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Abstract: We review a series of unitarization techniques that have been used during the last decades,
many of them in connection with the advent and development of current algebra and later of
Chiral Perturbation Theory. Several methods are discussed like the generalized effective-range
expansion, K-matrix approach, Inverse Amplitude Method, Padé approximants and the N/D method.
More details are given for the latter though. We also consider how to implement them in order to
correct by final-state interactions. In connection with this some other methods are also introduced
like the expansion of the inverse of the form factor, the Omnés solution, generalization to coupled
channels and the Khuri-Treiman formalism, among others.

Keywords: unitarity; scattering; partial-wave amplitudes; final-state interactions; analyticity;
S-matrix theory; spectroscopy; N/D method; left-hand cut

1. Introduction

The effective chiral Lagrangian formalism has become a well-established methodology to study
the interactions of the Goldstone bosons with or without other particle species, like, for example,
pions and nucleons, respectively [1,2]. The most significant example is Chiral Perturbation Theory
(ChPT) [3–7], which is the low-energy effective field theory (EFT) of Quantum Chromodynamics
(QCD). For introduction and reviews, see for example, References [8–10]. The use of perturbative
calculations within ChPT as input for non-perturbative S-matrix based methods is a general procedure
several decades old. Due to the fact that ChPT results are perturbative, given in terms of an expansion
organized in increasing powers of the external four-momenta and light pseudoscalar masses, unitarity
is only satisfied in the perturbative sense, similarly as in a standard Born series (perturbative unitarity
is discussed in Section 2). A well-known example in this regard is the calculations in Quantum
Electrodynamics with Feynman diagrams, where the expansion is done in powers of α (the fine
structure constant), so that if the leading-order calculation is O(α) then unitarity contributions start at
O(α2) from one-loop diagrams. However, the fulfillment of unitarity implies to square the calculated
amplitudes, and not to expand the latter only up to the order in which the scattering amplitude is
calculated (for an explicit example the reader can consult for example, Section 7.3 of Reference [11]).

It is somewhat astonishing that already in 1970 one can read about motivations for unitarizing
phenomenological chiral Lagrangians, introduced to construct realizations of the current algebra
approach [3–6]. Rephrasing the original remarks by Schnitzer [12,13], the ideas he put forward are still
the main reasons to advocate the unitarization of ChPT amplitudes:

1. The tree approximation to the scattering amplitudes violate badly unitarity. This could also be
said for perturbative unitarity, at least in some partial waves.

2. The Lagrangians are nonlinear and nonrenormalizable, which makes difficult to compute
higher-order corrections. Nowadays, we would better say that there is a rapid proliferation
of counterterms as the order of the calculation increases in ChPT, with the state of the art
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at the two-loop level in ChPT. It is typically simpler and much more predictive to implement
lower-order calculations of ChPT within non-perturbative methods (several examples are given
along this review related to meson-meson scattering and spectroscopy, like for example, the ππ

phase shifts, scalar and vector pion form factors, impact of the resonances f0(500) and ρ(770) in
the low-energy phenomenology, η → 3π decays, etc.).

3. Even if such corrections could be computed, the resultant renormalized perturbation series
would probably diverge, since the perturbation parameter has the strength characteristic of strong
interactions. This is clear from phenomenology because hadronic interactions are characterized by
plenty of resonances and a rapid saturation of unitarity in many partial-wave amplitudes (PWAs).

Although the interest in the present writing is on ChPT and the associated chiral expansion, among
those early papers of Schnitzer we also quote Reference [13]. This paper builds a particular realization
of the current-algebra, which satisfies the associated Ward-Takahashi identities and two-body unitarity
is implemented by means of an effective-range-type parameterization (a unitarization method
discussed in Section 3.1).

One possibility to improve the agreement with data of the perturbative calculations within
ChPT is to apply the chiral series expansion to an interaction element of the amplitude, which
is afterwards implemented within non-perturbative techniques. This is one of the basic ideas
behind unitarization methods for the chiral series of scattering amplitudes. The first works along
these lines considered the application of an effective-range-type parameterization to unitarize ππ

scattering [13,14], once the ππ scattering amplitude was calculated at leading order in ChPT by
the application of the current-algebra techniques and the partial conservation of the axial-vector
current (PCAC) [14,15]. A similar unitarization method was later applied to the first calculation
at next-to-leading order (NLO) in the chiral counting of the ππ PWAs in the chiral limit (mπ = 0).
The calculation of the latter ones, as well as their unitarization by applying a generalized effective-range
expansion (ERE) [16], were undertaken in Reference [17], as discussed in more detail in Section 3.
This calculation explicitly shows that the ππ scattering in the chiral limit is finite.

The pioneering works by Truong and collaborators [18–20] deserve special mention, in which the
role of the isoscalar S-wave ππ final-state interactions (FSI) are stressed, having significant effects on
several physical processes. In a first instance [18], the authors correct the current-algebra result for
η → 3π by the S-wave ππ rescattering, a reaction which is also discussed by the application of the
Khuri-Treiman (KT) [21] formalism in Section 4.3. For that, Reference [18] multiplies the current-algebra
transition amplitude by an Omnès function [22,23], in which the isoscalar scalar ππ phase shifts were,
however, taken from experiment. As a result, the Watson final-state theorem is fulfilled [24]. In another
work of the saga [19], the input phase shifts were generated consistently by the theoretical scheme
followed after taking the one-loop ChPT result for the scalar and vector pion form factors and imposing
the fulfillment of unitarity, as discussed in Section 4.2. It is also stressed that in this form a resummation
of the ChPT series is achieved that may also give rise to resonant effects.

It is also remarkable the confirmation by unitarization methods of the existence of the σ resonance
in pion-pion interactions at low energies. This resonance is nowadays called f0(500) in the PDG [25]
and its pole position is given there at (400–550)−i(200–350) MeV. The standard view of ChPT, based
on the spontaneous symmetry breaking of SU(2)× SU(2) chiral symmetry [7], considered as highly
unlikely that such a low-mass resonance could happen in ππ scattering, where the small expansion
parameter is claimed to be m2

π/m2
ρ ' 0.03, with mρ the mass of the ρ(770) meson. However,

for the isoscalar scalar ππ scattering the unitarity corrections are affected by a large numerical factor
that could actually make the expansion parameter in the momentum-squared dependence of these
PWAs to be much larger. This was explicitly shown in Reference [26] by performing the exercise of
determining the value of the renormalization scale µ needed in order to generate the ρ(770) pole by
unitarizing the leading-order (LO) ChPT amplitude. It was obtained that a huge unnatural value for
the realm of QCD was needed, with µ ' 1 TeV, while the same value for generating the σ resonance
had the natural value in QCD of µ ' 1 GeV.
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It is instructive to also show the main equations for the completion of this exercise.
For the isovector vector ππ interactions, where the ρ(770) resonance appears, one has the unitarized
expression of the LO ChPT PWA T11(s), which reads [26] (as also discussed in Section 5)

T11(s) =
[

6 f 2
π

s− 4m2
π
+ g(s)

]−1

. (1)

Here, TI J is the PWA of the two-pion system with isospin I, J is the angular momentum and the LO
ChPT amplitude is (s− 4m2

π)/6 f 2
π , with fπ = 92.4 MeV the pion weak decay constant. The function

g(s) corresponds to the two-pion unitarity loop function, given by

g(s) =
1

(4π)2

[
log

m2
π

µ2 + σ(s) log
σ(s) + 1
σ(s)− 1

]
, (2)

σ(s) =
√

1− 4m2
π/s .

In turn, the unitarized expression for the I = J = 0 PWA, which contains the f0(500) pole, is [26,27]

T00(s) =
[

f 2
π

s−m2
π/2

+ g(s)
]−1

, (3)

where the LO ChPT PWA is (s− m2
π/2)/ f 2

π . The main difference between Equations (1) and (3) is
the factor 6 dividing the LO ChPT T11(s) compared to T00(s), because s � m2

π in the region where
the σ or ρ poles lie. Indeed, in order to get a resonance of mass mρ in the I = J = 0 PWA one
needs a µ of around 1.8 GeV, in comparison with µ around 1 TeV that is needed in the I = J = 1
case. The reason for this dramatic change in the needed values of µ is because g(s) only depends
logarithmically on this parameter. This fact reflects that the unitarity corrections for the scalar isoscalar
sector are numerically enhanced. This enhancement is enough to generate resonant effects that
strongly impact the phenomenology and make fallacious to think in the possibility to reach accuracy
by a straightforward application of ChPT for many reactions. As a result, the infinite set of unitarity
bubble diagrams should be resummed in order to account for this numerical enhancement.

This phenomenon is also seen in the strong corrections affecting the I = J = 0 ππ scattering
length originally calculated by Weinberg at LO [15] with current algebra methods. The expressions for
the aI J scattering lengths up to NLO or O(p4) in ChPT from Reference [7] contain chiral loops which
are the dominant NLO contributions in the limit Mπ → 0. They read:

a00 =
7m2

π

32π f 2
π

{
1− 9m2

π

32π2 f 2
π

log
m2

π

µ2 + . . .
}

, (4)

a20 = − m2
π

16π f 2
π

{
1− 5m2

π

32π2 f 2
π

log
m2

π

µ2 . . .
}

,

a11 =
1

24π f 2
π

{
1− m2

π

8π2 f 2
π

log
m2

π

µ2 + . . .
}

.

It follows then that a00 has the largest NLO contribution in the limit mπ → 0. In order to appreciate
better the relatively large size of this correction, it is worth comparing it with the pion mass calculated
in ChPT up to NLO [7],

m2
π = m̄2

π

{
1 +

m2
π

32π2 f 2
π

log
m2

π

µ2 + . . .
}

, (5)

with m̄2
π the bare mass squared. The NLO term here is a factor 9 smaller in absolute value than

that for a00. Indeed, this was one of the reasons for developing a non-perturbative dispersive approach
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that could provide an improvement in the prediction of the ππ scattering lengths. The idea is to
make use of the Roy equations [28] and to match with ChPT in the subthreshold region, where the
ChPT expansion is better behaved, since it is away from the threshold cusps [29,30]. In this way, the
two subtraction constants needed for solving the Roy equations can be predicted by ChPT, applied
at different orders. The resulting convergence properties of the prediction for the ππ scattering
lengths is much improved and a reliable estimate of the uncertainties can be also provided. Another
more recent advance was the development of a new set of Roy-like equations in References [31,32],
the so-called GKPY equations. The difference is that these equations have only one subtraction instead
of two and, for example, they have given rise to an accurate determination of the f0(500) pole from
experimental data, without relaying on the ChPT expansion.

These unitarity techniques have also other interesting fields of application beyond meson physics.
Indeed, the 90’s of the past century experienced a boost in the interest of applying chiral EFTs
for the study of nuclear interactions. To large extent this was triggered by the seminal articles of
Weinberg [33,34], in which the systematic application of ChPT order by order to calculate the nuclear
potentials V is established. As the chiral order increases, however, extra derivatives with respect
to r act on the potential, so that it becomes more singular for r → 0. Because of this complication
the application of ChPT for the calculation of the low-energy NN PWAs by implementing the chiral
potentials in quantum-scattering integral equations is not yet fully satisfactory. In atomic and molecular
physics the scattering by a singular potential is of great importance too, a well-known example being
the Van der Waals force among atoms or molecules. This is a problem in which recent advances giving
rise to the exact N/D method in non-relativistic scattering [35,36] are showing themselves as very
powerful and promising. This new method is briefly reviewed in Section 5.3. The application of ChPT
with barons to NN scattering also triggered the use of this EFT to the study of the non-perturbative
K̄N scattering in coupled channels, particularly in connection with the Λ(1405) [37–40].

The non-perturbative character of the NN interactions, which requires the full iteration of
the potential, is due to two basic aspects. (i) One of them is a quantum effect of kinematical origin
within the typical scales of the problem. The typical distance of propagation of two nucleons as virtual
particles is lNN ∼ 1/Ekinetic ∼ m/p2 ∼ (m/mπ)bπ , where m and mπ are the nucleon and pion masses,
respectively. The range of the NN interactions is given by the Compton wavelength of the pion
bπ = m−1

π (in our units h̄ = c = 1). As m/mπ � 1 this travel distance for virtual particles is large
enough for having several repetitive collisions between the propagating two nucleons. The same
conclusion is reached if one focuses on the propagation of real nucleons. For a typical three-momentum
mπ they have a velocity of order mπ/m. Thus, the time for crossing a distance bπ is ∼ m/m2

π � bπ .
(ii) Nonetheless, if the coupling between two nucleons were small enough the scattering would be
perturbative despite (i). This does not happen since the coupling due to one-pion exchange between
two nucleons is of the order g2

Am3
π/ f 2

π , where gA ' 1.26 is the axial coupling of the nucleon. This factor
times lNN implies the dimensionless number

lNN
16π

g2
Am3

π

f 2
π

=
mg2

A
16π f 2

π
mπ , (6)

which is about 0.5. Therefore, the NN interactions should be treated non-perturbatively as a general
rule. In this equation the phase-space factor 1/16π is included, which accounts for the two-nucleon
propagation in all directions. We also distinguish in Equation (6) the scale [41,42]

ΛNN =
16π f 2

π

mg2
A
' 2mπ , (7)

which has a striking small size despite it is not proportional to mπ . This is another consequence of
the non-perturbative character of the NN interactions.
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The unnaturally large size of the NN S-wave scattering lengths (as), so that they are much bigger
in absolute value than the Compton wavelength of the pion, |as| � bπ , introduces a new scale at low
energies. For instance, the scattering length for the isovector 1S0 NN PWA is as ' −25 fm. As a result,
the dimensionless number in Equation (6) becomes even larger by a factor |as|mπ � 1. Therefore,
when the center of mass (CM) three-momentum is smaller than mπ , in which case the ERE applies,
the NN interactions are manifestly non-perturbative and the NN potential has to be iterated. Precisely,
in this energy region one finds the bound state of the Deuteron in the coupled 3S1 − 3D1 PWAs
and an antibound state for the 1S0.

One close field is infinite nuclear matter, where resummation techniques based on the N/D
method, discussed in Section 5, were applied in References [43–46] to work out the NN scattering
amplitude in the nuclear medium. From this result, equations of state for neutron and symmetric
nuclear matter were derived each containing only a free parameter, and showing themselves as very
successful from the phenomenological point of view. See Reference [47] for a recent review on these
and other connected works. Related resummations were achieved in References [48–50] to address
the unitary limit in normal nuclear matter for a Fermi Gas. This issue concerns both nuclear physics,
condensed matter and atomic, molecular, and optical physics.

At higher energies, one also finds examples of the application of unitarization techniques, some
of them, like the N/D method or the Inverse-Amplitude Method (IAM), discussed here. Regarding
this point, there have been recently a series of works applying these two methods to study the scattering
and spectrum of the longitudinal components of the electroweak gauge vector bosons W and Z
by taking advantage of the equivalence theorem, which is applicable to energies much larger than
the masses of the W and Z bosons [51–54]. These studies are very timely due to the experimental
program at the LHC, which reinforces their interest.

Quantum gravity is another field in which unitarization techniques have been applied in the
last years to study the 2 → 2 scattering, due to one-graviton exchange in the s channel, of NS
scalars, NV vector and N f fermions. Notice that this set of fields comprises all the particles in
the standard model as a particular case. The two particles making up an initial or final two-body
state are selected so as to avoid the graviton t- and/or u-channel exchanges. The reason is because
these exchanges drive to infrared divergences (gravity is a force of infinite range) that invalidate
a standard partial-wave amplitude expansion. The quantum corrections are implementing within
the low-energy EFT of Quantum Gravity [55–57]. The interested reader can consult References [58–61].
These works employ the one-loop vacuum polarization due to matter fields (gravitons are excluded),
and resum its iteration plus the tree-level contribution. Of course, a similar situation also arises in
the electromagnetic case by the exchange of a photon in the t- and u-channels. A prominent example
of it being the Coulomb scattering. An interesting future prospect is to develop unitarization methods
appropriate for infinite-range interactions. It could then handle crossed one-graviton exchanges
and allow to study those 2→ 2 scattering processes disregarded in References [58–61].

In this work we review a set of unitarization methods and we always follow the order of first
discussing scattering, mostly in PWAs, and then FSI. We also develop links between the different
methods discussed. The unitarization techniques selected are popular ones within the hadron physics
community. One of the reasons for their popularity is because they have proven to be very powerful in
phenomenological applications, so that they are certainly of interest. It was not the aim of this work
to be exhaustive and give a comprehensive review discussing every unitarization method used in
the literature. Historical reasons are behind the inclusion of the (generalized) ERE unitarization, widely
used in the earlier papers of the 60’s and 70’s, since later on this method was replaced by the IAM,
K-matrix parameterizations, N/D method, and so forth, in relativistic hadron-hadron scattering (not
so for non-relativistic applications).

The contents of this work are organized as follows. After a brief review on the S-matrix
and unitarity in Section 2 we then move to discuss several unitarization methods in Section 3.
The generalized ERE, the K-matrix approach, the IAM and the Padé resummation are then considered.
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The Section 4 is dedicated to the implementation of re-scattering effects in probes and several methods
are presented, with some of them clearly related to the already presented ones in Section 3 dedicated
to scattering. Subsequently, other methods are introduced that could be applied to any given set of
PWAs. We discuss in Section 5 the N/D method for PWAs and FSI. This section ends with a brief
account of the exact N/D method recently developed for non-relativistic scattering. The last section
contains our conclusions with extra discussions included.

2. Unitarity

The S-matrix operator S gathers the transition probability amplitudes between in and out states
in a scattering process. Let us denote by |α〉in and |β〉out an ‘in’ and an ‘out’ state in the Heisenberg
picture, respectively. Then, the matrix elements of the S matrix, Sβα, correspond to the scalar products

Sβα = out〈β|α〉in . (8)

The S matrix plays a central role in Quantum Field Theory (QFT) [62]. One is typically concerned
with the matrix elements of the S-matrix so as to extract scattering observables out of a QFT. A crucial
property in this regard is that the (on-shell) matrix elements of the S-matrix are invariant under
reparameterization of the quantum fields in QFT [1,63,64].

The analytical continuation of the S matrix in the complex-energy plane allows to determine
the spectrum of the theory. Its continuum part corresponds to branch cuts and the bound states,
virtual states and resonances are poles of the S matrix. Furthermore it is very suitable to implement
a relativistic formalism since the S-matrix elements are covariant under the Poincaré group.

In the Dirac or interacting picture of QFT the S matrix is given by

Sβα =
〈β|ei

∫
d4xLint |α〉

〈0|ei
∫

d4xLint |0〉
, (9)

where Lint is the interacting Lagrangian, |α〉 and |β〉 are free particles states and |0〉 is the 0th-order
perturbative vacuum. In Equation (9) U(+∞,−∞) = exp i

∫
d4xLint(x) is the evolution operator

in the Dirac picture from/to asymptotic times. The denominator is a normalization factor that
cancels the disconnected contributions without involving any external particle in the matrix elements
of U(+∞,−∞).

A crucial point is that the S matrix is unitary because of the completeness relation of either the ‘in’
or ‘out’ states. However, it is important to emphasize that in the case of the S matrix its unitarity
refers to the subset of states that are open for a given energy. This is different to the typical sum over
intermediate states covering a resolution of the identity for the whole Fock space. for example, within
ordinary Quantum Mechanics (conserving the number of particles) one can insert a resolution of the
identity by plane waves within the product AB of two one-particle operators as

〈β|AB|α〉 =
∫ d3 p

(2π)3 〈β|A|p〉〈p|B|α〉 . (10)

Here p takes any value, so that its kinetic energy is arbitrary large and not constrained by the available
energy fixed by the external states |α〉 and |β〉.

After this qualification, we can show that S†S is unitary by employing the completeness relation
associated with the ‘out’ states, so that∫

dβS∗βγSβα =
∫

dβ out〈β|γ〉in∗ out〈β|α〉in = in〈γ|α〉in = δγα . (11)
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Analogously, we can also derive SS† = I by attending to the completeness relation of the ‘in’
states. Therefore,

SS† = S†S = I . (12)

The scattering operator T, also called the T matrix, is introduced such that in terms of it the S
matrix reads

S = I + iT . (13)

The unitarity of the S matrix implies in turn that T fulfills that

T − T† = iT†T = iTT† , (14)

which is the unitarity relation for the T matrix. The last expression on the right-hand side (rhs) of
the previous equation allows to derive the Boltzmann H-theorem in Statistical Mechanics, which
is one of the most fundamental theorem in physics. It drives to the increase of entropy with time
until the equilibrium is reached. It is also well-known that unitarity implies the optical theorem and
the existence of the diffraction peak at high energies. For derivations of these points the reader can
consult Section 3.6 of Reference [62].

The unitarity relation satisfied by the T matrix is central in the S-matrix theory in
which the scattering amplitudes are analytically continued in their kinematical arguments [65].
In the development of this program one also employs the property of hermitian analyticity, so
that the matrix elements of T† can be also expressed in terms of those of T by an analytical
continuation in the complex s plane of the (sub)process in question. This fact allows an extension
of the standard unitarity relation of Equation (14), such that its left-hand side (lhs) provides the
discontinuity of the analytical scattering amplitudes across the normal cuts due to intermediate states.
This discontinuity implies the existence of the so-called right-hand cut (RHC), or unitarity cut, in the
scattering amplitudes.

Due to the hermitian analyticity the unitarity relation could also involve on-shell intermediate
states, because the total energy is above their thresholds, but with some other kinematical variables
taking non-physical values (e.g., the Mandelstam variable t could be away from the physical process).
For more details the reader can consult Section 4.6 of Reference [66]. An explicit example is developed in
Section 4.3, where an analytical extrapolation in the mass of the η squared is used for the KT formalism.

Multiplying both sides of Equation (14) to the left by T−1 and to the right by T†−1 we have the
interesting equation

T†−1 − T−1 = iI . (15)

The unitarity constraints are more easily expressed in terms of partial-wave amplitudes (PWAs),
in which the matrix elements of the T-matrix are taking between asymptotic states having well-defined
angular momentum. For instance, for two particles without spin, like in ππ scattering, the PWAs T`(s)
are giving by the standard expression

T`(s) =
1
2

∫ +1

−1
dcos θ P`(cos θ)T(p′, p) , (16)

where ` is the angular momentum, p′ and p are the final and initial three-momenta, θ is their
relative angle and P`(cos θ) is a Legendre polynomial. The general formulas relating the PWAs
and the scattering amplitudes can be found in References [22,67], to which we refer for further details.
Reference [65] offers a rather thorough treatment on PWAs within the helicity formalism.
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Because of time-reversal symmetry the T matrix is symmetric in partial waves. If we write this
matrix in brief as TL, and denote its matrix elements by TL,ij, by its symmetric character we mean that
TL,ij(s) = TL,ji(s). Equation (15) then implies that the imaginary part of the inverse of the PWA matrix
is fixed by unitarity. In the region of energy in which the resolution of the identity is saturated by
two-body intermediate states, the rhs of Equation (15) can be written as

=T−1
L = − q

8π
√

s
θ(s) . (17)

In this equation, q is the diagonal matrix of the CM three-momentum for every two-body intermediate
state and θ(s) is also another diagonal matrix whose matrix elements are 1 for

√
s larger than

the threshold and 0 otherwise. Equation (17) is equivalent to the probably more familiar unitarity
equation for PWAs

=TL = T∗L
q

8π
√

s
θ(s)TL . (18)

The phase-space diagonal matrix q(s)θ(s)/(8π
√

s) is sometimes denoted for short by ρ(s).
The previous relation is not linear because its rhs is quadratic. This fact drives to the concept of

perturbative unitarity, which applies when perturbation theory is employed to calculate the PWAs up
to some order in a dimensionless parameter, let us call it ε. Therefore, if the PWA is calculated up to
O(εn), Equation (18) indeed implies that

=T(n)
L 6= T(n)∗

L
q

8π
√

s
θ(s)T(n)

L , (19)

because the rhs contains contributions ofO(ε2n), while the lhs only does so up toO(εn). The consistent
procedure is to expand the rhs in powers of ε and keep only terms up to O(εn). For instance, up to
second order in ε one has that

=T(2)
L = T(1)∗

L
q

8π
√

s
θ(s)T(1)

L . (20)

The discontinuity across intermediate states in the crossed channels gives rise to
the crossed-channel cuts in the PWAs after the angular projection required to calculate them. We denote
this kind of cuts generically as left-hand cuts (LHCs). The interested reader could consult the Section 2
of Reference [67] for a handy pedagogical introduction to the notions of RHC, LHC and crossing.

Now, let us consider simultaneously stronger and weaker interactions. The latter ones are
supposed to be proportional to some small dimensionless parameter and could correspond, for
example, to actually electromagnetic or weak probes, while the stronger ones typically refer to the
strong interactions among hadrons. The unitarity relation, Equation (14), at leading order in the weaker
interaction, reads now

F− F† = iT†F . (21)

In this equation F represents the matrix elements of the T matrix involving the weaker interactions,
so that they vanish if these interactions are neglected altogether, while still the stronger ones would
be acting. In the latter equation we have taken that the weaker interactions act in the initial state,
otherwise write iF†T on the rhs of Equation (21).

In PWAs the unitarity relation of Equation (21) gets its simplest form. In the physical region for
the reactions to occur it reads

=Fi(s) = ∑
j

Fj(s)ρj(s)TL,ij(s)∗ = ∑
j

Fj(s)∗ρj(s)TL,ij(s) , (22)
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where ρj(s) corresponds to the phase space of the intermediate hadronic states (integrations could
also be involved for multiparticle states) and s is the standard Mandelstam variable corresponding to
the total CM energy squared. The opening of the threshold for the channel j, sth,j, is accounted for by
a Heaviside function θ(s− sth,j) included as part of ρj(s).

For the one-channel case the sum on the rhs of the Equation (22) collapses to just one term,

=F(s) = F(s)ρ(s)T`(s)∗ = F(s)∗ρT`(s) , (23)

where T`(s) is the corresponding uncoupled PWA. Since the lhs of the equation is real then it follows
that the phase of the form factor F(s) and the phase shift of T`(s) are the same modulo π. This is
the well-known Watson final-state theorem.

3. ERE, K-Matrix, IAM and Padé Approximants

Along this section we follow a multifaceted discussion relating different unitarization approaches,
like the (generalized) ERE, K-matrix parameterizations, the IAM and the Padé approximants.

3.1. ERE and K-Matrix Approaches

In the early days of PCAC, soft pions theorems and realizations based on chiral Lagrangians,
it was customary to refer to (generalized) ERE as a unitarization method based on the identification of
a remnant in the inverse of a PWA free of RHC which was expanded in powers of p2. The standard
ERE was originally derived in Reference [68] for NN interactions which, for an uncoupled PWA, has
the form

T` =
p2`

p2`+1 cot δ` − ip2`+1 . (24)

The remaining part is identified with p2`+1 cot δ` as it is well known, because of the relation between
the T and S matrices in the normalization used typically for the ERE, which is the one in Equation (24).
Namely, the steps are

S = e2iδ` = 1 + i2pT` → T` =
e2iδ` − 1

2ip
, (25)

T−1
` = ip

e2iδ` + 1
e2iδ` − 1

− ip = p cot δ` − ip .

The NN scattering is non-relativistic (NR), with m2 � p2 at low energies, so that the expansion of
p2`+1 cot δ` is a Taylor series in p2. However, for pion-pion interactions, where p2 ∼ m2

π in the region
of interest both theoretical and experimentally speaking, the series expansion in p2 is a Laurent series
for the S waves. The reason is because the Adler zeroes required by chiral symmetry in the S-wave
PWAs [69], despite there is no centrifugal barrier. The latter is present for the higher partial waves,
` ≥ 1, which implies the standard zero at threshold so that T` vanishes as p2` for p→ 0.

The phase space factor for relativistic systems changes in comparison with the NR expression of
Equation (24). The steps are the same as in Equations (24) and (25), but now instead of T` one should
use T`/

√
s so that S` = 1 + 2ipT`/

√
s. Then,

T` =

[
p√
s

cot δ` − i
p√
s

]−1
. (26)
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In more recent times, the remaining part of T−1
` after discounting the factor −ip/

√
s, required by

unitarity, cf. Equation (17), is called the inverse of the K-matrix, K`, instead of p cot δ`. In this notation,
T` is written as

T` =

[
K−1
` − i

p√
s

]−1
. (27)

Of course, Equations (25)–(27) can be generalized straightforwardly to a matrix notation for
coupled-channel scattering, with T` and K` replaced by the matrices TL and KL, respectively.
The inverse of the later is usually referred as the ML matrix, ML = K−1

L [70].
We are surprised that in these first works, for example, References [12–14,16,17,71,72], it was

common to refer to the (generalized) ERE without any mention at all to the K-matrix approach, a notion
much more common in later times and, in particular, for more recent papers based on the unitarization
of ChPT. Probably this is related to the fact that the K-matrix parameterizations have been used in
many instances in the literature over large energy intervals in order to fit experimental data. As a
result, it does not really make sense to keep any memory of a particular threshold, as it is the case for
the ERE. Indeed, in those earlier papers referred the basic object of study was ππ scattering or the π

vector form factor.
Another fact worth stressing is that in those earlier references the expressions finally used for

T−1
L had better analytical properties than the ones typically found later in papers using the K-matrix

approach, as in References [70,73,74] among many others phenomenological studies. The reason is
because the later ones only keep the term −ip/

√
s in T−1

L while the first papers [12–14,16,17,71,72]
referred to the non-trivial analytical function h(s), which is 8πg(s) modulo a constant, cf. Equation (2),
was used by performing a dispersion relation (DR) along the RHC. Namely,

h(s) = 8πg(s)− 1
π

log
mπ

µ
= σ(s) log

σ(s) + 1
σ(s)− 1

. (28)

The function g(s) is an analytical function of s in the cut complex s plane, having the RHC along
the real s axis for s > 4m2

π . As a trivial byproduct, the zero at s = 0 that occurs in the phase space
factor −ip/

√
s in the simplest K-matrix parameterizations is absent when using the function g(s),

which is the correct analytical extrapolation of the two-body unitarity requirement above threshold.
Indeed, the removal of this spurious singularity at s = 0 was the argument used in Reference [14] to
construct the function h(s) without using any DR. This reference also notices the presence of the Adler
zeros in the I = 0, 2 S-wave ππ PWAs and similar expressions to Equation (3) are proposed for these
PWAs. The main difference, an important one indeed, between Equation (3) and Reference [14] is that
the function g(s), contrary to h(s), contains a subtraction constant

1
16π2 log

m2
π

µ2 , (29)

which is absent in the function h(s) of Brown and Gobble [14]. This is a crucial fact for the
right reproduction of important features in low-energy ππ scattering, like the generation of the
f0(500) resonance pole in good agreement with the latest and more sophisticated determinations [25].
As a matter of fact, the predicted I = J = 0 ππ phase shifts in Reference [14] are around a factor 2
smaller than data for the energies in between 500–700 MeV, while the I = 2 S-wave ππ phase shifts
are too large in modulus by the same factor. These deficiencies in the approach of Reference [14] are
cured once the subtraction constant of Equation (29), with a natural value for µ ' 1 GeV, is taken into
account [27].
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For the I = J = 1 ππ PWA Reference [14] performs a generalized ERE up to and including the
effective range,

T−1
11 − h(s) =

1
a1 p2 +

r1

2
. (30)

The parameter a1 is fixed from the current algebra prediction [15], a1 = 1/12π f 2
π , while r1 is determined

by the vanishing of the real part of T11(s)−1 at s = m2
ρ. The resulting equation is therefore,

1/a1

m2
ρ/4−m2

π
+

r1

2
+<h(m2

ρ) = 0 . (31)

Let us notice that r1/2 in Equation (30) can be also considered as a subtraction constant of g(s).
Attending to Equation (28) the relation is

log
m2

π

µ2 = πr ' − 96π2 f 2
π

m2
ρ − 4m2

π
+ δr , (32)

with δr a correction of around a 20% of the term explicitly shown. This simple calculation illustrates
the discussion at the Introduction regarding the huge unnatural value µ ' 1.7 TeV that results by
the matching in Equation (32), while the expected value is around 1 GeV.

As a result of this analysis, the authors of Reference [14] predicted the width of the ρ(770) to
be 130 MeV and the I = J = 1 phase shifts up to 1000 MeV, in good shape compared with later
experimental determinations. They also gave an expression for the coupling of the ρ → ππ (gρππ)
in terms of fπ and mρ, which drives to the KSFR relation [75,76], f 2

ρ = m2
ρ/2 f 2

π , if one assumes
vector-meson dominance (VMD) [77,78]. Here fρ is the coupling of the ρ-photon transition which is
equal to gρππ within VMD [78].

The authors summarize their research by stating that the fulfillment of the low-energy
current-algebra constraints together with the inclusion of extra energy dependence as required by
general principles, such as it follows by implementing two-body unitarity and the correct analytical
properties of PWAs, are able to provide good results in a large energy range, much larger than the one
naively expected for current-algebra results. This is a conclusion that has been strengthened along
the years, at the same time that the chiral calculations have been improved going to higher orders and
the unitarization methods have become more sophisticated.

3.2. ERE and IAM

Already at 1972 the calculation of the NLO ChPT amplitude was worked by Lehmann [17] in
the chiral limit (mπ → 0), much earlier than the seminal paper by Gasser and Leutwyler [7], which
established the general framework for ChPT at O(p4). The author did not need to work out the chiral
Lagrangians at NLO order because he only used unitarity, crossing symmetry and analyticity to work
out the chiral loops. The point is that because of unitarity a PWA satisfies Equation (18). However,
unitarity is only satisfied perturbatively in the chiral expansion, so that if we denote by T4(s) a one-loop
ChPT PWA and T2(s) its LO, then perturbative unitarity requires that

=T4(s) = T2(s)2 p
8π
√

s
θ(s− 4m2

π) , (33)

a particular example of Equation (20).
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The PWA T4(s) has LHC and RHC. The discontinuity along the RHC is twice i=T4(s), because of
the Schwarz reflection principle. A DR that results by considering a closed circuit engulfing the RHC,
implies the following contribution to T4(s),

a + bs + cs2 +
s3

8π2

∫ ∞

4m2
π

ds′
T2(s′)2

√
s′/4−m2

π/
√

s′

(s′)3(s′ − s)
. (34)

Three subtractions have been taken because T2(s) at most diverges like s in the limit s → ∞.
By invoking crossing one can build up the one-loop contributions from the t- and u-channels for
a given process. As usual the Mandelstam variables are indicated by s, t and u (s + t + u = 0 for
massless pions).

In Cartesian coordinates for the pions and treating all of them on equal footing, so that they are
all for example, incoming, one can write for the scattering amplitude π1(k1)π(k2)πi3(k3)πi4(k4)→ 0,
where the ki are the on-shell four-momenta (k2

i = 0, ∑i ki = 0), the expression

T(s, t, u) = δi1i2 δi3i4 A(s, t, u) + δi1i3 δi2i4 A(t, s, u) + δi1i4 δi2i3 A(u, t, s) . (35)

Here crossing has also been used to properly exchange the arguments of the A(s, t, u) function.
The previous expression is manifestly symmetric in the indices i3 and i4 which also implies that,
because the pions are bosons, A(s, t, u) is symmetric under the exchange t ↔ u. Since the isospin
coordinates run only from 1 to 3, two out of the four pions have the same coordinates necessarily.

In the calculation of Reference [17] the resulting expression for A(s, t, u) has two parts. One of
them corresponds to DR integrals of the type in Equation (34), in all the s-, t- and u-channels, which
can be evaluated in an algebraic close form. The other contribution is a second-order polynomial
in the Mandelstam variables, whose general expression can be written as a + bs + cs2 + c′(t2 + u2),
which can also be extra constrained. In this respect, a = 0 because Goldstone particles do not interact
in the limit in which masses and four-momenta vanish. The term bs is order p2 and it is already
accounted for in T2(s). As a result, the one-loop calculation of Lehmann only involves two unknown
parameters, nowadays typically called counterterms because they are associated to bare parameters
appearing at the NLO ChPT Lagrangian.

In terms of the A(s, t, u) amplitude one can calculate the different ππ isospin PWAs [79], TI J .
An interesting point of Reference [17] is the perturbative matching in the chiral expansion of the
calculated PWAs at O(p4) with the ERE expression for a PWA, cf. Equation (25). The subtle point is
that the former only satisfies unitarity in a perturbative way, as discussed above. Therefore, writing in
the massless case that

<TI J

=TI J
= cot δI J , (36)

is not right. The correct procedure is to write a chiral expansion of 1/TI J up to NLO and from there to
identify cot δI J ,

1
TI J

=
1

T2 + T4
+O(p6) =

1
T2
− T4

T2
2
+O(p6) . (37)

Taking into account the perturbative unitarity satisfied by T4, one can extract from here the NLO
expression for cot δI J (with a numerical normalization factor properly chosen) as, cf. Equation (26),

p√
s

cot δI J =
1
T2
− <T4

T2
2

+O(p6) . (38)
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This is indeed the first example that we know of a paper in the literature deriving the expression of a
PWA as

TI J =
T2

2
T2 − T4

. (39)

This formula, generalized to any other two-body PWA and also to coupled channels, is the basic one
for the so-called IAM [79,80]. It also illustrates the connection between these earlier treatments based
on the ERE and this more modern method, which was named IAM after the general framework for
the one-loop calculations in ChPT was established in Reference [7]. The approach of Reference [17] has
the advantage over the previous ERE of References [12–14,71,72] that chiral one-loop contributions in
the crossed channels are also kept, so that the LHC is reproduced up to NLO in the inverse of the PWA.

The extension of Equation (39) up to two-loop ChPT can be done straightforwardly by expanding
the inverse of (T2 + T4 + T6)

−1 up to next-to-next-to-leading order (NNLO), or O(p2). The result is,

TI J =
T3

2
T2

2 − T4T2 + T2
4 − T2T6

. (40)

Taking into account that perturbative unitarity requires that =t6 = 2T2ρ<T4, it follows that
TI J given by Equation (40) fulfills exact unitarity, =T−1

I J = −ρ. The Equation (40) is the IAM at
the two-loop order [81].

3.3. IAM and Padé Approximants

Another non-perturbative method used with the aim of improving the convergence of the QFT
calculations in perturbation theory is the Padé resummation technique [82]. It is also a unitarization
method that was applied since the early days of current algebra calculations by References [83,84],
in which the linear σ model was considered too. An interesting qualitative agreement with data for the
ππ S-, P- and D-waves was reported, despite the limitations of the theoretical input.

Given a function f (z) that is analytic at z = 0, its Taylor series expansion around this point
converges within the circle of radius R, which is the distance to the nearest singularity. However,
it is also known that the value of f (z) at a point z1 within its domain of analyticity, but beyond
the radius of convergence of the Taylor series around z = 0, is fixed by the coefficients in the later
expansion. The idea of the Padé method is to provide a resummation of the Taylor series and build
an approximation of f (z) beyond the radius of convergence of its Taylor series around z = 0.

The Padé approximant [n, m] is given by the ratio of two polynomial functions Pn(z) and Qm(z)
of degrees n and m, respectively, which has the same n + m first derivatives as f (z) at z = 0. Namely,

f [n,m](z) =
Pn(z)
Qm(z)

= f (z) +O(zn+m+1) , |z| < R . (41)

Notice that in particular the approximant [n, 0] is identical up to O(zn) with the Taylor series of f (z)
at z = 0. It is also typically the case that the Padé approximants usually provide an acceleration in
the rate of convergence of the Taylor series itself. For instance, one can write that

√
1 + z = 1 +

z
1 +
√

1 + z
. (42)
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By iteration it can be expressed as a continued fraction, which are particular cases of
Padé approximants,

f [1,0] =
2 + z

2
, (43)

f [1,1] =
4 + 3z
4 + z

,

f [2,1] =
8 + 8z + z2

8 + 4z
,

f [2,2] =
16 + 20z + 5z2

16 + 12z + z2 ,

and so forth. Let us compare the first four Padé approximants with the first four terms in the
Taylor series,

√
1 + z = 1 + z

2 −
z2

8 + z3

16 + . . . by calculating
√

2 = 1.4142. We then obtain the
sequence of approximate results from the Padé approach {1.5, 1.4, 1.4167, 1.4138}, and the Taylor
series {1, 1.5, 1.375, 1.4375}. It is clear the improvement in the convergence properties achieved by
the Padé method in this case.

The formulas for the IAM at one- and two-loop ChPT, Equations (39) and (40), respectively, can
also be obtained as Padé approximants, where a generic small parameter ε accounts for the chiral
order. Formally, we then write T2 → ε2t2, T4 → ε4t4 and T6 → ε6t6. The one-loop IAM is a [1, 1]
Padé approximant:

t[1,1](s) =
a0 + ε2a2

1 + ε2b2
= ε2t2 + ε4t4 +O(ε6) . (44)

To solve this type of equation, typically found in Padé approximants, it is convenient to rewrite
Equation (44) as

a0 + ε2a2 = (1 + ε2b2)(ε
2t2 + ε4t4) +O(ε6) . (45)

By matching the different powers of ε2 one has that

a0 = 0 , (46)

a2 = t2 ,

b2 = −t4/t2 .

From which it follows that

t[1,1] =
T2

1− T4/T2
=

T2
2

T2 − T4
. (47)

For the approximant [1, 2]

t[1,2](s) =
a0 + ε2a2

1 + ε2b2 + ε4b4
= ε2t2 + ε4t4 + ε6t6 +O(ε8) . (48)

The result of the matching is the same as in Equation (46) for a0, a2 and b2, and the extra new parameter
b4 is

b4 = (t2
4 − t2t6)/t2

2 . (49)
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Therefore,

t[1,2] =
T2

1− T4
T2

+
T2

4−T2T6

T2
2

=
T3

2
T2

2 − T2T4 + T2
4 − T2T6

, (50)

as Equation (40).

4. Final-State Interactions

As a canonical example of taking into account the FSI that correct the production processes due to
weaker probes because of the rescattering by the stronger interactions, we start with the unitarization
of the vector pion form factor, FV(s), within the ERE approach of Reference [71]. We next move to
the Omnès solution for a form factor and also consider the scalar pion form factor, FS(s), paying
attention to a caveat in the use of an Omnès function that one should properly consider. Along the
discussion we introduce the way FSI are treated in Reference [19], as it is probably the first paper in
which NLO ChPT is unitarized to account for FSI following the basic notions of unitarity, Watson
final-state theorem and use of an Omnès function, which are the basic elements usually employed in
the different modern approaches to resum FSI [22,67]. We end this section with a basic account of the
Khuri-Treiman approach for η → 3π decays.

4.1. ERE, the Omnès Solution and Coupled Channels

The application of the ERE for implementing the FSI of the pion vector form factor was pioneered
in Reference [71]. The main aim of this paper concerns the corrections because of the finite width of the
ρ to the VMD dominance relation between Γ(ρ→ e+e−) and Γ(ρ→ π+π−), as well as to characterize
the energy shape of Γ(e+e− → π+π−).

Reference [71] implemented the relationship between the I = J = 1 ππ PWA and the pion
form factor FV(s) by writing FV(s) = T1(s)/t2(s), with t2(s) the LO ChPT amplitude. This relation
is a consequence of the Omnès representation in the approximation in which: (i) One assumes that
the only zero in T1(s) in the region of interest is the one at threshold, s = 4m2

π , because of the ` = 1
centrifugal barrier; (ii) one also assumes the dominance of the ρ(770) exchange so that it is a good
approximation to consider that T1(s) is dominated by s-channel dynamics (under these assumptions
T1(s) is given by the Omnès function on the rhs of Equation (74) times (s− 4m2

π)/48π f 2
π). Thus,

FV(s) =
48π f 2

πT1(s)
s− 4m2

π
=

T1(s)a1

p2 , (51)

guaranteeing that FV(0) = 1 because of conservation of total charge. Next, Reference [71] performs
the same ERE of Reference [14], which we have already discussed, cf. Equation (30), which allows to
finally write the form factor in a successful manner as

FV(s) =
1

1 + r1 p2

2a1
+ p2

a1
h(s)

. (52)
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The authors of Reference [71] simplify further this expression by removing those terms involving
the expansion of the real part of h(s) around s = m2

ρ that are at least of O(s−m2
ρ). They finally write

FV(s) =
m2

ρ[1 + d1mρ/Γρ]

m2
ρ − s− imρΓρ(p/pρ)3(mρ/

√
s)

, (53)

d1 =
3
π

m2
π

p2
ρ

log
(

mρ + 2pρ

2mπ

)
+

mρ

2πpρ
−

m2
πmρ

πp3
ρ

,

pρ =
√

m2
ρ/4−m2

π .

Again, one concludes that the extrapolation of the current-algebra results plus the extra energy
dependence that arises by implementing the basic principles of two-body unitarity and analyticity
allows one to reach much higher energies than expected, even above the 1 GeV frontier.

Writing a form factor proportional to a given PWA is usually employed in many cases
in the literature. The basic reason is to provide an expression for the coupled form factors Fi(s)
that automatically satisfies the constraint imposed by the two-body unitarity, cf. Equation (22).
Following Reference [70] one then writes

Fi = ∑
j

α̃jTji , (54)

where the sum is over the strongly-coupled channels. The functions α̃i are real and they are also
expected to be smooth because all the RHC features in Fi(s) are included in the PWAs Tij(s). As a result,
the α̃i should not have nearby singularities, if any. They could involve crossed-channel cuts which could
be mimicked typically by parameterizing these functions by low-degree polynomials. Nonetheless,
in the case of the low-energy interactions of the lightest pseudoscalars, like pions, an extra feature
is the presence of the Adler zeroes in the S waves. In particular, for I = J = 0 we have already
discussed that this Adler zero is around sA = m2

π/2, cf. Equation (3). The existence of Adler zeros
is a characteristic feature of the interactions of the Goldstone bosons, as said, but not necessarily for
their production through external currents. To handle such cases, Reference [70] proposes explicitly
removing the Adler zeroes in the Tij(s), when they are present, and any necessary zero in the production
process is then explicitly included in the prefactors. Denoting by Tij(s) = Tij(s)/(s− sAij), with sAij

the Adler zero in Tij(s), the final expression proposed is

Fi = ∑
j

αjTji . (55)

For the case of only one coupled channel, the form factor can be expressed in terms of an Omnès
function Ω(s). Due to the Watson final-state theorem the continuous phase of the form factor ϕ(s)
is the same as the phase shift δ(s) for the PWA T(s). The Omnès function results by performing a DR
for the logarithm of the function f (s) = F(s)Q(s)/P(s), where P(s) and Q(s) are the polynomials
whose only roots are the possible zeros and poles of F(s), respectively, which are assumed to be finite
in number. The discontinuity of log f (s) along the RHC is the discontinuity of its imaginary part,
and it is given by 2iϕ(s). We can then write the following expression for the DR of ω(s) ≡ log f (s)
(for a more extensive discussion on the Muskhelishvili-Omnès problem the reader can consult
References [22,67]),

ω(s) =
n−1

∑
i=0

aisi +
sn

π

∫ ∞

sth

ϕ(s′)ds′

(s′)n(s′ − s)
, (56)
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where we have taken n subtractions assuming that ϕ(s) does not diverge stronger than sn−1 when
s→ ∞. The Omnès function Ω(s) is defined in terms of ω(s) as

Ω(s) = exp ω(s) . (57)

One can always normalize the Omnès function such that Ω(0) = 1, which fixes a0 = 1. In this manner
we always take at least one subtraction. It is also clear that the ratio

R(s) =
F(s)
Ω(s)

, (58)

is a meromorphic function of s in the first RS of the cut complex s plane, being analytic in this whole
plane if F(s) has no bound states. As it is well known, any analytical function in the whole complex
plane is either a constant or it is unbounded, which is then the case for R(s) too under the stated
assumptions. Therefore,

F(s) = R(s)Ω(s) , (59)

diverges as much as or stronger than Ω(s) for s→ ∞. The function ω(s) would have severe divergences
for s→ ∞ if its DR required for convergence more than one subtraction. The reason is that if ϕ(s)/sn−1

(n ≥ 2) has no zero limit for s → ∞, the DR for ω(s) would be affected by logarithmic divergences
like sn−1 log s which could not be cancelled by the subtractive polynomial. In such circumstances
it would be required that R(s) is a non-trivial analytical function in order to cancel such divergences
and guarantee that F(s) can be represented as a DR.

If the conditions are met for a DR of log F(s)Q(s)/P(s), cf. Equation (56), then R(s) = Q(s)/P(s)
is a rational function. Thus, from the previous analysis, we conclude that the DR of ω(s) in Equation (56)
involves only one subtraction and it is then necessary that |ϕ(s)/s| < s−γ for some γ > 0 in the limit
s→ ∞. We can then write the following representation for F(s),

F(s) =
P(s)
Q(s)

Ω(s) , (60)

Ω(s) = exp ω(s) , (61)

ω(s) =
s
π

∫ ∞

sth

ϕ(s′)ds′

s′(s′ − s)
. (62)

The presence of P(s) makes clear that one can fix de normalization of the Omnès function, Ω(0) = 1,
without any loss of generality. The asymptotic behavior of Ω(s) in the limit s→ ∞ can be calculated
as follows. Let us rewrite ω(s) in Equation (62) as

ω(s) = ϕ(∞)
s
π

∫ ∞

sth

ds′

s′(s′ − s)
+

s
π

∫ ∞

sth

ϕ(s′)− ϕ(∞)

s′(s′ − s)
ds′ , (63)

with ϕ(∞) = lims→∞ ϕ(s + iε). Then,

ω(s + iε) −−−→
s→∞

− ϕ(∞)

π
log

s
sth

+ iϕ(∞)− 1
π

∫ ∞

sth

ϕ(s′)− ϕ(∞)

s′
ds′ , (64)

being the limit s→ ∞ dominated by the logarithmic divergence, as the other two terms in this equation
are constants. It follows from here the limit behavior

Ω(s) −−−→
s→∞

CΩ eiϕ(∞) ×
( sth

s

) ϕ(∞)
π . (65)
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This result, together with Equation (60), implies that the asymptotic behavior for F(s) is

F(s) −−−→
s→∞

CF eiϕ(∞) × sp−q− ϕ(∞)
π , (66)

where CΩ and CF are constants, and p and q are the number of zeros and poles of F(s), respectively
(or equivalently, the degrees of P(s) and Q(s), in this order). Two interesting consequences follow
from Equation (66):

(i) If the asymptotic high-energy behavior of F(s) is known to be proportional to sν, then

p− q− ϕ(∞)

π
= ν . (67)

(ii) Under changes of the parameters when modeling strong interactions one should keep
Equation (67) unchanged. As ν is a known constant, then

p− q− ϕ(∞)

π
= fixed . (68)

For instance, if ϕ(∞)/π increases by one and there are no bound states then an extra zero should
be introduced in the form factor to satisfy Equation (68). A similar procedure would be applied for
other scenarios.

It is worth stressing that by using Equation (60) one can guarantee that Equation (68) is fulfilled,
while this is not the case for Ω(s). The use of this function without taking proper care of the rational
function P(s)/Q(s), included in the expression for F(s) in Equation (60), could drive to an unstable
behavior under changes of the parameters, for example, in a fit to data. This problem was originally
discussed in Reference [85] in connection with the scalar form factor of the pion FS(s), to which we
refer to further details in the discussion that follows. This form factor is associated with the light-quark
scalar source, ūu + d̄d, and is defined as

F(s) = m̂
∫

d4xei(p+p′)x〈0|ū(x)u(x) + d̄(x)d(x)|0〉 , (69)

where u and d are the up and down quarks, m̂ is their masses, and s = (p + p′)2. Because
of the quantum numbers of the non-strange scalar source, the FSI occur in the isoscalar scalar
meson-meson scattering, introduced in Section 3. There, we discuss the Adler zero required by chiral
symmetry and the pole of the σ or f0(500) resonance, being both of them related by unitarity, analyticity
and chiral symmetry. At around the two-kaon threshold,

√
s = 991.4 MeV, the KK̄ channel makes a big

impact. This energy almost coincides with the sharp emergence of the f0(980) resonance, which gives
rise to a rapid increase of the ππ isoscalar scalar phase shifts δ00(s), since it is a relatively narrow
resonance [25], cf. Figure 2. The elasticity parameter η00 also experiences a sharp reduction as soon as
the KK̄ channel open, since the f0(980) couples much more to KK̄ than to ππ [86]. This phenomenon
causes an active conversion of the pionic flux into the kaonic one.

The rapid rise of the isoscalar scalar ππ phase shifts, also implies the corresponding rise of
the phase of the isoscalar scalar PWA T(s), ϕ(s), because they coincide below the KK̄ threshold, that
is, for

√
s < 2mK. However, above this energy the rise of ϕ(s) is interrupted abruptly if δ00(sK) < π,

with sK = 4m2
K, while in the opposite case ϕ(s) keeps increasing. Quite interestingly, the two situations

can be connected by tiny variations in the values of the parameters in the hadronic model, while
keeping compatibility with the experimental phase shifts at around the f0(980) mass.

As a result, there is a jump in the limiting value of Ω(s) because ϕ(∞) changes by π. Thus,
in order to keep constant Equation (68) under an increase by π in ϕ(∞) for δ00(sK) > π, it is
necessary to increase p by one unit, so that a zero is necessary in FS(s) that is not present when
δ00(sK) < π. For completeness, we also mention that had we required the continuity from
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δ00(sK) > π to δ00(sK) < π then an extra pole (in the first RS) should be added. This latter scenario can
be disregarded in ππ scattering because of the absence of bound states. With respect to the difference
between ϕ(s) and δ00(s), as indicated above, the f0(980) dominates the behavior of the isoscalar scalar
meson-meson scattering around 1 GeV, and couples much more strongly to kaons than to pions.
For instance, Reference [86] calculates that its coupling to kaons is a factor 3 larger than that to pions.
This makes that the mixing between the pion and kaon scalar form factors is suppressed, following
each of them its own eigenchannel of the I = J = 0 PWAs.

Let s1 be the value of s at which the pion scalar form factor has a zero for δ(sK) > π. Then, we can
write an Omnès representation of the pion scalar form factor in terms of a modified Omnès function

Ω(s) =

{
exp ω(s) , δ(sK) < π ,
s1−s

s1
exp ω(s) , δ(sK) > π ,

(70)

such that FS(s) = FS(0)Ω(s). From here it is clear that s1 can be fixed by the requirement
that =F(s1) = 0. Because of the Watson final-state theorem in the elastic region we can write
that =F(s) = |F(s)| sin δ00(s)|/ρ(s) and it vanishes when δ00(s1) = π, which allows to determine
s1 from the knowledge of δ00(s). The context clarifies whether the same symbol Ω(s) actually refers to
Equation (57) or Equation (70).

A clear lesson from the discussion here is that possible troubles could occur when using an Omnès
function in fitting the free parameters because an unstable behavior could arise due to a jump
in ϕ(∞). These regions of dramatic differences in exp ω(s) are separated by a discontinuity of ϕ(s) in
the parametric space. As a consequence, it is important in the fitting process to satisfy the condition
Equation (68). In particular, for the I = J = 0 ππ PWA the more elaborated function in Equation (70)
should be used, instead of just the standard Omnès exp ω(s) given in Equation (61). This fact also
affects studies of two-photon fusion into two pions, like Reference [87], as discussed in Reference [88].

4.2. The IAM for FSI

The first step of Reference [19] is to write down twice subtracted DR expressions for the scalar
and vector pion form factors, FS(s) and FV(s), respectively, as

FS(s) = 1 +
〈r2

S〉s
6

+
s2

π

∫ ∞

4m2
π

FS(s′)e−iδ00 sin δ00(s′)ds′

s′2(s′ − s− iε)
, (71)

FV(s) = 1 +
〈r2

V〉s
6

+
s2

π

∫ ∞

4m2
π

FV(s′)e−iδ11 sin δ11(s′)ds′

s′2(s′ − s− iε)
. (72)

Here, δ00(s) and δ11(s) are the J = 0 and 1 isoscalar and isovector ππ phase shifts, in this order.
These DRs can be interpreted as singular integral equations (IEs) for the form factors FS(s) and
FV(s) [89].

Let us remark, as in Reference [19], that the solutions of the IEs of Equations (71) and (72)
for FS(s) and FV(s), respectively, can be expressed in terms of the associated Omnès functions [90].
In the approximation of identifying the phases of the form factors with the phase shifts, strictly valid
only for the elastic region, one has the approximate expressions

FS(s) = PS(s) exp
[

s
π

∫ ∞

4m2
π

δ00(s′)ds′

s′(s′ − s− iε)

]
, (73)

FV(s) = PV(s) exp
[

s
π

∫ ∞

4m2
π

δ11(s′)ds′

s′(s′ − s− iε)

]
, (74)

where PS(s) and PV(s) are polynomials that take into account the zeros (if any) of the form factors
in the first or physical RS.
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At the one-loop order in ChPT or, equivalently, at next-to-leading order NLO or O(p4), we can
replace inside the dispersive integrals of Equation (71) the ππ scattering PWAs at leading order,

f0(s) = sin δ00eiδ00 = δ00(s) +O(p4) =
σ(s)
16π

s−m2
π/2

f 2 +O(p4) , (75)

f1(s) = sin δ11eiδ11 = δ11(s) +O(p4) =
σ(s)
16π

s− 4m2
π

6 f 2 +O(p4) . (76)

The phase space function σ(s) is defined in Equation (2). Evaluating the dispersive integral
in Equation (71) with the approximation for f0(s) of Equation (75), Reference [19] of course ends
with the same expression for FS(s) as the NLO ChPT [7] result,

FS(s) = 1 +
s
6
〈r2

S〉 −
1

16π2 f 2

[
(s−m2

π/2)[h(s)− h(0)] +
m2

π

2
h′(0)s

]
+O(p6) . (77)

The function h(s) is defined in Equation (28). By proceeding in an analogous way, a similar expression
holds for the vector form factor at this level of accuracy, O(p4),

FV(s) = 1 +
s
6
〈r2

V〉 −
1

96π2 f 2

[
(s− 4m2

π)[h(s)− h(0)] + 4m2
πh′(0)s

]
+O(p6) . (78)

There is an important difference between the scalar and vector form factors. The unitarity corrections
are enhanced by around a factor 6 for the former compared to the latter, because the leading order ChPT
amplitude is around a factor 6 larger, compared Equations (75) and (76), as first noticed in Reference [26]
and already discussed above in detail.

By invoking the Watson final-state theorem, one can calculate from the perturbative expressions of
FS(s) and FV(s) in Equations (77) and (78) the ππ phase shifts for J = 0 and 1, respectively. Nonetheless,
since the form factors are calculated perturbatively one should proceed consistently in order to extract
from this perturbative information the corresponding phase shifts. In this way, denoting by F2(s)
the LO form factors and by F4(s) = Fr

4(s) + iFi
4(s) their NLO contributions, with the superscripts

indicating the real (r) and imaginary (i) parts, we then have for the Watson final-state theorem:

F(s) = |F(s)|eiφ =
√
(F2 + Fr

4)
2 + (Fi

4)
2eiφ = F2

√√√√(1 +
Fr

4
F2

)2

+

(
Fi

4
F2

)2

eiφ (79)

= F2 + Fr
4 + iφF2 +O(p6) ,

from where the phase φ can be extracted. Let us notice that Reference [19] compared directly the
phase of the perturbative form factors in Equations (77) and (78) with the phase shifts of the ππ PWAs
in its Figures 1 and 2. In this respect, it did no take account that this is not meaningful because the
Watson final-state theorem only holds perturbatively in ChPT, as explained. We show in Figure 1
the resulting form factors, so that the top line is dedicated to FS(s) and the bottom one to FV(s).
The panels on the left correspond to the phases of these form factors and the panels on the right to their
module squared. It is clear that there is a strong departure between the calculated phase shifts from
the NLO ChPT form factors (magenta dashed lines) and the experimental values even at low values of
s. This is also clearly true for the modulus squared of FV(s), for which the perturbative calculation
again departures strongly from the experimental points. It is particularly visible there the emergence
of the resonance ρ(770), which dominates the phase shifts and |FV(s)|2, with tails extending up to
threshold and affecting the low-energy results. This phenomenon can only be captured approximately
in SU(2) ChPT by the large size of the counterterm ¯̀6,

¯̀6 = (4π fπ)
2〈r2

V〉 = 16.5± 1.1 , (80)
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as estimated in Reference [7].
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Figure 1. The top row concerns the ππ scalar form factor FS(s) and the bottom one the ππ vector form
factor FV(s). In each row the left panel refers to the phase and the right one to the modulus squared of
the corresponding form factor. The perturbative calculations are indicated by the (magenta) dot-dashed
lines in all cases. The non-perturbative result for FS(s) are shown by the (black) solid lines. For FV(s)
we show two lines for the IAM resummation, Equation (84), the (black) solid lines and the (red) dashed
ones. The former employs 〈r2

V〉 = 0.42 fm2 (used in Reference [19]) and the latter 〈r2
V〉 = 0.41 fm2.

The ρ−ω mixing, clearly visible at the top of |FV(s)|2, is not discussed here. The experimental points
for the I = J = 1 ππ phase shifts are from References [91,92], and those for |FV(s)|2 were obtained in
Reference [93]. For the I = J = 0 phase shifts we use the subset of points employed in Figure 2 and
that appear on the top in the f0(500) region.
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Figure 2. Results from Reference [27] with only one free parameter (a natural sized cut-off Λ ' 1 GeV)
for the S-wave meson-meson scattering with I = 0 and 1. From top to bottom and left to right, the
isoscalar scalar ππ → ππ and KK̄ → ππ phase shifts, the ππ inelastic cross-section with the same
quantum numbers and a π0η event distribution around the isovector scalar a0(980) resonance are
plotted. For more details and references of the experimental papers we refer to Reference [27].

For the vector case, the cause of the large higher-order contributions is clearly associated with
the prominent role played by the ρ(770) resonance. In turn, for the scalar sector the enhanced RHC
is the one blamed for such effects. Indeed, these strong contributions from unitarity and analyticity
even drive to the emergence of a pole in the complex s plane, the σ or f0(500) resonance, as already
discussed, cf. Equation (3).
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Reference [19] discusses that the application of the chiral series expansion should be performed
on the inverse of the form factor rather than on the form factor itself. The main reason lies on sound
and general grounds, as provided by unitarity and analyticity. Let us consider a DR representation
of F−1(s), analogous to Equation (71). The point to be stressed is that the imaginary part of F−1(s)
is expected to be much smoother than the imaginary part of F(s) itself in the elastic region. The reason
is that the imaginary part of the inverse of the form factor satisfies, because of unitarity in PWAs, that

=F−1(s) = − =F(s)
|F(s)|2 = −ρ(s)

(
T(s)
F(s)

)
= −ρ(s)

(
T(s)
F(s)

)∗
. (81)

As F(s) and T(s) share the same resonances, their propagators cancel in the ratio T(s)/F(s) that gives
=F−1(s). Then, this ratio is expected to be smoother than =F(s) = ρ(s)F(s)∗T(s), where this
cancellation does not occur but rather the resonance effects in F(s) and T(s) mutually enhance each
other because of the product involved.

Then, let us write down a twice-subtracted DR for the inverses of the form factors FS(s) and FV(s).
First, we neglect by now the possible presence of zeroes in the form factors in the 1st Riemann sheet
(RS), which give rise to poles in the inverse of the form factors. The issue of a zero in FS(s) for certain
types of T matrices was already discussed in Section 4.1, as first shown to happen in Reference [85].
This is not an issue here because we are considering the one-channel elastic scattering in the isoscalar
scalar ππ PWAs. As a result we write,

F−1
S (s) = 1− s

〈r2
S〉
6
− s2

π

∫ ∞

4m2
π

ρ(s′)eiδ00 sin δ00(s) F−1
S (s′)ds′

(s′)2(s′ − s− iε)
, (82)

F−1
V (s) = 1− s

〈r2
V〉
6
− s2

π

∫ ∞

4m2
π

ρ(s′)eiδ11 sin δ11(s) F−1
V (s′)ds′

(s′)2(s′ − s− iε)
. (83)

Then, up to O(p4), in the integrand of these integrals one takes the leading order expressions in
the chiral expansion of f`(s), cf. Equations (75) and (76), and FS,V(s) = 1. In this way, except for
a global sign the same result as above is obtained for the dispersive integral as in the DR for FS,V(s).
Namely, the only difference is a flip of sign in the NLO contributions in Equations (77) and (78). Then,
the results for the form factors can be written as

F(s) =
1

1− F4(s)
, (84)

with F(s) representing either FS(s) or FV(s) and F4(s) is the O(p4) ChPT result. Similarly F2(s) = 1
is the LO ChPT calculation. Being more specific, Equation (84) results after performing the DR integrals,
compare with Equations (71) and (72),

FS(s) =
1

1− 〈r
2
S〉s
6 − s2

(4π fπ)2

∫ ∞
4m2

π

σ(s′)(s′−m2
π)ds′

s′2(s′−s−iε)

, (85)

FV(s) =
1

1− 〈r
2
V〉s
6 − s2

6(4π fπ)2

∫ ∞
4m2

π

σ(s′)(s′−4m2
π)ds′

s′2(s′−s−iε)

. (86)

The resulting phase and modulus squared of FS(s) from Equation (85) is shown by the (black)
solid lines in the top panels of Figure 1. The resummed expression of FV(s) in Equation (86) gives rise
to the results shown by the (black) solid and the (red) dashed lines in the bottom panels of Figure 1.
They differ in the value of 〈r2

V〉 employed, so that the former uses 0.42 fm2 (as in Reference [19]),
and the latter takes the slightly lower value 0.41 fm2, so as to agree better with the data on the isovector
vector ππ phase shifts. We also use the updated value f = 92.4 MeV, instead of 94 MeV used in
Ref. [19] (this reference indeed employs the normalization f = 133 MeV = 94

√
2). It is clear that now,
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the resulting phase shifts calculated from the phases of the form factors in Equations (85) and (86)
are much closer to the experimental points than the perturbative ones form Equations (77) and (78).
The same dramatic improvement also happens for the modulus squared of FV(s) calculated from
Equation (86), as compared with the data points given by the empty circles. In the peak of |FV(s)|2 it is
clear the effect due to the ρ−ω mixing, which is not treated here, see for example, Reference [94] for
its implementation. Notice that this improvement is achieved by employing the same perturbative
input, namely the NLO ChPT results. It is a matter of properly reshuffling the chiral expansion in a
way clearly motivated by unitarity and analyticity. We also show |FS(s)|2 in the right top panel of
Figure 1, in which the resonance shape due to the f0(500) is clearly visible. These resonance effects are
not so evident in the case of the isoscalar scalar phase shifts because of the Adler zero in this ππ PWA,
which interferes strongly with the pole contribution from the resonance itself.

4.3. KT Formalism

The KT formalism was originally developed by Reference [21] to study the K → 3π decays and,
up to including two-body intermediate states, it allows to implement unitarity and crossing symmetry.
Later on, this approach has been applied to study extensively the η → 3π decays, among others.
These decays violate isospin because the G parity of the η is +1 and that of the pion in −1, so that it is
proportional to mu −md in pure QCD.

The application of ChPT to the η → 3π decays has been controversial, until accepting that FSI are
so strong that a non-perturbative unitarization method is needed to be implemented in order to be able
to confront well with experimental data [18]. The earliest calculations using current-algebra techniques
obtained a value for the η → π+π−π0 of around 65 eV [95], too small compared with the experimental
result Γ(η → π+π+π0) = (300± 12) eV [25]. Roiesnel and Truong [18] stressed that a non-perturbative
calculation taking care of the isoscalar-scalar ππ FSI, by employing an Omnès function on top of
the current-algebra result, increases the decay width up to 200 eV. A few years later, the NLO ChPT
calculation [96] gives (160 ± 50) eV, which implies a large correction by a factor 2.4 over the LO
calculation in the right direction, but still too small by around a factor of 2. In addition, the parameter
α, typically employed in the parameterization of the Dalitz plot for the decay η → 3π0, is positive
at NLO ChPT [96] while experimentally it is negative, α = −0.0318± 0.0015 [25]. The calculation at
NNLO in ChPT of the η → 3π decays was performed in Reference [97] but the proliferation of new
counterterms prevented a sharp result. If resonance saturation is assumed to estimate the NNLO
ChPT counterterms then the Dalitz plot parameters are not well reproduced. One then concludes that
the η → 3π decays are sensitive to the detailed values of the O(p6) counterterms, so that an accurate
calculation requires a precise knowledge of their values. This controversial situation stimulated
the interest in developing sophisticated calculations combining ChPT and non-perturbative methods,
within unitarized ChPT [18,98,99] and the KT formalism [100–104].

We now describe the basic points of the one-channel KT formalism for η → 3π decays and
refer the reader to References [104,105] and the recent review in Reference [67] for further details.
In particular, the generalization to coupled channels was worked out in Reference [104], given in a
more compact matrix notation in Reference [67].

Let us consider the decay η(p0) → π+(p1)π
−(p2)π

0(p3), which is related by crossing
symmetry to the scattering reactions η(p0)π

0(−p3) → π+(p1)π
−(p2) in the s-channel,

η(p0)π
−(−p1) → π0(p3)π

−(p2) in the t-channel, and η(p0)π
+(−p2) → π+(p2)π

0(p3) in
the u-channel. The Mandelstam variables s, t and u are given by

s = (p0 − p3)
2 = (p1 + p2)

2 , (87)

t = (p0 − p1)
2 = (p2 + p3)

2 ,

u = (p0 − p2)
2 = (p1 + p− 3)2 .
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The crossing-symmetry relations are

T(ηπ0 → π+π−) = A(s, t, u) , (88)

T(ηπ− → π0π−) = A(t, s, u) ,

T(ηπ+ → π+π0) = A(u, t, s) .

These amplitudes in turn can be decomposed in scattering amplitudes with well defined isospin,
MI(s, t, u), as

A(ηπ0 → π+π−) = A(s, t, u) = −1
3

M2(s, t, u) +
1
3

M0(s, t, u) , (89)

A(ηπ+ → π+π0) = A(u, t, s) = +
1
2

M2(s, t, u) +
1
2

M1(s, t, u) ,

A(ηπ− → π0π−) = A(t, s, u) = +
1
2

M2(s, t, u)− 1
2

M1(s, t, u) .

The inversion of these relations gives us the MI(s, t, u),

M0(s, t, u) = 3A(s, t, u) + A(u, t, s) + A(t, s, u) , (90)

M1(s, t, u) = A(u, t, s)− A(t, s, u) ,

M2(s, t, u) = A(u, t, s) + A(t, s, u) .

The PWA amplitudes are denoted by M(I J)(s), and one has the standard relations

M(I J)(s) =
1
2

∫ +1

−1
d cos θ PJ(cos θ)MI(s, t, u) , (91)

MI(s, t, u) =
∞

∑
J=0

(2J + 1)PJ(cos θ)M(I J)(cos θ) .

In the KT formalism the S and P waves are the ones that are subject to a non-perturbative treatment.
The PWAs have a RHC above the two-pion threshold s > 4m2

π . Instead of writing the unitarity
constraint as in Equation (18), one should consider it as giving the discontinuity along the RHC
because of the two on-shell intermediate pions. Due to the fact that in the decay channel all the three
pions are on-shell in the region (mη −mπ)2 ≥ s ≥ 4m2

π this is another source of imaginary part from
the crossed-channel cuts that are also on-shell. For s = (m2

η − m2
π)/2 the branch point singularity

at t, u = 4m2
π happens for cos θ = ∓1. These crossed-channel cuts can be separated from the RHC

one by giving a vanishing positive imaginary part to m2
η and then proceed by analytical continuation

in m2
η [106]. We then write

=M(I J) → M(I J)(s + iε)−M(I J)(s− iε)
2i

= ρM(I J)(s + iε)M(I J)(s− iε) ,

M(I J)(s + iε) = (1 + 2iρM(s + iε))︸ ︷︷ ︸
S-matrix in PWAs

M(s− iε) = e2iδ(I J)(s)M(s− iε) . (92)

From the last line in Equation (92) we can write more conveniently the discontinuity of M(I J)(s)
along the RHC, ∆M(I J)(s), as

∆M(I J)(s) = M(I J)(s + iε)−M(I J)(s− iε) = 2i sin δ(I J)e−iδ(I J)
M(I J)(s + iε) , (93)

which is the relation finally used.
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A crucial feature of the KT formalism is to write down A(s, t, u) as the sum of three functions of
only one Mandelstam variable, M0(s), M1(s) and M2(t) [103,104]

A(s, t, u) = M0(s)−
2
3

M2(s) + (s− u)M1(t) + (s− t)M1(u) + M2(t) + M2(u) , (94)

which is invariant under the exchange t ↔ u, a feature that can be seen as a consequence of
charge-conjugate invariance. This representation is valid up to O(p8) in ChPT [97,103] because
then the ππ D waves also contribute and higher polynomials in (s − t) and (s − u) would be
required. The derivation of Equation (94) can be understood by considering only J ≤ 1 PWAs
in the s-channel and taking into account the isospin decomposition for the process ηπ0 → π+π− and
the crossed-channel ones, cf. Equation (89). In this way, for the s-channel process there is no I = 1
contribution, which only happens in the crossed ones, cf. Equation (89). As this is a P-wave we then
write it as M1(t)(s− u) + M1(u)(s− t), that also keeps explicitly the symmetry under the exchange
t↔ u. The I = 0 contribution can only happen in the s-channel, because for the other channels the third
component of isospin is not zero. This is the M0(s) contribution in Equation (94). Finally, regarding
the I = 2 it is clear from Equation (89) that it appears in the combination−2M2(s)/3+ M2(t) + M2(u).

Taking the expression for A(s, t, u) in the ones of MI(s, t, u), as given in Equation (90),
it follows that

M0(s, t, u) = 3M0(s) + M0(t) + M0(u) +
10
3
[
M2(t) + M2(u)

]
+ 2(s− u)M1(t) + 2(s− t)M1(u) ,

M1(s, t, u) = 2(u− t)M1(s) + (u− s)M1(t)− (t− s)M1(u) + M0(u)−M0(t) +
5
3
[
M2(t)−M2(u)

]
,

M2(s, t, u) = 2M2(s) +
1
3
[
M2(t) + M2(u)

]
+ M0(t) + M0(u)− (s− u)M1(t)− (s− t)M1(u) . (95)

Writing down the PWAs for I J = 00, 20 and 11 we have

M00(s) ≡ 3
[
M0(s) + M̂0(s)

]
(96)

M11(s) ≡ −2
3

κ
[
M1(s) + M̂1(s)

]
,

M20(s) ≡ 2
[
M2(s) + M̂2(s)

]
,

where

κ(s) =
√

σ(s)λ(s) (97)

with

λ(s) = λ(s, m2
1, m2

2) = s2 + m4
η + m4

π − 2s(m2
π + m2

η)− 2m2
πm2

η , (98)

σ(s) = 1− 4m2
π

s
.

We have also introduced in Equation (96) the angular averages

〈MI〉n =
1
2

∫ +1

−1
d cos θ cos θn MI(s, t(s, cos θ), u(s, cos θ)) , (99)

M̂0(s) =
2
3
〈M0〉0 +

20
9
〈M2〉0 + 2(s− s0)〈M1〉0 +

2
3

κ〈M1〉0 ,

κ(s)M̂1(s) =
9
2
(s− s0)〈M1〉1 +

3κ

2
〈M1〉2 + 3〈M0〉1 − 5〈M2〉1 ,

M̂2(s) =
1
3
〈M2〉0 + 〈M0〉0 −

3
2
(s− s0)〈M1〉0 −

κ

2
〈M1〉1 ,
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and

3s0 = m2
η + 3m2

π . (100)

The function M̂I(s) has no discontinuity across the RHC so that the discontinuities of the PWAs
M(I J)(s) can be expressed as,

∆M0(s) = 2ie−iδ(00)(s) sin δ(00)(s)
[
M0(s) + M̂0(s)

]
, (101)

∆M1(s) = 2ie−iδ(11)(s) sin δ(11)(s)
[
M1(s) + M̂1(s)

]
,

∆M2(s) = 2ie−iδ(20)(s) sin δ(20)(s)
[
M2(s) + M̂2(s)

]
.

Following the same steps as above in Equation (93) we can then also write that

MI(s + iε) = MI(s− iε)e2iδI J + 2iM̂I(s)eiδ(I J)
sinδ(I J) , (102)

with J = I except for I = 2 for which J = 0 (as it should be clear from the context in this section).
Dividing this expression by the corresponding Omnès function Ω(I J)(s), which fulfills that along
the RHC Ω(I J)(s + iε) = ei2δ(I J)

Ω(I J)(s − iε), Ω(I J)(s + iε) = |Ω(I J)(s)|eiδ(I J)
, we then obtain from

Equation (102) the discontinuity of MI/Ω(J I) as

MI(s + iε)
Ω(I J)(s + iε)

− MI(s− iε)
Ω(I J)(s− iε)

= 2i
M̂I(s) sin δ(I J)

|Ω(I J)(s)|
. (103)

The final step is to obtain IEs for MI(s) by writing down DRs for MI(s)/Ω(I J) as

MI(s) = Ω(I J)(s)
[

P(m)
I (s) +

sn

π

∫ ∞

4m2
π

ds′
M̂I(s′) sin δ(I J)(s′)
|Ω(I J)(s′)|(s′)n(s′ − s)

]
, (104)

where P(m)
I (s) is a subtractive polynomial with m ≥ n − 1. Requiring that A(s, t, u) diverges

linearly at most at infinity in the Mandelstam variables [101], then M1(s) should be bounded by
a constant and M0(s), M2(s) would diverge linearly at most in the limit s → ∞. Furthermore,
we also know the asymptotic behavior in the same limit for the Omnès functions, cf. Equation (65),
with |Ω(I J)(s)| → s−δ(I J)(∞)/π . Depending on δ(I J)(∞) the value of m should be adjusted to the required
asymptotic behavior of MI(s). For instance, Reference [104] assumes that δ(00)(∞) = π, δ(11)(∞) = π

and δ(20) = 0, so that m = 2 for I = 0 and m = 1 for I = 1, and 2.
The DRs in Equation (104) constitute a set of coupled linear IEs because the angular averages

〈M̂I〉n are also expressed in terms of the MI(s) functions. A standard way for solving these equations
is by iteration. The subtraction constants can be determined by matching with the NLO ChPT
calculation of A(s, t, u) and/or fitted to data, as done in References [101,104]. A clear improvement
is obtained in the calculated decay width for the η → π+π−π0 in Reference [101], where the value
Γη→π+π = 283± 28 eV was obtained. Other improvements concern the parameter α for characterizing
the amplitude for η → 3π0 in its Dalitz plot. NLO ChPT gives a value α = 0.0142 while the KT
treatment of Reference [104] gives α = −0.0337(12), to be compared with the PDG average value of
α = −0.0318(15).

5. The N/D Method

In this section we elaborate on different aspects of the N/D method, first introduced in
Reference [16] to study uncoupled ππ PWAs. We first review on this method, discuss in more
detail the limit in which the crossed-channel dynamics is neglected [26], and afterwards elaborate on
how the latter can be treated perturbatively within the N/D method [39,107]. These results can also
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be used to take into account FSI in production processes [94,108]. For the case of NR scattering, thanks
to recent developments [35], it is possible to know the exact discontinuity of a PWA along the LHC
for a given potential. In this way, one can generate the same solutions as in the Lippmann-Schwinger
(LS) equation, together with other ones that cannot be obtained in a LS equation when mimicking the
short-distance interactions by contact terms in the potential [36].

5.1. Scattering

For the scattering of particles with equal masses there is only a LHC for s < sLeft because of
crossing. However, when the particles involved have different masses there are also other types of
cuts in the complex s plane due to crossing. For instance, for the scattering of particles a + b→ a + b,
in addition to a LHC there is also a circular cut for |s| = m2

b −m2
a [65] where, for definiteness, we have

considered that mb > ma. Nonetheless, when we refer in the following to the LHC we actually mean
all the crossed-channel cuts. Indeed, had we taken instead the complex p2 plane all the cuts would be
linear and only a LHC would be present [65].

We introduce the N/D method following Reference [26]. The uncoupled case is discussed first
and afterwards we move to coupled-channel scattering. The discussion is restricted to two-body
intermediate states. The discontinuity of the inverse of a PWA T`(s) along the RHC is 2i times
its imaginary part, being the latter fixed by phase space because of unitarity, cf. Equation (17).

In the N/D method T`(s) is expressed as the quotient of two functions,

T`(s) =
N`(s)
D`(s)

, (105)

where N`(s) stands for the numerator function and D`(s) for the denominator one. The former has
only LHC and the later RHC.

To enforce the right kinematical threshold behavior of a PWA, vanishing as p2`, Reference [26]
divides T`(s) by p2`,

T′`(s) =
T`(s)
p2` . (106)

The N/D method is then applied to this function,

T′`(s) =
N′`(s)
D′`(s)

. (107)

It follows then that the discontinuities of N′`(s) and D′`(s) along the LHC and RHC, respectively, are

=D′` = =T′−1
` N′` = −ρ(s)N′`p2` , s > sth , (108)

=D′` = 0 , s < sth ,

=N′` = =T′` D′` = ∆`D′`p2` , s < sLeft , (109)

=N′` = 0 , s > sLeft ,

with ∆`(s) = =T`(s) along the LHC. Let us discuss the DRs for D′`(s) and N′`(s) that result by taking
into account these discontinuities. For D′`(s) one has,

D′`(s) =
n−1

∑
m=0

amsm − (s− s0)
n

π

∫ ∞

sth

ds′
p(s′)2`ρ(s′)N′`(s

′)

(s′ − s)(s′ − s0)n . (110)
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Here n is, at least, the minimum number of subtractions required to guarantee the convergence of
the integral in the DR,

lim
s→∞

N′`(s)
sn−` = 0 . (111)

Consistently with Equation (111), the DR for N′`(s) can be written as

N′`(s) =
n−`−1

∑
m=0

bmsm +
(s− s0)

n−`

π

∫ sLeft

−∞
ds′

∆`(s′)D′`(s
′)

p(s′)2`(s′ − s0)n−`(s′ − s)
. (112)

The Equations (110) and (112) are a system of coupled linear IEs whose input is ∆`(s). It is customary to
substitute the expression for N′`(s) in D′`(s) and end with a linear IE for D′`(s) along the LHC. Namely,

D′`(s) =
n−1

∑
m=0

amsm −
n−`−1

∑
m=0

bm
(s− s0)

n

π

∫ ∞

sth

ds′
p(s′)2`ρ(s′)s′m

(s′ − s)(s′ − s0)n (113)

+
(s− s0)

n

π2

∫ sLeft

−∞
ds′′

∆`(s′′)D′`(s
′′)

(s′′ − s0)n−`p(s′′)2`

∫ ∞

sth

ds′
p(s′)2`ρ(s′)

(s′ − s)(s′ − s′′)(s′ − s0)`
,

and the last integral can indeed be performed algebraically. This is a linear IE for D′`(s) with s along
the LHC. Once this solved one can calculate D`(s) for s ∈ C and, in particular, along the physical
region, s + iε. Other types of IEs could be deduced by taking more subtractions independently in D`(s)
and N`(s). Fore more details on this respect the reader can consult [109].

The expression in Equation (113) can be shortened and simplified for equal mass scattering with
mass m by taking s0 = 4m2, because then p(s′)2 = (s− 4m2)/4. It follows that,

D′`(s) =
n−1

∑
m=0

amsm −
n−`−1

∑
m=0

bm
(s− s0)

n

4`π

∫ ∞

sth

ds′
ρ(s′)s′m

(s′ − s)(s′ − s0)n−` (114)

+
(s− s0)

n

π2

∫ sLeft

−∞
ds′′

∆`(s′′)D′`(s
′′)

(s′′ − s0)n

∫ ∞

sth

ds′
ρ(s′)

(s′ − s)(s′ − s′′)
.

The last integral in the previous expression can be written in terms of g(s), Equation (2).
One of the subtraction constants can be fixed because we can freely choose the normalization

of D′`(s), since their ratio and analytical properties are invariant under a change in normalization.
The standard choice is to take D′`(0) = 1. However, given ∆′`(s) along the LHC, the solution is not
unique because of the addition of extra subtraction constants in D′`(s) and N′`(s).

Historically, the possible addition of Castillejo-Dalitz-Dyson (CDD) poles [110] was the clear
indication that extra solutions could be obtained even if ∆`(s) is assumed to be known along
the LHC. They give rise to zeros of T`(s) along the RHC and each zero comprises two real parameters,
its residue and position. Phenomenologically the CDD poles correspond to the short-distance dynamics
underneath the scattering process and might also be related to the addition of bare states [111]. Let us
notice that T`(s)−1 does not exist at a zero of T`(s) and, therefore, Equation (17) is not defined there.
As in Reference [110] let us introduce the auxiliary function λ(s) such that

=D′`(s) =
dλ(s)

ds
, (115)

and rewrite Equation (108) as,

dλ

ds
= −ρ(s)p2`N′` , s > sth , (116)

dλ

ds
= 0 . s < sth .
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Denoting by si the zeros of T`(s) along the real axis above threshold, we can write λ(s) from
Equation (116) as

λ(s) = −
∫ s

sth

p(s′)2`ρ(s′)N′`(s
′)ds′ + ∑

i
λ(si)θ(s− si) , (117)

where the λ(si) are a priori unknown. Thus, Equations (115) and (117) allow us to write

D′`(s) =
n−1

∑
m=0

amsm +
(s− s0)

n

π

∫ ∞

sth

=D′`(s
′)ds′

(s′ − s)(s′ − s0)n (118)

=
n−1

∑
m=0

amsm − (s− s0)
n

π

∫ ∞

sth

p(s′)2`ρ(s′)N′`(s
′)

(s′ − s)(s′ − s0)n ds′ +
(s− s0)

n

π

∫ ∞

sth

∑i λ(si)δ(s′ − si)

(s′ − s)(s′ − s0)n ds′

=
n−1

∑
m=0

amsm − (s− s0)
n

π

∫ ∞

sth

p(s′)2`ρ(s′)N′`(s
′)

(s′ − s)(s′ − s0)n ds′ + ∑
i

λ(si)

π(si − s)
(s− s0)

n

(si − s0)n .

The last term in the previous equation can be rewritten as

(s− s0)
n

s− si
=

n−1

∑
i=0

(s− s0)
n−1−i(si − s0)

i +
(si − s0)

n

s− si
. (119)

The contribution
n−1

∑
i=0

(s− s0)
n−1−i(si − s0)

i can be reabsorbed in
n−1

∑
m=0

amsm and Equation (118) can be

rewritten as

D′`(s) =
n−1

∑
m=0

ãmsm + ∑
i

γ̃i
s− si

− (s− s0)
n

π

∫ ∞

sth

p(s′)2`ρ(s′)N′`(s
′)

(s′ − s)(s′ − s0)n ds′ , (120)

where ãm, γ̃i and si are constants not fixed by the knowledge of ∆`(s), and the CDD poles give rise to
the last term.

Interesting results can be deduced under the approximation of neglecting the LHC, ∆`(s)→ 0.
Equation (112) then becomes

N′`(s) =
n−`−1

∑
m=0

bmsm = bn−`−1

n−`−1

∏
j=1

(s− sj) , (121)

and N′`(s) is just a polynomial, which can be reabsorbed in D′`(s) by dividing simultaneously both
functions by N′`(s) itself. The expression for T′`(s) then becomes

T′`(s) =
1

D′`(s)
, (122)

N′`(s) = 1 ,

D′`(s) = − (s− s0)
L+1

π

∫ ∞

sth

p(s′)2`ρ(s′)
(s′ − s)(s′ − s0)L+1 ds′ +

L

∑
m=0

amsm +
M`

∑
i

Ri
s− si

.

The number of real free parameters in the previous equation is `+ 1 + 2M`, with M` the number
of CDD poles. A priori there is nothing to prevent the generalization of Equation (122) such that
some si could also lie below threshold. We could adjust the position and residue of a CDD pole such
that the real part of D′`(s) vanishes at the desired position. This would give rise to typical resonance
behavior above threshold, or to a bound-state pole if this happens below threshold. This is why
the parameters of the CDD poles are typically associated with the coupling constants and masses of
the poles in the S matrix. In other instances, the CDD poles are needed because the presence of a zero
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cannot be related to ∆`(s), but they respond to fundamental constraints in the theory. This is the case
of the Adler zeroes in QCD [69], which already occur at LO in the chiral expansion, while ∆`(s) 6= 0
only at NLO and higher orders. It is therefore necessary to account for them by including CDD poles,
such that the derivative of the PWA at the zero corresponds to the inverse of the residue of the CDD
pole, Ri. For the ππ Adler zeroes the latter could be fixed in good approximation by the LO ChPT
result. The other `+ 1 parameters emerge by having enforced the correct behavior of a PWA near
threshold, which should vanish as p2`.

Let us stress that Equation (122) gives the general form of an elastic PWA when the LHC
contributions are neglected. Phenomenologically this assumption could be suited if the LHC is far
away and/or if it is suppressed for some reason [112,113]. The free parameters in Equation (122) can
be fixed by fitting experimental data and/or by reproducing the Lattice QCD (LQCD) results at finite
volume or when varying some of the QCD parameters, like Nc or the quark masses [114–117].

Reference [26] focuses on meson-meson scattering, whose basic theory is QCD. It studied the S-
and P-wave two-body scattering between the lightest pseudoscalars (π, K and η), as well as the related
spectroscopy. It was found that the full nonet of scalar resonances [118] f0(500), f0(980), a0(980)
and K∗0(800) arose from the self-interactions among the lightest pseudoscalars, while the more massive
resonances f0(1370), f0(1500), a0(1450) and K∗0(1430) stem from a nonet of bare resonances with a mass
around 1.4 GeV. In addition, Reference [26] included a bare scalar singlet with a mass around 1 GeV
which gives also a contribution to the f0(980) [119]. Later on, Reference [120] extended this model
by including more channels and could determine a glueball state affecting mainly the f0(1700) with
a reflection (because of the ηη′ threshold) on the f0(1500) as well. Of course, the same Equation (122)
can be applied to other interactions, for example, Reference [107] studied WLWL scattering in the
electroweak symmetry breaking sector.

The generalization of Equation (122) to coupled channels is rather straightforward by employing
a matrix notation, where the T matrix in coupled channels is a matrix denoted by TL(s).
As in Equation (122) we take from the onset that crossed-channel dynamics can be neglected in

a first approximation. Thus, the matrix element TL,ij(s) is proportional to p`i
i p

`j
j , which gives rise for

odd orbital angular momentum (unless i = j) to another cut between sth;i and sth;j due to the square
roots in the expressions of pi and pj as a function of s. To avoid this cut we define the matrix T′L,
analogously to Equation (106), as

T′L(s) = p−LTL(s)p−L . (123)

In this equation, the symbol pL corresponds to a diagonal matrix with matrix elements

pL
ij = p`i

i δij , (124)

pi =
λ1/2(s, m2

1i, m2
2i)

2
√

s
,

and m1i and m2i are the masses of the two particles in the same channel i. The matrix unitarity relation
along the RHC then reads

=T′−1
L (s) = −pLρ(s)pL = −ρ(s)p2L , (125)

where ρ(s) is another diagonal matrix whose elements are ρi(s). The next step proceeds with
the generalization to coupled channel of Equation (105) by writing T′L as

T′L = D′−1
L N′L , (126)
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with N′L and D′L two matrices, the former only involves LHC and the later RHC, respectively. In our
present case without LHC, the matrix elements of N′L are polynomials functions. Multiplying N′L
and D′L in Equation (126) to the left by N′L

−1 we can always make that N′L = I and write,

T′L = D̃′−1
L , (127)

Ñ′L = I ,

D̃′L = − (s− s0)
L+1

π

∫ ∞

0
ds′

ρ(s′)p2L(s′)
(s′ − s)(s′ − s0)L+1 + R(s) ,

with R(s) a matrix of rational functions which poles produce the CDD poles in D̃′L. Let us notice that
all the zeros in detT′L correspond to CDD poles in the detD̃′L(s). This is the generalization of the CDD
poles for the coupled-channel case.

The resulting expression for TL(s) in Equation (127) can be also recast as

TL(s) =
[
V−1

L + g(s)
]−1

, (128)

with g(s) the diagonal matrix with matrix elements gi(s) defined as

gi(s) = ai(s0)−
s− s0

π

∫ ∞

sth;i

ρi(s′)ds′

(s′ − s0)(s′ − s)
, (129)

where ai(s0) is a subtraction constant and s0 the subtraction point. The result of this integration can
also be written as

gi(s) =
1

16π2

[
ai(µ) + log

m2
1i

µ2 − x+ log
x+ − 1

x+
− x− log

x− − 1
x−

]
,

x± =
s + m2

2i −m2
1i

2s
± 1

2s

√
(s + m2

2i −m2
1i)

2 − 4s(m2
2i − i0+) . (130)

The parameter µ is a renormalization scale, such that a change in the value of µ can always be
reabsorbed in a corresponding variation of ai(µ), while the combination ai(µ)− 2 log µ is independent
of µ. The unitarity loop function gi(s) corresponds to the one-loop two-point function

gi(s) = i
∫ d4 p

(2π)4
1

[(P/2− p)2 −m2
1i + iε][(P/2 + p)2 −m2

2i + iε]
(131)

=
∫ ∞

0

p2dp
(2π)2

ω1 + ω2

ω1ω2[s− (ω1 + ω2)2 + iε]
,

where ωj =
√

m2
ji + p2 and the total four-momentum p1 + p2 is indicated by P. The integral

in Equation (131) diverges logarithmically, which is the reason why a subtraction has been taken
in Equation (129). The Equation (130) also results by employing dimensional regularization
and reabsorbing the diverging term in ai(µ).

Let us elaborate on the so-called natural value for the subtraction constants. The function gi(s)
given by Equation (130) has the value at threshold,

gi(sth) =
ai(µ)

16π2 +
1

8π2(m1i + m2i)
(m1i log

m1i
µ

+ m2i log
m2i
µ

) . (132)

This expression is compared with the one that results by evaluating gi(s) in terms of a three-momentum
cutoff Λ. The resulting expression for the function gi(s), and denoted by gΛi(s), can be found in
Reference [79]. The natural size of a three-momentum cutoff in hadron physics is the inverse of
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the typical size of a compact hadron, which is generated by the strong dynamics binding quarks
and gluons. Thus, according to this estimate we take Λ ' 1 GeV. For NR scattering gi(s) and gΛi(s)
(m1i, m2i � |p|) are given by the value at threshold of every function plus−ip/(8π(m1 +m2))+O(p2)

[109]. The value at threshold of gΛi(sth) can be worked out explicitly with the result [114]

gΛi(sth) = −
1

8π2(m1i + m2i)

[
m1i log

(
1 +

√
1 + m2

1i/Λ2
)

(133)

+m2i log
(

1 +
√

1 + m2
2i/Λ2

)
−m1i log

m1i
Λ
−m2i log

m2i
Λ

]
.

By equating Equations (132) and (133) the following matching value for ai(µ) results,

ai(µ) = −
2

m1i + m2i

[
m1i log

(
1 +

√
1 + m2

1i/Λ2
)
+ m2i log

(
1 +

√
1 + m2

2i/Λ2
)]

+ log
µ2

Λ2 . (134)

One should employ µ ' Λ ' 1 GeV in Equation (134) to estimate the natural value for the subtraction
constants, a procedure originally established in Reference [39]. In this way, both the renormalization
scale µ and the cut off Λ are used with values suitable to the transition from the low-energy EFT
to the shorter-range QCD degrees of freedom. As an example, let us take ππ scattering and Λ = 1 GeV.
Then, from Equation (134)

a(µ) = −1.40 + log
µ2

Λ2 , Λ = 1 GeV . (135)

The Equation (128) is adequate for including perturbatively the LHC contributions in the
T-matrix TL. This can be achieved by matching order by order with a calculation within
an EFT. For instance, this has been used many times taking as input one-loop calculations in
ChPT [39,86,107,114,115,121–126]. The procedure is as follows. Let us take a meson-meson scattering
amplitude calculated in ChPT up to one-loop or O(p4), TL = T2 + T4 + O(p6). Then the chiral
expansion of Equation (128), with V = V2 + V4 +O(p6), g = O(p0) [107], reads at LO,

T2 = V2 +O(p4) , (136)

and at NLO,

T4 = V4 −V2gV2 +O(p6) , (137)

and similarly for higher orders. Thus, up to NLO the matching equations fix V2 and V4 to

V2 = T2 , (138)

V4 = T4 + V2gV2 .

The LHC contributions arise because crossed-channel loops are calculated order by order in the ChPT
results for TL. At NLO in the calculation of VL we then have the expression

TL(s) =
[
(T2 + T4 + T2gT2)

−1 + g
]−1

. (139)

If (T2 + T4 + T2gT2)
−1 is further expanded we then recover the IAM result of Equation (39) because

(T2 + T4 + T2gT2)
−1 + g = T−1

2 − T−1
2 T4T−1

2 +O(p2) , (140)
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so that

TL(s)→
[

T−1
2 − T−1

2 T4T−1
2

]−1
= T−1

2 [T2 − T4]
−1 T2 . (141)

This is the formula for the IAM in coupled channels at NLO [79,127].
In order to appreciate the power of the method for some reactions we consider the LO matching,

that is, with V = V2, applied in Reference [27] to study the meson-meson S-waves with I = 0 and 1.
This is a coupled-channel study with ππ and KK̄ for I = 0 and πη and KK̄ for I = 1. It is certainly
remarkable that only one free parameter entered in the successful calculation of the PWAs from
the ππ threshold up to around 1.2 GeV. This is shown in Figure 2 by the ππ → ππ, KK̄ → ππ

phase shifts, the inelastic ππ reaction and a π0η event distribution around the a0(980), from top to
bottom and left to right, respectively. The resonances f0(500), f0(980) and a0(980), clearly visible
in Figure 2, are generated dynamically from the interactions between the pseudoscalars. The free
parameter is the three-momentum cut-off with natural size Λ ' 1 GeV used in the evaluation of the
unitarity-loop functions gΛi(s) employed in this study.

It is also the case in some instances [26,86,114,115,120,121] that the ChPT expansion
is complemented with the exchange of bare resonance fields, so that the tree-level amplitude
is crossing symmetric. One typically improves the convergence properties of the chiral expansion
by including bare resonance fields because of the (partial) saturation of the chiral counterterms by
the resonance exchanges [128]. Then, the matching process is undertaken up to O(h̄p4, h̄2), which
means to neglect any two-loop contribution and any one-loop contribution beyond O(p4). In this way,
one could consider one-loop contributions involving higher orders because of the explicit inclusion of
the resonance fields. The matching proceeds as in Equations (136) and (137), with the difference that
now the LO amplitudes include also the tree-level exchange of resonances and T4 involves the one-loop
contributions up to O(p4). Then, the Equation (138) still holds and one has again Equation (128)
for TL. This equation is in appearance analogous to the N/D-method form of Equation (126). Indeed,
if we identify NL with VL and DL with I + VLg(s), it can be shown [129] that up to O(h̄p4, h̄2)

the resulting functions satisfy the N/D-method equations, cf. Equation (108).
The perturbative solution of the N/D equations with respect to the LHC contributions can also

be organized as an iterative solution in increasing number of insertions of ∆`. The first-iterated
N/D method consists on taking only one power of ∆` in the integrand of the DRs for D`(s)
and N`(s). The approximation is obtained by settling D′`(s) = 1 into the integrand for the DR
of N′`(s), Equation (112), which is then denoted as N′`;1st. Then,

N′`;1st(s) =
n−`−1

∑
m=0

bmsm +
(s− s0)

n−`

π

∫ sLeft

−∞
ds′

∆`(s′)
p(s′)2`(s′ − s0)n−`(s′ − s)

. (142)

Since ∆`(s) is known the DR integral could in principle be calculated. This is usually a tree-level
amplitude that can also be calculated in QFT, from which indeed ∆`(s) is actually derived. Therefore,
we assume that in the first iterated N/D method N′`;1st is also given. As a result, the calculation of
D′`(s) in this approximation, denoted by D′`:1st(s), just reduces to perform the integration

D′`(s) =
n−1

∑
m=0

amsm − (s− s0)
n

π

∫ ∞

sth

ds′
p(s′)2Lρ(s′)N′`;1st(s

′)

(s′ − s)(s′ − s0)n . (143)

The first-iterated N/D method was used in Reference [130] to discuss ππ scattering within
linear realizations of chiral symmetry, taking into account the exchanges of a σ and ρ resonances.
More recently, it has been employed to study ρρ scattering in Reference [131] by taking the pure
gauge-boson part of the non-linear chiral Lagrangian with hidden-local symmetry [132,133]. Its
generalization to the SU(3)-related vector-vector scattering was undertaken in Reference [134]. These
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studies were motivated by the earlier ones in References [135–138], with still an on-going productive
discussion in interpreting the results.

5.2. FSI

Let us consider the unitarity relation for a form factor, Equation (23), with the expression of the T
matrix in PWAs TL as given in Equation (128). It then results that

F(s) =
(

V−1
L + g

)−1 (
V−1

L + g + 2iρ(s)θ
)

F∗ . (144)

Since =g(s) = −ρ(s) it is clear that g(s) + 2iρ(s)θ(s) = g(s)∗, so that from Equation (144) we have
that along the RHC it is fulfilled that(

V−1
L + g

)
F =

(
V−1

L + g∗
)

F∗ . (145)

The cancellation of VL from both sides leads to

[I + VL(s)g(s)] F(s) = [I + VL(s)g(s)∗] F(s)∗ . (146)

From this equation it is clear that the combination

[I + VLg(s)] F(s) (147)

has no RHC [139]. Then F(s) can be expressed as

F(s) = [I + VL(s)g(s)]−1 L(s) , (148)

with L(s) a column vector of n functions without RHC, being n the number of PWAs.
An analogous relation can be obtained if we write TL(s) as in the N/D method in coupled

channels, TL(s) = D−1
L (s)NL(s). Following the same steps as in Equations (144)–(148), taking into

account that =D(s) = −N(s)ρ, one ends with the relations

D(s)F(s) = D(s)∗F(s)∗ , (149)

F(s) = D(s)−1L(s) ,

and L(s) is free of RHC. We can then write F(s) as the product of two matrices, the inverse of DL(s),
which only has RHC, and L(s), which could have LHC. As a result, Equation (149) is the generalization
of the N/D method to production processes.

Coming back to Equation (148), let us remark that I + VL(s)g(s) could have the two types of cuts
(since VL(s) in general has LHC). For instance, for the case of the pion form factor if this is expressed
as in Equation (149) then L(s) has no LHC, while if expressed as in Equation (148) it would typically
have one, if VL(s) has it. However, for the relevant case for phenomenological applications in which
VL(s) is driven by the s-channel dynamics and it does not comprise explicit LHC, then L(s) has no
either LHC. In this case, the matrix DL(s) and I + Vl(s)g can be identified.

This formalism has been employed by Reference [140] to study the γγ →meson-meson fusion
reactions. References [108,141] used it to study the scalar form factor of the pion (and of other
pseudoscalar mesons) in connection with J/ψ and D decays, and Reference [94] analyzed the vector
form factor of the pion. This formalism was also very important to unveil the two-pole structure of the
Λ(1405) in Reference [39], because in previous studies the πΣ event distribution for this resonance
was always taken to be proportional to the modulus squared of the πΣ→ πΣ I = 0 S-wave.
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5.3. The Exact N/D Method in NR Scattering

For non-relativistic scattering one can calculate for a given potential the exact discontinuity of
a PWA along the LHC. This has been a recent advance in S-matrix theory achieved by Reference [35],
to which we refer the reader for further details. The key point was to extrapolate analytically the LS
equation to complex three-momenta for off-shell scattering. The solution of the LS equation for
half-off-shell scattering is an analytical function in the off-shell three-momentum complex q plane
with vertical cuts which extend along the lines (±)p± iλ, with |λ| ≥ µ0. Here the ± symbols are
unrelated, µ0 is the lightest particle exchanged, and p is the on-shell three-momentum (fixed by the
energy E of the process, E = p2/2µ, with µ the reduced mass). for example, for NN scattering the
lightest particle exchange is the pion and µ0 = mπ . We denote in the following a PWA for half-off-shell
scattering as T`(q, p), where q is the off-shell three-momentum and p the on-shell one.

The discontinuity we are interested in, for example, for its later application to the N/D method, is

∆`(p2) =
1
2i

[T`(p + iε, p + iε)− T(p− iε, p− iε)] = =T`(p + iε, p + iε) . (150)

After some mathematical derivations that can be consulted in Reference [35], this discontinuity can be
obtained by solving an ordinary linear IE. This IE is written in terms of the discontinuity of the potential
in momentum space v`(q, p). Its writing gets simplified by using v̂` defined by

v̂`(q′, q) = q′`+1v`(q, q)q`+1 . (151)

The discontinuity of the potential entering into the IE is

∆v̂`(ν, ν1) = =v̂`(iν + ε−, iν1 + ε)−=v̂`(iν + ε+, iν1 + ε) , (152)

with ε− < ε < ε+ and ε+ → 0 at the end of the calculation. After this preamble, the sought IE
is (p = ik, k ≥ µ0 and n = 2`+ 2)

f (ν) = ∆v̂`(ν, k) +
θ(p− 2µ0 − ν)µ

2π2

∫ k−µ0

µ0+ν

dν1ν2
1

k2 − ν2
1

{
1

(iν1 + 0+)n +
1

(iν1 − 0+)n

}
∆v̂`(ν, ν1) f (ν1) . (153)

In terms of f (ν) the discontinuity ∆`(p2) is given by

∆`(p2) = (−1)`
f (−k)
2k2`+2 . (154)

Thus, we need to solve the IE for ν ∈ [−k + µ0, k − µ0], and the range of the integration in the IE
for f (ν) is finite for a given p, contrary to the LS equation. This IE can be solved without ambiguity
because ∆v̂(ν, ν1) can be determined for a given potential and with it f (ν) by solving Equation (153).

For a general potential it is convenient to employ its spectral decomposition,

v(q, p) =
∫ ∞

µ0

dµ̄2 η(µ̄2)

(q− p)2 + µ̄2 + . . . (155)

where η(µ̄2) is the spectral function, and the ellipsis indicates possible subtractions that due to
its polynomial nature do not give contribution to the discontinuity of the potential. In terms of the
spectral decomposition we can write that

∆v̂`(ν, ν1) = −
2
π

∫ ∞

µ0

dµ̄2η(µ̄2)ρ(ν2, ν2
1 ; µ̄2)θ(ν1 − ν− µ̄) . (156)

The function ρ(ν2, ν2; µ̄2) is a polynomial in its argument and its fixed by the partial-wave projection
involved in the case of interest. For brevity in the presentation offered here we have just referred to
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the uncoupled case, but the formalism can also be generalized easily to evaluate the LHC discontinuity
for coupled PWAs [35].

A potential is said to be singular if for r → 0 it diverges stronger than 1/r2 or as α/r2

for α + `(`+ 1) < −1/4. In the opposite case the potential is said to be regular [35]. In the ChPT
calculation of nuclear potentials the increase in the order of the calculation implies typically an increase
in the degree of divergence of the potential for r → 0, because off-shell momentum factors give rise
to spatial derivatives. This fact is the main reason why the original Weinberg’s program for solving
nuclear properties once the chiral potentials are calculated order by order has not been taken to
full completion.

The resulting ∆`(p2) obtained by solving the master Equation (153) has a different qualitative
behavior depending on whether the potential is regular, attractive singular or repulsive singular.
General arguments, based on the scaling properties of the function ρ(ν2, ν2

1 ; µ̄2), were given in
Reference [35] to explain such differences in the behavior of ∆`(p2). Explicit examples were also
worked out in Reference [35] corresponding to actual PWAs in NN scattering, with the chiral potential
calculated at different chiral orders, from LO up to NNLO. The function ρ(ν2, ν2

1 ; µ̄2) is a polynomial
in ν and ν1 of degree m. Then, the argument of Reference [35] follows by considering a re-scaling by
a parameter τ of the variables k, ν and ν1 in the limit k� µ0. It follows from Equation (153) that the
nth iterated solution for f (ν) is subject to a re-scaling by

τ(n+1)m−(2`+1)n = τ(m−2`−1)n+m . (157)

The point is whether m− 2`− 1 is smaller or larger than zero. In the former case we have the behavior
corresponding to a regular potential, so that each extra iteration implies at least an extra factor of 1/k
and for k→ ∞ the discontinuity ∆`(−k2) tends to its Born approximation. However, when m− 2`−
1 > 0 each iteration increases the power of k in the asymptotic behavior of ∆`(−k2), becoming more
and more divergent as n increases. This is the situation for a singular potential.

For the regular potentials ∆`(p2) tends to its Born term contribution which vanishes at least as
1/p2 for p2 = −k2 and k2 → ∞. For such type of ∆`(p2) it was shown in Reference [109] that any N/D
IE, irrespectively of the number of subtractions taken, has solution. However, for singular potentials
the resulting |∆`(p2)| grows faster than any polynomial in the same limit. This is clearly shown
in Reference [35] by log-log plots in which the slop of |∆(−k2)| continuously grows with increasing k2.
As a dramatic consequence of this result is that it is not possible to write down a DR representation for
a NR PWA if the potential is singular. However, it is still possible to use the N/D method because
what matters for the N/D IEs is the product ∆`(−k2)D`(−k2). The denominator function is known to
behave asymptotically as s−δ(∞)/π , cf. Equation (65), and δ(∞) = Nπ, with N the number of bound
states, because of the Levinson theorem. It turns out that the number of such stats is infinite for
attractive singular potentials [142] and, in this case, D`(−k2) vanishes also faster than any power law.

The exact N/D method is defined in Reference [35] as the N/D method but using ∆`(p2)

stemming from Equations (153) and (154), which is the exact LHC discontinuity of the full PWA
for a given potential. In this way, we showed in Reference [35] that one reproduces exactly the
LS-equation solutions for regular potentials. This is also true for the singular potentials when the
potential is used in the whole range of integration in the LS equation, that is, for q ∈ [0, ∞] (the cut-off
is sent to infinity). For the singular-potential case we refer to the standard kind of solutions, so that
for a repulsive singular potential the solution has no free parameters and is determined, while for
the attractive singular case the solution involves one free parameter that could be fixed for example,
by imposing a given value for the scattering length [142–146]. Several potentials were studied in
Reference [35], both for uncoupled and coupled PWAs. Within the latter group the 3S1–3D1 coupled
PWAs were studied and the 3S1 scattering length was taken as input. Needless to say, in all cases the
LS equation with infinite cutoff and the N/D method agree perfectly in our numerical study.

The fact of having none or only one free parameter is a very constrained situation in practical
applications, and it is the reason why it has not been possible to achieve yet a good agreement with
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data in NN scattering in terms of regulator-independent solutions (i.e., in which the three-momentum
cut-off is taken to infinity). Notice that the number of free parameters in the solution of the LS equation
for singular potentials is then not linked with the chiral order in the calculation of the chiral potential.
However, in terms of the N/D method one can in principle add an arbitrary number of subtractions,
which allows one to look for extra solutions. We have already discussed this point in connection
with the ambiguity associated with the CDD poles in Section 5.1. This possibility was explored in
detail in Reference [36] for the 1S0 NN PWA. The NLO and NNLO ChPT potentials for this PWA
are actually attractive and singular. The standard solutions of the LS equation were reproduced,
and a detailed numerical analysis was performed in order to show the agreement between the LS
equation and the exact N/D method. But we also showed in this reference that one can generate
new solutions that cannot be achieved by the LS equation when the three-momentum cut-off is taken
to infinity with contact interactions included in the potential to aim renormalization (in the form of
polynomial counterterms in its momentum expression). In this way, a new solution was discussed
that can reproduce the 1S0 scattering length, effective range and shape parameter v2. For this solution
the DRs for N`(s) and D`(s) converge separately. It is also interesting to indicate that a solution
within the exact N/D method for this PWA fixing only two parameters, the scattering length and
the effective range were taken, could not be found. Last but not least, a very attractive feature of the
exact N/D method is that it allows to evaluate the PWAs in the whole complex p2 plane. Then, it
is very convenient to look for resonance and (anti)bound states. In the case of the 1S0 PWA there is
an antibound state which is found at p = −i0.066 MeV both at NLO and NNLO when all the first
three ERE parameters are reproduced.

6. Conclusions

We have elaborated on several unitarization methods of perturbative calculations in Chiral
Perturbation Theory (ChPT) that can be employed to study scattering and the re-scattering corrections
to an external probe. Special attention has been given to the N/D method both for scattering and for
implementing the final-state interactions (FSI). The unitarization methods, since the earlier papers
on current algebra techniques, have been able to extend to much larger energies the expected
region of utility of ChPT calculations. This has been accomplished thanks to the extra energy
and momentum dependence generated by using a non-perturbative theoretical framework which
satisfies key properties of S-matrix theory, which stem from two-body unitarity and analyticity. Some
of the most striking and important applications of the unitarization methods of input perturbative
calculations have occurred in the field of spectroscopy. In this way, it has been possible to study
resonances and bound states, and even predict some of them, while unexpected properties have been
unveiled too, as for example, the two-pole nature of some resonances [147], as first shown for the
Λ(1405) in Reference [39].

Along this review we have paid attention to establish links between different unitarization
methods. Thereby, by starting with the (generalized) relativistic effective-range expansion (ERE)
we have connected it with the K-matrix approach and then obtained from the former the Inverse
Amplitude Method (IAM) unitarization formula. The IAM has been also connected with the Paddé
approximation. In the last part of the manuscript we have introduced and discussed the N/D method.
A link between the N/D and the IAM can also be established by employing the solution to the N/D
method based on treating perturbatively the left-hand cut discontinuity. This allows one to derive
the IAM as a particular case of this method too. The associated methods to take care of the FSI
corresponding to the unitarization techniques of scattering have been introduced as well. In addition,
we have discussed the (Muskhelishvili-)Omnés solution and the Khuri-Treiman approach.

An advantage of the unitarization technique based on the N/D method is that it can be applied
to deliver the unitarized partial-wave amplitudes (PWAs) even if only the leading-order scattering
amplitudes are employed. A subtraction constant is then required, but it could be estimated making
use of naturalness arguments. In this way, one can study important resonances in hadron physics
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in a very constrained manner, essentially without any free parameter. Good examples are the f0(500),
f0(980), a0(980), and κ(800) in the scalar light mesonic sector, the Λ(1405) in the strangeness −1
S-wave meson-baryon scattering, and so forth. Of course, one could also use as input higher-order
scattering amplitudes provided by the effective field theory of interest and perform a higher-order
analysis in the input taken.

Regarding the N/D method, we would like to stress that thanks to recent advances (in which
the author has been involved), it can be considered for non-relativistic scattering as an alternative
formulation of scattering theory. The qualitative leap forward has been the derivation of the exact
discontinuity of a PWA along the left-hand cut, which can then be employed to solve the N/D integral
equations. In this way, one can solve standard regular potentials and reproduce the solutions obtained
with the Lippmann-Schwinger equation for PWAs. But it also allows to obtain extra solutions for
singular potentials without dependence on cutoff, which can be sent to infinity. This method has
the advantage that, in terms of the solution found, it is straightforward to evaluate the on-shell
scattering amplitudes in the complex energy plane too. In this way, for example, one could look for
poles and their residues (which give the resonance or bound-state couplings). This is a very promising
and exciting field of current research, and first applications are being explored for NN scattering.
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