will waste time exploring
uninteresting nodes, i.e., nodes that are not pertaining to the shortest path. As previously mentioned,
in many grid maps, a heuristic function may compute inaccurate distance estimates due to their
unawareness of blocked ends created by the geometry of obstacles. To this end, this paper aims to
identify areas in a grid map with blocked ends and make use of this knowledge to enable search
algorithms to avoid wasting time exploring nodes in such areas.

4. Blocked Area Definition

For a given undirected 2D grid map, a blocked area (BA) is a connected subgraph of adjacent
non-obstacle nodes that is bound by a continuous but non-enclosing chain of obstacle nodes. A blocked
area’s entrance is the imaginary straight line that connects the two end points of the obstacles’ chain.
Intuitively, any path that connects a node inside a blocked area with a node outside the blocked area
passes by its entrance.

Given a blocked area A, we define entrance(A) to be the set of all nodes that lie on the imaginary
straight line of A’s entrance. As a result that nodes in a grid map are discrete, the imaginary line may
not cross the nodes themselves, and instead, cross the squares that are formed by the nodes. Therefore,
a more precise definition of entrance(A) is the set of all nodes that lie on the corners of the intersecting
squares with the entrance’s imaginary straight line. The remaining set of nodes inside the blocked
area are defined as internal(A). Both of these sets are mutually exclusive, i.e., if node n ∈ internal(A),
then n ∉ entrance(A), and vice versa. We also define external(A) to be the set of all nodes n such that
n ∉ internal(A) and n ∉ entrance(A).

Given the aforementioned definition of a blocked area, all nodes in internal(A) and entrance(A)
must be non-obstacle nodes. Otherwise, A is not a blocked area. Furthermore, due to not having
obstacles inside or along the entrance of a blocked area A, the following two properties hold:

Property 1 There is always a path between a node n1 ∈ entrance(A) and a node n2 ∈ internal(A).
Property 2 There is always a shortest path between two nodes n1 and n2 ∈ entrance(A) such that this

path does not pass by any node n ∈ internal(A).

The main claim of this paper is that blocked areas can be ignored during pathfinding without
affecting the correctness and the optimality of a heuristic search algorithm. In below, Lemma 1 proves
the correctness claim by showing that there is always an alternative path to any path that passes
by a blocked area in a grid map. Lemma 2 proves the optimality claim by showing that there is
an alternative path that is also optimal.

Lemma 1. Consider a blocked area A and a pair of nodes s and g that are outside A. If there is a path between s
and g that passes by an internal node inside A, then there is also another path between s and g that does not pass
by an internal node inside A.
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Proof. Let path(s,g) denote a path between s and g, where s, g ∈ external(A). Additionally, let us
assume this path passes by a node n ∈ internal(A). In order to prove Lemma 1, we need to show that
there is another path, i.e., p̂ath(s,g), such that n ∉ p̂ath(s,g).

First, because n ∈ path(s,g), we can rewrite path(s,g) = path(s,n) + path(n,g). Next, because
n ∈ internal(A), both path(s,n) and path(n,g) cross A’s entrance. Therefore, we can rewrite path(s,g) =
path(s,x) + path(x,n) + path(n,y) + path(y,g), where nodes x and y ∈ entrance(A). Note that path(x,n)
and path(n,y) exist (Property 1). Next, because x and y ∈ entrance(A), path(x,y) exists such that n ∉
path(x,y) (Property 2). Therefore, we can construct a new path p̂ath(s,g) such that p̂ath(s,g) = path(s,x)
+ path(x,y) + path(y,g), where all nodes in path(s,x), path(x,y) and path(y,g) ∉ internal(A).

Lemma 2. Consider a blocked area A and a pair of nodes s and g that are outside A. If there is an optimal path
between s and g that passes by an internal node inside A, then there is also another optimal path between s and
g that does not pass by an internal node inside A.

Proof. Let path(s,g) denote a path between s and g (s, g ∈ external(A)) such that it passes by a node
n ∈ internal(A). Additionally, let path(s,g) be an optimal path with cost c. From Lemma 1, there is at
least one path between s and g, denoted p̂ath(s,g), such that n ∉ p̂ath(s,g). Let ĉ be the cost of p̂ath(s,g).
In order to prove Lemma 2, we need to show that ĉ = c.

As we showed earlier, we can write path(s,g) = path(s,x) + path(x,n) + path(n,y) + path(y,g) and
p̂ath(s,g) = path(s,x) + path(x,y) + path(y,g), where nodes x and y ∈ entrance(A). Let c1, c2 and c3 be
the cost of path(x,n), path(n,y) and path(x,y), respectively. Thus, c − ĉ = c1 + c2 − c3. To show that ĉ = c,
we need to show c1 + c2 − c3 = 0.

First, because c is optimal, c ≤ ĉ. Thus, c1 + c2 − c3 ≤ 0. Second, due to Property 2, path(x,y) is
optimal, i.e., it has a less or equal length to path(x,n) + path(n,y). Therefore, c3 ≤ c1 + c2, which leads to
c3 − (c1 + c2) ≤ 0. Combining both inequalities, the only possible solution is c1 + c2 − c3 = 0.

5. Blocked Area Detection

In this paper, we consider grid maps where obstacle nodes are adjacent to each other such that
they form vertical or horizontal line-segments. In such grid maps, blocked areas have polygon shapes
with internal non-obstacle nodes and a non-enclosing perimeter of obstacle nodes. The open side of
the blocked area’s perimeter represents its entrance.

In a grid map, each line-segment obstacle is represented by two distinct nodes, i.e., e1 = (x1,y1)
and e2 = (x2,y2), which are its end points. A horizontal line-segment obstacle has the same x-coordinate
in both of its end points. A vertical line-segment obstacle has the same y-coordinate in both of its end
points. We use the notation e1 → e2 to refer to a line-segment obstacle.

A vertical and a horizontal line-segment obstacles may intersect in a grid map. To identify such
a scenario, we introduce a data structure called corner, which is represented by three distinct nodes v,
t and h, where t is the intersection point, v is the end point of the vertical side and h is the end point of
the horizontal side. We use the notation v → t → h to refer to a corner. Note that when a horizontal and
a vertical line-segment obstacle intersect, up to four corners with different geometrical shapes can be
generated. For example, the intersection+ has a single intersection point and four corners with the
following shapes: ⌜, ⌞, ⌝ and ⌟.

Figure 3 shows an example of a maze with 11 and 13 horizontal and vertical line-segment
obstacles, respectively. Those obstacles intersect in 24 different intersection points such that
43 corners are generated. For example, the vertical line-segment (67,67)→(133,67) intersects with
the horizontal line-segment (100,34)→(100,100). As a result, the four corners C9, C10, C11 and
C12 are generated, where C9 is represented by (67,67)→(100,67)→(100,34), C10 is represented by
(67,67)→(100,67)→(100,100), C11 is represented by (133,67)→(100,67)→(100,34) and C12 is represented
by (133,67)→(100,67)→(100,100).



Symmetry 2020, 12, 1186 8 of 26

In a grid map, a polygon-shaped blocked area is formed when one or more corners are connected
together such that a subset of non-obstacle nodes are bound within a continuous (but non-enclosing)
chain of vertical and horizontal line-segment obstacles. For example, in Figure 3, blocked area A7 is
bound by the continuously connected corners (written in counterclockwise order): C5, C6, C19 and C18.
Similarly, blocked area A15 is bound by the continuously connected corners: C29, C31, C39, C38 and C35.
An interesting case is A1, which is a triangular-shaped blocked area that was formed by the single
corner C7.

A polygon-shaped blocked area is represented by its perimeter joint points, which can be extracted
from its corners. For example, consider blocked area A17 in Figure 3, which is formed by the corners
C25, C43 and C42 (sorted in counterclockwise order). This blocked area is represented by the five points
(166,133)→(199,133)→(199,232)→(166,232)→(166,166). The middle three points are the intersection
points of C25, C43 and C42, respectively. The first and the last points are the free points in C25 and C42.
The entrance is represented by the straight line (166,166)→(166,133).

Figure 3. A 2D grid map of a 199× 232 maze with 11 horizontal and 13 vertical line-segment obstacles.
The x-coordinates of the horizontal obstacles and the y-coordinates of the vertical obstacles are shown
on the left and the upper sides of the map, respectively. In the map, there are 43 corners marked as C1,
C2, . . . , C43 and 17 blocked areas marked as A1, A2, . . . , A17. The blocked areas in the map (excluding
their entrances) are shown as shaded grey areas.

In general, a polygon-shaped blocked area with s corners (sorted in counterclockwise order): C1,
C2, . . . , Cs can be represented by s + 2 joint points: e1, t1, t2, . . . , ts, es, where ti is the intersection point
of corner Ci and e1 and es are the free points of the two corners C1 and Cs, respectively. The entrance is
represented by the straight line between e1 and es.

A simple and key observation is the following: a corner can only be in one unique blocked
area. In other words, different blocked areas in a grid map have disjoin sets of connected corners.
Therefore, to identify blocked areas in a grid map, we propose the following approach. First, identify
all corners that result from the intersections between vertical and horizontal line-segment obstacles in
a grid map. Then, identify each disjoint subset of corners that belong to the same blocked area. Finally,
extract joint points from these disjoint sets to represent each blocked area.
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Algorithm 2 presents the pseudo code for a preprocessing algorithm that performs the
aforementioned approach. Firstly, in lines 1–2, Algorithm 2 uses the sweep line algorithm [23]
to identify all intersection points between vertical and horizontal line-segments obstacles. The sweep
line algorithm is a widely-used method for finding line-line intersections in Euclidean spaces due to
its linearithmic performance [24]. Subsequently, Algorithm 2 extracts all corners from all intersections.
Extracting corners from an intersection is straightforward (For brevity, pseudo codes of straightforward
functions are not shown.).

Algorithm 2 Blocked Area Detection Algorithm
Input: Grid map G with a set of vertical line-segment obstacles V and a set of horizontal line-segment

obstacles H. The number of intersections is R and the number of corners is N.

Output: List of all blocked areas in G

1: t1, t2, . . . , tR ⇐ SweepLineAlgorithm(V, H)
2: C1, C2, . . . , CN ⇐ extractCorners(t1, t2, . . . , tR)
3: UF⇐ a union-find data structure with initially N disjoint corners: C1, C2, . . . , CN
4: for each line L in V ∪ H do

5: cornersublist⇐ subset of corners with intersection points in L
6: connectedPairs⇐ PartitionAndSort(cornersublist,L)
7: for each pair of corners Ci and Cj in connectedPairs do

8: UF.union( Ci , Cj )
9: end for

10: end for
11: BAlist⇐ an initially empty list of blocked areas
12: for each disjoint set S in UF do

13: C1, C2, . . . , Cs ⇐ get corners in S
14: sort C1, C2, . . . , Cs counterclockwise
15: e1, t1, t2, . . . , ts, es ⇐ extractJoints(C1, C2, . . . , Cs)
16: A⇐ createBlockedArea(e1, t1, t2, . . . , ts, es)
17: add A to BAlist
18: end for
19: for each blocked area A in BAlist do

20: if entrance(A) has obstacle nodes or internal(A) has obstacle nodes then

21: remove A from BAlist
22: end if
23: end for
24: return BAlist

Secondly, in lines 3–10, Algorithm 2 identifies which corners are connected. To do so, we propose
the Partition and Sort method, which identifies all pairs of connected corners for every horizontal and
vertical line-segment obstacle in a grid map. To explain, consider the horizontal line-segment obstacle
(100,133)→(100,232), where the intersection points of the corners C23, C30, C31, C32, C33, C39 and C40

are located. Our method first partitions the corners into two sublists: upward corners and downward
corners. Upward corners are the corners with their vertical side located upward from the horizontal
line-segment obstacle, which include corners C30, C31 and C39. Downward corners are the corners with
their vertical side located downward from the horizontal line-segment obstacle, which include C23,
C32, C33 and C40. Next, our method sorts the corners in each sublist according to the y-coordinates of
their vertical sides so that adjacent corners are next to each other. In the sorted order, each adjacent pair
of corners with distinct intersection points are connected. For example, sorting the upward corners
will give C30, C31 and C39. The first adjacent pair (C30, C31) are not connected because they have the
same intersection point, while the second adjacent pair (C31, C39) are connected due to having distinct
intersection points. Similarly, sorting the downward corners will give C23, C32, C33 and C40, where only
two adjacent pairs are connected: (C23, C32) and (C33, C40). Algorithm 3 presents the pseudo code for
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our proposed Partition and Sort method. Similar to horizontal line-segment obstacles, the Partition
and Sort method is applied to vertical line-segment obstacles but while partitioning to left and right
(instead of up and down) and sorting by x-coordinates (instead of sorting by y-coordinates).

Algorithm 3 Partition and Sort method
Input: Set of l corners: C1, C2, . . . , Cl with intersection points located on line-segment obstacle L.

Output: All pairs of connected corners on L

1: connectedPairs⇐ an initially empty list
2: if L is horizontal then

3: upward⇐ an initially empty list
4: downward⇐ an initially empty list
5: xL ⇐ x-coordinate of L
6: for each corner Ci in C1, C2, . . . , Cl do

7: xi ⇐ x-coordinate of the vertical end point of Ci
8: if xi < xL then

9: add Ci to upward
10: else

11: add Ci to downward
12: end if
13: end for
14: sort corners in upward and downward by the y-coordinate of their intersection points
15: for each adjacent pairs of corners Ci and Cj in upward and dowward do

16: if Ci and Cj have distinct intersection points then

17: add (Ci,Cj) to connectedPairs
18: end if
19: end for
20: else if L is vertical then

21: le f t⇐ an initially empty list
22: right⇐ an initially empty list
23: yL ⇐ y-coordinate of L
24: for each corner Ci in C1, C2, . . . , Cl do

25: yi ⇐ y-coordinate of the horizontal end point of Ci
26: if yi < yL then

27: add Ci to le f t
28: else

29: add Ci to right
30: end if
31: end for
32: sort corners in le f t and right by the x-coordinate of their intersection points
33: for each adjacent pairs of corners Ci and Cj in le f t and right do

34: if Ci and Cj have distinct intersection points then

35: add (Ci,Cj) to connectedPairs
36: end if
37: end for
38: end if
39: return connectedPairs

The Partition and Sort method identifies connected corners in pairs. However, a blocked area
can have multiple connected corners. To find all connected corners, we propose using a union-find
data structure, which is a commonly-used data structure for keeping track of connected components
in graphs (Sedgewick and Wayne, 2011). A union-find data structure starts by initially assuming all
corners are disjoint and put into separate sets. Then, every time a pair of corners are found to be
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connected by the Partition and Sort method, union-find data structure unions their sets. By doing so
for all pairs of connected corners in a grid map, the union-find data structure will have all connected
corners put in the same set. Furthermore, all sets in the union-find data structure are disjoint.

Thirdly, in lines 11–18, Algorithm 2 creates polygon-shaped blocked areas by extracting their
perimeter’s joint points from every disjoint set of corners in the union-find data structure.

Finally, in lines 19–23, Algorithm 2 removes all blocked areas that do not satisfy our definition in
Section 4, which stated that all internal and entrance nodes must be non-obstacle nodes. For example,
in Figure 3, C22 and C34 form a blocked area. However, this blocked area is discarded because its
entrance intersects with the vertical line-segment obstacle (34,166)→(133,166)), i.e., it has obstacle nodes
in its entrance. Another example are corners C16, C14, C1 and C2, which form a blocked area that was
discarded because it has internal obstacle nodes.

The detailed description of how Algorithm 2 determines which blocked areas have obstacles in
their entrance or internal sets is not shown but can be explained as follows. As a result that a blocked
area’s entrance is a straight line, the sweep line algorithm is used to determine if there is any horizontal
or vertical line-segment obstacle that intersects with the entrance of a blocked area A. If so, A is
discarded. Additionally, we modify the sweep line algorithm so that it can be used to identify all
blocked areas with internal vertical or horizontal line-segment obstacles. Those blocked areas are
also discarded.

Lemma 3. The generated set of polygon-shaped blocked areas by Algorithm 2 satisfy the definition given in
Section 4, i.e., each polygon-shaped blocked area is a connected subgraph of adjacent non-obstacle nodes that is
bound by a continuous but non-enclosing chain of obstacle nodes.

Proof. As previously explained, in lines 1–18, Algorithm 2 identifies all non-enclosing polygon shapes
of obstacles that represent blocked areas in a map. Then, in lines 19–23, Algorithm 2 determines
which non-enclosing polygon shapes have obstacles in their entrance or internal sets and ensures
that they are removed, i.e., not recognized as blocked area. Thus, Algorithm 2 guarantees that each
polygon-shaped blocked area in the final output is a connected subgraph of adjacent non-obstacle
nodes that are bound by a continuous but non-enclosing chain of vertical and horizontal line-segment
obstacles (i.e., obstacle nodes).

We now present a complexity analysis of Algorithm 2’s execution time. For convenience, let us
assume, in a grid map, that TV is the number of vertical line-segment obstacles, TH is the number of
horizontal line-segment obstacles, R is the number of intersections, N is the number of corners and P
is the number of blocked areas. The following inequalities hold:

• R ≤ TV × TH
The maximum number of possible intersections occurs when every vertical line-segment obstacle
intersects with every horizontal line-segment obstacle.

• R ≤ N ≤ 4× R
Each intersection generates anywhere between one to four corners.

• P ≤ N
The maximum number of blocked areas occurs when each corner, alone, forms a triangular-shaped
blocked area.

Table 1 describes an execution time complexity analysis for Algorithm 2. Authors in [24] have
shown that, for a given Cartesian space with n line-segments and k intersections, the sweep line
algorithm is bound by n log2 n + k. This explains the upper bounds shown for lines 1 and 19–23 in
Table 1. In addition, note that we use the weighted union-find data structure (Sedgewick and Wayne,
2011), which guarantees that union operations are executed in logarithmic-time. Therefore, in lines
4–10, the most expensive operation inside the loop is the Partition and Sort method. Specifically, let
us assume that the number of corners in cornersublist is Nl , the Partition and Sort needs linear time
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(i.e., Nl) to partition the corners and linearithmic time (i.e., Nl log2 Nl) to sort the corners. Due to
having a loop, the overall execution of the Partition and Sort method is bound by N +N log2 N. Finally,
in lines 11-18, the most expensive operation in the loop is the sort operation in line 14. Hence, the
overall loop’s execution is bound by N log2 N.

By taking into account the above three inequalities, the entire execution of Algorithm 2 is bound
by (TV + TH + P) log2 (TV + TH + P) + N log2 N. This shows that the preprocessing time of Algorithm 2
has an efficient linearithmic growth.

By the end of its execution, Algorithm 2 will identify all polygon-shaped blocked areas in a grid
map. Each polygon-shaped blocked area is represented by its perimeter joint points, i.e., each blocked
area is stored in memory using pointers that point to the nodes located at these joints. Assuming Ji is
the number of joints in blocked area Ai, the total number of extra pointers needed to store all blocked

areas is J =
P
∑
i=1

Ji. In practice, even for large maps, J represents a small fraction compared to the total

number of nodes in a map. For example, in all of our benchmark set in Section 7, J is less than 5.4% of
the total number of nodes in the map.

Table 1. Complexity analysis of Algorithm 2’s execution time.

Lines Upper Bound Complexity Explanation

1 (TV + TH) log2 (TV + TH) + R Sweep Line Algorithm
2 N Extracting N corners from R intersections
3 N Initializing union-find with N corners

4 – 10 N +N log2 N The Partition and Sort method applied for a sub-list of corners inside a loop
11 – 18 N log2 N Sorting a sub-list of corners inside a loop
19 – 23 (TV + TH + P) log2 (TV + TH + P) + P Sweep Line Algorithm

6. BA-Tree

As previously mentioned, our approach uses pre-computed knowledge about blocked areas in
a map to prohibit a search algorithm from unnecessarily exploring nodes inside blocked areas. This
is achieved using the BA-tree, a binary tree data structure that stores blocked areas’ information.
During actual pathfinding, a search algorithm accesses the BA-tree to determine whether a particular
node is inside a blocked area. If so, this node is discarded. In below, we first describe a preprocessing
algorithm that constructs the BA-tree. Then, we describe an algorithm for accessing the BA-tree.

6.1. BA-Tree Construction

In computer science, spatial searching refers to the problem of locating objects in
multi-dimensional spaces. R-tree data structures [25] have been extensively used for handling
spatial searching in many contexts such as database applications and geographic information
system applications [26]. The basic idea of R-tree data structures is to recursively subdivide
a multi-dimensional space into subspaces such that nearby objects are grouped together into the
same subspace. Those subspaces are then organized into a tree data structure, which in turn is used
for servicing search queries. In this paper, we present the BA-tree, a variant of R-tree that is applied in
the context of 2D grid-based pathfinding. Specifically, the BA-tree is a balanced binary search tree that
is used for identifying which blocked area a given node belongs to in a 2D grid map.

For convenience, we first present the definition of the minimum bounding rectangle (or MBR)
(The same terminology was used in the literature of R-tree data structures), which is the smallest
rectangle that encapsulates a group of nearby blocked areas. Formally, we define MBR(A1, A2, . . . ,
Am) to be the smallest rectangle that bounds a group of m blocked areas: A1, A2, . . . , Am. An MBR is
represented by four coordinates: xupper, the coordinate of the upper-most row; xlower, the coordinate of
the lower-most row; yle f t, the coordinate of the left-most column; yright, the coordinate of the right-most
column. For example, in Figure 3, MBR(A10, A11, A13, A15) is represented by xupper = 1, xlower = 100,
yle f t = 133 and yright = 232.
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Given a grid map with m blocked areas, the BA-tree is constructed as follows. Initially, an MBR
that spans all m blocked areas is created. This MBR is then partitioned vertically into two MBRs such
that each nearby m

2 blocked areas are put in the same MBR. Each MBR is then partitioned horizontally
into two MBRs such that each nearby m

4 blocked areas are put in the same MBR. This is done recursively
while alternating between vertical partitioning and horizontal partitioning. The recursive partitioning
terminates when one or two blocked areas are reached. The resulting MBRs from the recursive
partitioning are organized to form the following binary tree data structure:

• Internal nodes represent MBRs while leaf nodes represent blocked areas.
• At level 0 of the tree, there is only one node, the root node, which represents the MBR that

encapsulates all m blocked areas.
• At level 1 of the tree, there are two nodes, which represent the two MBRs generated from applying

vertical partitioning to the MBR of the node at level 0.
• At level 2 of the tree, there are four nodes, which represent the four MBRs generated from

applying horizontal partitioning to the MBRs of the two nodes at level 1.
• In general, at level l of the tree, there are 2l nodes, which are generated from partitioning the 2l−1

nodes at level l − 1 of the tree. This partitioning is vertical if l is odd, while it is horizontal if l
is even.

Algorithm 4 presents pseudo code for the vertical and horizontal partitioning functions that
construct the BA-tree for a grid map. To simplify partitioning, both functions use sorting (line 11)
to ensure that nearby blocked areas are adjacent to each other. Both functions recursively call each
other (lines 12–13) to alternate the partitioning process. As an example, Figure 4 shows the BA-tree
constructed by Algorithm 4 for the maze in Figure 3. Note that MBRs in different internal nodes may
overlap. In below, we show few key properties of the BA-tree.

(a) MBRs. (b) BA-tree

Figure 4. The BA-tree constructed by Algorithm 4 for the maze in Figure 3: (a) All generated minimum
bounding rectangles (MBRs) are shown (different colors are used to help the reader distinguish each
MBR). MBRs are numbered by the order of their creation by Algorithm 4; (b) The BA-tree is shown.
Rectangle shapes are used for internal nodes to highlight the fact that they represent MBRs. In addition,
each rectangle have four numbers shown on each one of its sides to show its xupper, xlower, yle f t and
yright coordinates. Each leaf node may have only one or two blocked areas.

Lemma 4. Assuming m is the number of blocked areas in a grid map, the height of the BA-tree is ⌈log2 m⌉ − 1.
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Proof. In a binary tree, the height is equal to the maximum level of a node in the BA-tree.
Therefore, our goal is to show that all nodes in the BA-tree are located at levels ≤ ⌈log2 m⌉ − 1.

Without loss of generality, let us first assume the simple case when m is a power of 2, i.e., m = 2d,
where d is some integer. In this case, the levels of the BA-tree are: 0, 1, . . . , d − 1, where d − 1 is the
last level because the recursive partitioning terminates when number of blocked areas is 2 (line 1 in
Algorithm 4). Thus, the height of the tree is d − 1 = log2 m − 1.

In the general case, let h be the height of the BA-tree. Furthermore, let d be an integer such that
2d−1 < m ≤ 2d. First, h ≤ d − 1 because m ≤ 2d and d − 1 is the height of a tree with 2d nodes (as shown by
the simple case). Second, h > d − 2 because m > 2d−1 and d − 2 is the height of a tree with 2d−2 nodes.
Combining both inequalities, we can write d − 2 < h ≤ d − 1. As a result that h is an integer, the only
possible solution is h = d − 1. As a result that d = ⌈log2 m⌉ (generated from applying the logarithm
function to the inequality 2d−1 < m ≤ 2d), then h = ⌈log2 m⌉ − 1.

Algorithm 4 BA-tree Construction Functions
Input Set of m blocked areas: A1, A2, . . . , Am

Output Set of tree nodes representing the BA-tree

Function divideVertically (A1, A2, . . . , Am)

1: if m ≤ 2 then

2: e⇐ new leaf node
3: if m = 1 then

4: e.put(A1)
5: else

6: e.put(A1, A2)
7: end if
8: else

9: e⇐ new internal node
10: e.put(MBR(A1, A2, . . . , Am))
11: sort A1, A2, . . . , Am by their yright coordinate
12: e.left⇐ divideHorizontally (A1, A2, . . . , A⌈ m

2 ⌉)
13: e.right⇐ divideHorizontally (A⌈ m

2 ⌉+1, A⌈ m
2 ⌉+2, . . . , Am)

14: end if
15: return e

Function divideHorizontally (A1, A2, . . . , Am)

1: if m ≤ 2 then

2: e⇐ new leaf node
3: if m = 1 then

4: e.put(A1)
5: else

6: e.put(A1, A2)
7: end if
8: else

9: e⇐ new internal node
10: e.put(MBR(A1, A2, . . . , Am))
11: sort A1, A2, . . . , Am by their xlower coordinate
12: e.left⇐ divideVertically (A1, A2, . . . , A⌈ m

2 ⌉)
13: e.right⇐ divideVertically (A⌈ m

2 ⌉+1, A⌈ m
2 ⌉+2, . . . , Am)

14: end if
15: return e

Lemma 5. The BA-tree is a balanced binary tree.
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Proof. Let m be the number of blocked areas in a grid map and h be the height of the BA-tree. To show
that the BA-tree is balanced, we need to show that each leaf node in the BA-tree is located at either
level h − 1 or level h.

Without loss of generality, let us first assume the simple case when m is a power of 2, i.e., m = 2d,
where d is some integer. In this case, it is easy to prove that the BA-tree is balanced because Algorithm 4
always partitions an MBR of an internal node e such that the number of blocked areas in the left subtree
of e is equal to the number of blocked areas in the right subtree of e (lines 12–13). Furthermore, in this
case, all leaf nodes are located exactly at level d − 1 (because m is a power of 2 and the recursive
partitioning terminates when the number of blocked areas is 2).

In the general case, let d be an integer such that 2d−1 < m ≤ 2d. As a result of m > 2d−1, there are
no leaf nodes that can be located at a level that is smaller than d − 2 (as shown by the simple case).
Furthermore, because m ≤ 2d, the maximum level in the BA-tree is d− 1 (Lemma 4). Thus, all leaf nodes
can only be located at levels d − 2 and d − 1. As a result of h = d − 1 (Lemma 4), we can also infer that all
leaf nodes are located at levels h − 1 and h.

Lemma 6. Assuming m is the number of blocked areas in a grid map, the number of nodes in the BA-tree is
bound by 2×m − 1.

Proof. As a result that the number of nodes in level i is at most 2i, the maximum number of nodes in

the BA-tree is bound by
⌈log2 m⌉−1

∑
i=0

2i. This is a geometric series that is equal to 2⌈log2 m⌉ − 1. ⌈log2 m⌉ <

log2 m + 1, 2⌈log2 m⌉ < 2log2 m+1 = 2×m. Thus, 2⌈log2 m⌉ − 1 < 2×m − 1.

Corollary 1. Assuming m is the number of blocked areas in a grid map, the number of internal nodes in the
BA-tree is bound by m − 1 and the number of leaf nodes is bound by m.

6.2. BA-Tree Analysis

We now present a complexity analysis of the execution time of Algorithm 4. Without loss of
generality, let us assume the number of blocked areas m is a power of 2 and the height of the BA-tree
is log2 m. In Algorithm 4, it is quite straightforward to observe that the sort operation in line 11
is the longest operation, i.e., execution time is bound by sorting time (which has the upper bound
complexity of n log2 n, where n is the number of integers). At each level j in the BA-tree, there are
2j nodes, i.e., subproblems. Each subproblem’s execution time is bound by sorting m

2j blocked areas.
Therefore, the amount of work done by all nodes in level j is 2j × m

2j log2
m
2j = m log2

m
2j ≤ m log2 m.

As a result that the height of the tree is log2 m − 1 (Lemma 4), the amount of work done to construct all
levels in the BA-tree is bound by m log2

2 m. In general, the execution time is bound by m⌈log2 m⌉2.
We now present a memory consumption analysis for the BA-tree. As shown by Corollary 1,

the number of internal nodes is bound by m − 1, where m is the number of blocked areas.
Each internal node stores four integers (the coordinates of its MBR) and two pointers (le f t and right).
Assuming pointers and integers require the same amount of memory, all internal nodes need to store
no more than 6 × (m− 1) integers. In other words, the needed memory for internal nodes in the BA-tree
is bound by the number of blocked areas in a grid map. On the other hand, leaf nodes store the blocked
areas: A1, A2, . . . , Am. As previously mentioned in Section 5, the amount of memory needed to store
blocked area’s information, denoted by J, is bound by the total number of joint points in blocked areas,
which is, in practice, equal to a small fraction of the number of nodes in a grid map.

6.3. BA-Tree Access

Algorithm 5 presents pseudo code for a recursive search function that identifies which blocked
area A in the BA-tree contains a particular node q in a grid map. Starting from the root node,
the search function searches all the nodes in the BA-tree in a depth-first fashion, however, with a key
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optimization: when visiting an internal node e, if q ∉ MBR(e), then the search for the descendent nodes
of e is terminated (lines 9–11). This is because, if q ∉ MBR(e), it is predetermined that e ∉ any of the
descendent blocked areas of e. In the case q ∈ MBR(e), the function continues the search in the left
path of e (line 12). If a blocked area was not found in the left path (line 13), the function then searches
the right path of e (line 14). Determining whether q ∈ MBR(e) or not is straightforward: q ∈ MBR(e) if
and only if xupper ≤ q.x ≤ xlower and yle f t ≤ q.y ≤ yright. In the case e is a leaf node (lines 1–8), the search
function simply checks if q is contained by any of the blocked areas in e and terminates the search if
such blocked area is found. Note that the maximum number of blocked areas in a leaf node is two.
To determine if a polygon-shaped blocked area A contains a node q, we use the winding number
algorithm [27], a widely-used method in computational geometry for determining if a point is inside
a polygon. Figure 5 shows examples on two search queries for the BA-tree in Figure 4.

Algorithm 5 BA-tree Access Function
Input Query node q in a grid map and node e in the BA-tree

Output Blocked area A to which q belongs to, or null if no such blocked area exists.

Function searchBAtree (q, e)

1: if e is a leaf then

2: for each blocked area A in e do

3: if e ∈ internal(A) then

4: return A
5: end if
6: end for
7: return null
8: end if
9: if q ∉ MBR(e) then

10: return null
11: end if
12: A⇐ searchBAtree (q, e.left)
13: if A = null then

14: A⇐ searchBAtree (q, e.right)
15: end if
16: return A

(a) q =(20,120); A8 is returned. (b) q =(180,200); A17 is returned.

Figure 5. Two search examples using the BA-tree in Figure 4. Searched nodes are shown in grey.
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The worst-case scenario in Algorithm 5 occurs when a search function visits all the nodes
in the BA-tree, which is bound by 2 × m − 1 (Lemma 6), where m is the number of blocked areas.
However, this is rarely needed because, in real maps, blocked areas are often scattered such that they
are isolated from each other. Thus, in the common case, the search function only needs to check a
subset of paths in the BA-tree. As a result that the height of the BA-tree is ⌈log2 m⌉ − 1 (Lemma 4), the
average-case execution time of Algorithm 5 is τ × ⌈log2 m⌉, where τ is some constant.

6.4. BA-Tree Alternatives

We now describe two alternative schemes to store blocked areas’ knowledge and discuss their
differences to the BA-tree. The first alternative scheme is to assign a unique numeric ID to each blocked
area, and then use an extra grid, in which each node stores the ID of the corresponding blocked
area, or an invalid ID if it is outside all blocked areas. Such a scheme would require O(1) access
time and O(n) space, where n is the total number of nodes in a grid map. By contrast, the BA-tree is
more memory-efficient because it stores information about only joint points, which represents a small
fraction of the total number of nodes in a gird map. Furthermore, the BA-tree has a low access time
overhead, as discussed earlier.

Another scheme is to use trapezoidal decomposition [28], i.e., divide blocked areas into a set of
trapezoids such that each trapezoid is the portion of the sweep line between two adjacent corners.
Trapezoids are neighbors if they are neighbors along the sweep line or if one appears when the other
disappears at a sweep event. The number of trapezoids is bound by 3 ×n, where n is the total number
of line-segment obstacles in a grid map [28]. Identifying which trapezoid contains a particular node
is a grid map is O(1). More specifically, the first node requires O(n) due to performing linear search.
Afterward, identifying adjacent nodes requires constant time because they are found in adjacent
trapezoids. The trapezoidal decomposition scheme provides better access time guarantees than the
BA-tree. However, it requires more memory to store the trapezoids’ information.

7. Experimental Results

We evaluate the performance by showing the reduction in execution time for both A⋆ and WA⋆

algorithms after combining the knowledge of blocked areas in their search. We perform pathfinding
for sixty maps of mazes and rooms taken from the public pathfinding benchmarks library [6].
The modified algorithms are denoted by A⋆ + BA and WA⋆ + BA. All four search algorithms: A⋆,
WA⋆, A⋆ + BA and WA⋆ + BA are implemented and compiled using Java SE 8 and all experiments
were executed on a Red Hat Enterprise Linux 6 machine with a 2.2 GHz Intel Xeon-E5 processor and a
64 GB DDR3 memory with a speed of 1333 MHz.

Below, we describe, in detail, the implementation of the modified search algorithms and the tested
benchmark set. Then, we present the evaluation results.

7.1. Search Implementation

Algorithm 6 shows the pseudo code for the implementation of A⋆ + BA algorithm. Compared
to the standard implementation of A⋆ (shown in Algorithm 1), Algorithm 6 has two modifications.
First, before adding node q into the openlist, the algorithm accesses the BA-tree (in line 14) using the
search function presented in Algorithm 5 to determine the blocked area A where q is located. Second,
in line 15–17, the algorithm inserts q into the openlist (i.e., included in the search) only if one of the
following three conditions are satisfied:

1. q is not inside a blocked area.
2. q is inside a blocked area; however, this blocked area also contains the goal node g. This condition

ensures that the search never ignores a blocked area where the goal node is located.
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3. q is inside a blocked area; however, this blocked area also contains the parent node of q.
This condition is needed in the case that the source node s happens to be inside a blocked
area. If so, this blocked area is included in the search.

The aforementioned conditions are checked in the order shown, i.e., condition 2 is only checked if
condition 1 is not satisfied and condition 3 is only checked if both conditions 1 and 2 are not satisfied.
If none of the three conditions is satisfied, then q is not inserted into the open list and therefore
discarded from the search space. WA⋆ and WA⋆ + BA have the same implementations as A⋆ and
A⋆ + BA, respectively, except that they calculate f score(q) = gscore(q) + ε × hscore(q), where ε > 1 is a
real number that controls the inflation of the heuristic function hscore(q). In this paper, we set ε = 3.0.

Algorithm 6 A⋆ + BA pathfinding
Input: Grid map G with a source node s and a goal node g

Output: The shortest path between s and g in G

1: open⇐ empty list
2: closed⇐ empty list
3: BAroot⇐ the root node of the BA-tree
4: add s into open with gscore(s)= 0, f score(s) = hscore(s), parent(s)= null
5: while open is not empty do

6: n⇐ get and remove node with minimum f score from open
7: if n = g then

8: return path from s to g
9: end if

10: add n into closed
11: for each node q ∈ adjacent(n) and q ∉ closed do

12: gscore′ ⇐ gscore(n) + c(q,n)
13: if q ∉ open then

14: A⇐ searchBAtree (q, BAroot)
15: if A = null or g ∈ A or A = searchBAtree (parent(q), BAroot) then

16: add q into open with gscore(q) = gscore′, f score(q) = gscore(q) + hscore(q), parent(q)= n
17: end if
18: else if gscore′ < gscore(q) then

19: update q in open with gscore(q) = gscore′, f score(q) = gscore(q) + hscore(q), parent(q)= n
20: end if
21: end for
22: end while
23: return f ailure

An important note is that a tie may occur when extracting the node with the minimum f -score
in the open list, i.e., there might be multiple nodes that have the same minimum f -score (line 6). In
such a case, ties are broken in favor of the node with the largest g-score. Such tie-breaking strategy
is common in the literature [29,30]. We use this strategy in the implementation of all four tested
algorithms.

In all four algorithms, the open list is implemented using a binary min heap data structure,
while the closed list is implemented using a hash table data structure that uses chaining to
resolve collisions.

7.2. Benchmark Set

Thirty grid maps of mazes and thirty grid maps of rooms were selected form the public
pathfinding benchmarks library to evaluate performance in this paper. A maze’s map consists of
corridors with fixed sizes that are randomly scattered. A room’s map consists of squares with fixed
sizes that are uniformly distributed with randomly generated doors between every two adjacent rooms
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(squares). All sixty maps of mazes and rooms have 512 × 512 resolution, i.e., the number of nodes in
each row and in each column is 512.

The thirty mazes are divided into three types, each of which has ten maps, which are: maze-8,
maze-16 and maze-32, where 8, 16 and 32 are the sizes of the corridors in each type, respectively.
Similarly, the thirty rooms are divided into three types, each of which has ten maps, which are: room-8,
room-16 and room-32, where 8, 16 and 32 are the sizes of the squares in each type, respectively.
The pathfinding benchmarks library also provides, for each grid map, hundreds of test cases with
randomly generated source and goal points (called scenarios) for performing pathfinding. We use all
of these scenarios in our evaluation (however, we discard invalid scenarios where either the source or
the goal node is an obstacle).

Table 2 summarizes the evaluated benchmarks set. In all sixty maps, obstacles are represented as
vertical and horizontal line-segments. Therefore, in Table 2, we also include information about the
number of horizontal and vertical line-segment obstacles, as well as the number of intersections and
corners in every map. All of these measurements are relevant to the blocked area detection algorithm
presented in Section 5.

Table 2. The benchmark set used for performance evaluation in this paper. S is the number of scenarios
available from the pathfinding benchmarks library. B% is the percentage of obstacle nodes in the
map. H is the number of horizontal line-segment obstacles. V is the number of vertical line-segment
obstacles. R is the number of intersections between horizontal and vertical line-segment obstacles. N is
the number of corners generated from these intersections.

Map S B% H V R N Map S B% H V R N

maze-8-0 5433 11% 817 804 1586 2315 room-8-0 1830 21% 3318 3332 3967 12,560
maze-8-1 8516 11% 837 779 1587 2334 room-8-1 1805 21% 3346 3340 3960 12,516
maze-8-2 9148 11% 818 803 1591 2370 room-8-2 1785 21% 3301 3314 3963 12,532
maze-8-3 9282 11% 847 789 1607 2369 room-8-3 1786 21% 3280 3329 3962 12,539
maze-8-4 10,796 11% 808 780 1553 2323 room-8-4 1840 21% 3344 3269 3956 12,555
maze-8-5 9304 11% 793 795 1552 2286 room-8-5 1800 21% 3341 3306 3963 12,564
maze-8-6 7087 11% 838 814 1619 2408 room-8-6 1811 21% 3309 3345 3951 12,562
maze-8-7 9360 11% 817 788 1575 2368 room-8-7 1857 21% 3312 3385 3972 12,528
maze-8-8 6667 11% 824 829 1621 2368 room-8-8 1838 21% 3329 3300 3961 12,519
maze-8-9 7486 11% 829 796 1592 2341 room-8-9 1787 21% 3312 3293 3964 12,588

maze-16-0 8412 6% 245 232 463 678 room-16-0 1833 12% 872 881 1015 3510
maze-16-1 7394 6% 248 237 468 689 room-16-1 1854 12% 867 876 1014 3527
maze-16-2 6231 6% 240 224 442 664 room-16-2 1898 12% 900 898 1012 3499
maze-16-3 8827 6% 252 229 465 680 room-16-3 1896 12% 891 897 1014 3507
maze-16-4 8195 6% 243 228 458 688 room-16-4 1852 12% 879 866 1016 3518
maze-16-5 6373 6% 242 228 456 677 room-16-5 1861 12% 905 901 1013 3500
maze-16-6 8723 6% 260 237 482 697 room-16-6 1866 12% 878 884 1017 3509
maze-16-7 7965 6% 241 229 453 678 room-16-7 1875 12% 894 887 1012 3508
maze-16-8 10,494 6% 241 235 461 672 room-16-8 1896 12% 906 870 1010 3503
maze-16-9 6723 6% 231 246 463 682 room-16-9 1821 12% 1005 954 1011 3489
maze-32-0 5603 3% 70 62 122 173 room-32-0 1844 8% 391 341 256 915
maze-32-1 4787 3% 65 53 110 165 room-32-1 1893 6% 248 252 256 929
maze-32-2 6938 3% 66 61 118 177 room-32-2 2015 6% 220 214 255 931
maze-32-3 7282 3% 65 57 113 176 room-32-3 1928 7% 313 313 256 922
maze-32-4 5227 3% 65 60 117 167 room-32-4 1665 10% 365 418 248 897
maze-32-5 5744 3% 67 65 121 177 room-32-5 1844 7% 285 277 254 929
maze-32-6 5519 3% 71 66 129 181 room-32-6 1896 6% 257 244 256 927
maze-32-7 4533 3% 63 59 114 164 room-32-7 1888 7% 311 311 255 923
maze-32-8 6098 3% 65 61 117 174 room-32-8 1959 6% 225 222 256 933
maze-32-9 7243 3% 57 54 104 154 room-32-9 2005 6% 247 255 256 929

7.3. Preprocessing Evaluation

Prior to performing pathfinding, in all sixty maps, a preprocessing step is executed to identify all
blocked areas (using Algorithm 2), and then construct the BA-tree (using Algorithm 4). In some maps,
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some of the identified triangular-shaped blocked areas are small, i.e., they have one side with short
length. As an optimization, such blocked areas were discarded because they are not useful during
actual pathfinding. In all maps, preprocessing time was less than 300 milliseconds.

Table 3 presents an evaluation of the preprocessing step by showing the following measurements:
(i) the number of blocked areas (BA); (ii) the percentage of nodes covered by those blocked areas
(insideBA%); (iii) the percentage of nodes stored in memory due to blocked areas (joints%); (iv) the size
of the BA-tree, i.e., the total number of tree nodes used to construct the BA-tree (BASize); and (v) the
worst-case number of searched nodes when accessing the BA-tree (Search).

In a grid map, the percentage of nodes covered by blocked areas represents an upper bound
on the number of nodes that can be eliminated during pathfinding. On average, the percentages of
covered nodes in maze-8, maze-16 and maze-32 are 35%, 37% and 38%, respectively. On average,
the percentages of covered nodes in room-8, room-16 and room-32 are 25%, 41% and 52%, respectively.

As was previously mentioned in Section 5, blocked areas are stored in memory using pointers
that point to nodes located at the joints of blocked areas. Table 3 shows that, in the worst-case, the total
number of joints in blocked areas is less than 1.3% of the total number of nodes in mazes and is less
than 5.4% in rooms. This demonstrates the memory efficiency of our approach.

While accessing the BA-tree is not part of preprocessing, in Table 3, we also measure the worst-case
scenario of accessing the BA-tree. Specifically, we use the search function in Algorithm 5 to access the
BA-tree using every node in a grid map as a search query, and then we report in Table 3 the worst-case
number of how many nodes in the BA-tree were searched. In all sixty grid maps, the worst-case search
needed was no more than 6× log2 n nodes in the BA-tree, where n is the total number of nodes in the
BA-tree. This shows that, in practice, the access time of the BA-tree is logarithmic.

Table 3. Preprocessing evaluation for all sixty benchmarks in Table 2. BA is the number of blocked
areas. insideBA% is the percentage of nodes covered by blocked areas. joints% is the percentage of
all nodes stored in blocked areas. BASize is the total number of nodes in the BA-tree. Search is the
worst-case number of searched nodes when accessing the BA-tree using Algorithm 5.

Map BA insideBA% joints% BASize Search Map BA insideBA% joints% BASize Search

maze-8-0 872 35.2% 1.3% 1023 45 room-8-0 3932 25.2% 5.4% 4095 63
maze-8-1 896 35.4% 1.3% 1023 51 room-8-1 3889 24.6% 5.3% 4095 61
maze-8-2 923 35.6% 1.3% 1023 51 room-8-2 3881 24.3% 5.3% 4095 61
maze-8-3 889 34.3% 1.3% 1023 49 room-8-3 3906 25.0% 5.3% 4095 59
maze-8-4 902 35.8% 1.3% 1023 47 room-8-4 3833 24.6% 5.2% 4095 57
maze-8-5 828 33.2% 1.2% 1023 55 room-8-5 3931 25.5% 5.4% 4095 59
maze-8-6 960 35.7% 1.3% 1023 53 room-8-6 3862 25.0% 5.3% 4095 55
maze-8-7 897 36.8% 1.3% 1023 49 room-8-7 3847 24.9% 5.3% 4095 57
maze-8-8 933 35.6% 1.3% 1023 53 room-8-8 3870 24.0% 5.3% 4095 59
maze-8-9 903 35.3% 1.3% 1023 51 room-8-9 3846 25.3% 5.3% 4095 71

maze-16-0 256 37.5% 0.4% 255 41 room-16-0 2007 40.4% 2.5% 2047 59
maze-16-1 261 37.0% 0.4% 265 41 room-16-1 1954 42.8% 2.5% 2047 61
maze-16-2 262 39.3% 0.4% 267 41 room-16-2 1967 40.2% 2.5% 2047 55
maze-16-3 254 38.9% 0.4% 255 37 room-16-3 1952 40.5% 2.5% 2047 53
maze-16-4 249 33.9% 0.4% 255 39 room-16-4 1968 42.2% 2.5% 2047 51
maze-16-5 230 34.6% 0.3% 255 37 room-16-5 1961 40.8% 2.5% 2047 61
maze-16-6 280 38.1% 0.4% 303 37 room-16-6 1955 41.7% 2.5% 2047 53
maze-16-7 253 37.3% 0.4% 255 37 room-16-7 1991 40.3% 2.5% 2047 53
maze-16-8 252 35.8% 0.4% 255 45 room-16-8 1913 41.5% 2.5% 2047 51
maze-16-9 248 38.3% 0.4% 255 37 room-16-9 1975 40.4% 2.5% 2047 57
maze-32-0 72 37.5% 0.1% 79 33 room-32-0 642 49.0% 0.8% 771 47
maze-32-1 65 40.7% 0.1% 65 29 room-32-1 625 51.2% 0.8% 737 45
maze-32-2 70 39.0% 0.1% 75 25 room-32-2 624 52.2% 0.8% 735 43
maze-32-3 68 32.3% 0.1% 71 31 room-32-3 637 51.1% 0.8% 761 47
maze-32-4 63 34.3% 0.1% 63 25 room-32-4 618 52.4% 0.8% 723 51
maze-32-5 74 34.0% 0.1% 83 27 room-32-5 638 51.5% 0.8% 763 43
maze-32-6 85 44.7% 0.1% 105 33 room-32-6 631 51.9% 0.8% 749 45
maze-32-7 68 38.4% 0.1% 71 23 room-32-7 629 52.8% 0.8% 745 47
maze-32-8 69 45.0% 0.1% 73 25 room-32-8 632 50.7% 0.8% 751 45
maze-32-9 56 36.1% 0.1% 63 31 room-32-9 628 52.0% 0.8% 743 47
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7.4. Pathfinding Evaluation

We demonstrate the impact of the blocked areas’ knowledge in pathfinding using two
comparisons: (i) A⋆ + BA versus A⋆; and (ii) WA⋆ + BA versus WA⋆. We do so by computing
the relative execution time, which is a intuitive measurement of the reduction in execution time.
For example, let us assume that the execution time of A⋆ when performing pathfinding for a particular
map is 500 milliseconds, while the execution time for A⋆ + BA when performing the same pathfinding
is 300 milliseconds. In this case, the relative execution time is 300/500 = 0.6, which demonstrates
that the execution time of A⋆ was reduced by 40% when using the blocked areas’ knowledge in its
pathfinding. We also evaluate the reduction in search space, i.e., the reduction in the number of visited
nodes during pathfinding, by computing the relative search space.

As shown by Table 2, our benchmarks set consists of six types of maps, each of which has
ten instances. Furthermore, each map instance has hundreds of scenarios. Therefore, we measure
performance for each one of the six map types by computing the average relative execution time and the
average relative search space for all ten instances combined. Specifically, we use the following formula:

average relative execution time =

9
∑
i=0

Si
∑
j=1

(A⋆+BA)i,j
(A⋆)i,j

9
∑
i=0

Si

where Si is the number of scenarios in map instance i; (A⋆ + BA)i,j is the execution time when
performing pathfinding using A⋆ + BA for scenario j in map instance i; and (A⋆)i,j is the execution
time when performing pathfinding using A⋆ for scenario j in map instance i. A similar formula is used
for computing the relative search space. Furthermore, the average relative execution time and search
space of WA⋆ + BA over WA⋆ are computed in the same manner.

Table 4 shows the average relative execution time and search space for the two aforementioned
comparisons. In all three types of mazes, on average, the search spaces of both A⋆ and WA⋆ were
reduced by 33%, which translated into a reduction in execution time by 28%, on average. In room maps,
the search spaces of A⋆ were reduced by 22%, 36% and 45%, on average, for room-8, room-16 and
room-32, respectively. As a result, the execution times were reduced by 15%, 33% and 44%, respectively.
In the case of WA⋆, on average, the search spaces for room-8, room-16 and room-32 were reduced
by 18%, 34% and 47%, respectively. This caused the execution time to be reduced by 16%, 30% and
43%, respectively.

Table 4. Average relative execution time and search space of A⋆ +BA with respect to A⋆ and WA⋆ +BA
with respect to WA⋆.

Maze A⋆ + BA w.r.t A⋆ WA⋆ w.r.t WA⋆ + BA

Execution Time Search Space Execution Time Search Space

maze-8 0.74 0.66 0.75 0.67
maze-16 0.70 0.66 0.71 0.67
maze-32 0.71 0.68 0.70 0.67
room-8 0.85 0.78 0.84 0.82

room-16 0.67 0.64 0.70 0.66
room-32 0.56 0.55 0.57 0.53

The performance results in Table 4 can be explained by insideBA% in Table 3, which is the
percentage of how many nodes are covered by blocked areas in a map. For example, all three types of
mazes have approximately the same coverage percentage (around 37%, on average). Thus, they have
a similar performance in Table 4. On the other hand, room maps have different insideBA% values,
which explains their varying performance. For example, room-32, where the coverage percentage is
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the highest (52%, on average), the execution time was reduced by 43%, on average. However, in the
case of room-8, where the coverage is the lowest (25%, on average), the execution time was reduced by
16%, on average. Appendix A shows absolute execution times for all maps.

The performance results in Table 4 demonstrates that using blocked areas’ knowledge during
pathfinding has significant impact on reducing search time in both A⋆ and WA⋆. However, Table 4
hides some of the interesting details about how the benefit of blocked areas’ knowledge compares
between short-distance pathfinding versus long-distance pathfinding. For example, in mazes, there are
thousands of pathfinding scenarios available from the pathfinding benchmarks library, in which some
scenarios have short paths (i.e., path cost is less than 100), whereas some scenarios have long paths
with cost up to 2000. Figure 6 demonstrates the impact of blocked areas’ knowledge on different path
costs in mazes. Specifically, in Figure 6, we divide all scenarios into ten groups, where scenarios in the
first group have path costs from 0 to 200, scenarios in the second group have path costs from 200 to
400, scenarios in the third group have path costs from 400 to 600 and so on. Similarly, Figure 7 depicts
the impact of blocked areas’ knowledge on different path costs in rooms. Note that, unlike mazes,
scenarios in room maps have path costs that are between 0 and 800. Therefore, these scenarios are
divided into ten groups, where scenarios in the first group have path costs between 0 and 80, scenarios
in the second group have path costs between 80 and 160, scenarios in the third group have path costs
between 160 and 240 and so on.

(a) A⋆ versus A⋆ + BA. (b) WA⋆ versus WA⋆ + BA.

Figure 6. Relative execution times across different path costs in mazes.

Figure 6 shows that, in all three types of mazes, blocked area’s knowledge has significant but
different performance impacts on both short-distance and long-distance pathfinding. Specifically,
in A⋆, the execution time is reduced by 10% for low path costs, and then this reduction steadily
improves as the path cost increases, to reach around 35%, for high path costs. In WA⋆, the reduction in
execution time varies from 18% in low path costs to 34% in high path costs.

Figure 7 shows that, in all three types of rooms, the impact of blocked area’s knowledge
on performance is mostly significant in both short-distance and long-distance pathfinding.
However, this impact differs across different room types. In A⋆, in the case of room-32, the reduction
in execution time starts from a moderate 3%, and then sharply improves as the path cost increases
to reach 57% for paths with high costs. In room-16, the reduction in execution time starts from 3%
in low path costs and quickly increases to reach 43% in high path costs. In room-8, the reduction in
execution time gradually increases from 5% in low path costs to 19% in high path costs. In WA⋆, the
performance behavior is less deterministic, i.e., in some cases the reduction in execution time decreases
as the path cost increases. However, this nondeterminism varies in degree between different types
of rooms. In room-32, the reduction in execution time starts form 10% for low path costs and then
sharply improves to reach 58% in high path costs (with the exception of one case). In room-16, the
reduction in execution time varies between 23% and 36% while having less consistent behavior. In
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room-8, the reduction in execution time varies between 6% and 30% while also having no consistent
trend in performance.

We summarize the results of our evaluation of pathfinding in mazes and rooms as follows. In all
three types of mazes, in general, the execution times of both A⋆ and WA⋆ were reduced by 10–35%
(the average reduction is 28%). In all three types of rooms, in general, the execution times of both A⋆

and WA⋆ were reduced by 5–57% (the average reduction is 30%). Unlike mazes, different room map
types have significantly different degrees of how many nodes are covered by blocked areas, which led
to having different performance behaviors.

Finally, it is worthwhile to mention that eliminating nodes inside blocked areas during pathfinding
often led A⋆ + BA to find a different path from the one found by A⋆. However, in all maps and in
all scenarios, both paths had the same optimal cost (as was also proven in Section 4). In the case of
WA⋆ + BA and WA⋆, both algorithms found sub-optimal paths. In most cases, the two paths obtained
by both algorithms have the same cost. However, interestingly, in some cases, we observed that
WA⋆ + BA found paths with lower costs than WA⋆. This is because the exploration of blocked areas
led WA⋆ in some cases to find a longer path. On average, WA⋆ + BA reduces the path cost of WA⋆

by 2%.

(a) A⋆ versus A⋆ + BA. (b) WA⋆ versus WA⋆ + BA.

Figure 7. Relative execution times across different path costs in rooms.

8. Conclusions

This paper introduced the concept of blocked areas, which are sub-regions in grid maps where
there is no viable path due to obstacles. In the context of grid-based optimal or sub-optimal pathfinding,
the presence of blocked areas causes heuristic search algorithms to frequently explore irrelevant paths,
significantly increasing search time in the process. To decrease search time, this paper presented
a preprocessing approach that uses computational geometry techniques to identify blocked areas with
polygon shapes in a grid map and store information about them into a memory-efficient balanced
binary search tree. During actual pathfinding, the stored knowledge about blocked areas is used to
avoid exploring paths inside blocked areas, which in turn reduces search time.

We evaluated the performance by comparing the execution times of A⋆ and WA⋆ before and after
using blocked areas’ knowledge in pathfinding for a publicly available benchmark set that includes
sixty maps of mazes and rooms. Our experimental results have shown that the execution times
for both A⋆ and WA⋆ have been substantially decreased while preserving the optimality of A⋆ and
the sub-optimality of WA⋆. This is achieved for both short-distance and long-distance pathfinding.
Furthermore, we calculated the worst-case bounds for the memory needed to store blocked areas’
information during preprocessing and the access time needed to retrieve this information during
pathfinding and showed that those bounds are efficient.
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Utilizing blocked areas’ knowledge during pathfinding is applicable beyond the A⋆ and WA⋆

algorithms. In future work, we will study the impact of combining blocked areas’ knowledge with
other search algorithms in the literature.
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Appendix A

Table A1. Absolute execution times (in seconds) of A⋆, A⋆ + BA, WA⋆ and WA⋆ + BA algorithms.
Each map has hundreds of scenarios. Execution time is calculated for all scenarios combined.

Map A⋆ A⋆ + BA WA⋆ WA⋆ + BA Map A⋆ A⋆ + BA WA⋆ WA⋆ + BA

maze-8-0 606.13 435.43 395.50 281.77 room-8-0 88.88 72.48 4.14 3.39
maze-8-1 1177.48 839.20 1022.24 713.94 room-8-1 89.64 72.06 3.99 3.32
maze-8-2 1253.47 911.12 1175.24 828.57 room-8-2 85.88 70.93 4.04 3.39
maze-8-3 1242.60 892.60 1086.52 777.95 room-8-3 90.31 71.48 4.16 3.38
maze-8-4 1486.42 1061.93 1340.09 952.22 room-8-4 92.72 75.09 4.16 3.37
maze-8-5 1244.26 918.89 1078.94 815.13 room-8-5 91.68 72.42 4.19 3.39
maze-8-6 952.46 691.29 758.50 552.37 room-8-6 89.03 72.56 4.19 3.41
maze-8-7 1233.75 860.23 1121.58 776.59 room-8-7 94.31 75.26 4.20 3.46
maze-8-8 860.89 619.11 699.58 492.72 room-8-8 91.16 74.90 4.16 3.46
maze-8-9 989.16 715.01 773.00 557.57 room-8-9 85.47 69.33 4.08 3.33

maze-16-0 1329.34 889.86 1288.10 848.99 room-16-0 112.66 66.34 6.39 4.41
maze-16-1 1050.80 703.85 923.91 605.18 room-16-1 115.88 66.19 7.86 5.02
maze-16-2 915.98 557.95 745.92 464.16 room-16-2 125.75 75.78 7.54 4.89
maze-16-3 1436.52 921.47 1363.56 885.25 room-16-3 126.38 76.14 7.36 5.00
maze-16-4 1279.73 882.36 1153.61 805.72 room-16-4 113.90 66.99 7.09 4.68
maze-16-5 856.22 644.30 624.59 456.29 room-16-5 122.85 70.29 7.20 4.89
maze-16-6 1498.60 919.84 1318.68 881.00 room-16-6 123.06 70.12 7.29 4.74
maze-16-7 1252.22 847.61 1082.52 724.38 room-16-7 122.21 73.10 7.49 5.01
maze-16-8 1678.08 1138.18 1667.93 1130.87 room-16-8 132.22 79.57 8.31 5.46
maze-16-9 1013.88 666.51 873.78 579.84 room-16-9 113.59 67.47 7.07 4.44
maze-32-0 866.32 603.74 747.96 527.58 room-32-0 133.71 62.46 11.64 5.67
maze-32-1 702.57 429.94 563.21 337.46 room-32-1 136.56 59.24 15.04 7.09
maze-32-2 1156.95 831.74 1054.09 780.24 room-32-2 177.67 80.87 19.35 9.54
maze-32-3 1363.69 920.05 1303.14 861.31 room-32-3 156.62 74.05 16.29 7.98
maze-32-4 810.20 552.03 665.51 458.38 room-32-4 102.25 50.50 10.83 5.58
maze-32-5 900.76 602.67 777.57 568.65 room-32-5 136.18 59.62 13.38 6.50
maze-32-6 893.30 571.00 755.84 485.97 room-32-6 146.73 67.39 14.61 6.95
maze-32-7 651.99 443.38 484.97 321.80 room-32-7 145.30 68.19 15.31 7.29
maze-32-8 1109.12 639.24 929.74 606.87 room-32-8 159.24 71.05 19.55 9.27
maze-32-9 1265.99 834.11 1143.14 734.76 room-32-9 179.26 79.54 19.58 8.60
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