

Article

Multiple Techniques for Studying Asymptotic Properties of a Class of Differential Equations with Variable Coefficients

Omar Bazighifan ^{1,2,*,†} and Mihai Postolache ^{3,4,5,*,†}

- 1 Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, Yemen
- 2 Department of Mathematics, Faculty of Education, Seiyun University, Hadhramout 50512, Yemen
- 3 Center for General Education, China Medical University, Taichung 40402, Taiwan
- 4 Department of Mathematics and Informatics, University Politehnica of Bucharest, 060042 Bucharest, Romania
- 5 Gh. Mihoc-C. Iacob Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, 050711 Bucharest, Romania
- * Correspondence: o.bazighifan@gmail.com (O.B.); mihai@mathem.pub.ro (M.P.)
- + These authors contributed equally to this work.

Received: 16 April 2020; Accepted: 11 June 2020; Published: 3 July 2020

Abstract: This manuscript is concerned with the oscillatory properties of 4th-order differential equations with variable coefficients. The main aim of this paper is the combination of the following three techniques used: the comparison method, Riccati technique and integral averaging technique. Two examples are given for applying the criteria.

Keywords: delay differential equations; oscillation; fourth-order

1. Introduction

Differential equations of fourth-order have applications in dynamical systems, optimization, and in the mathematical modeling of engineering problems [1]. The p-Laplace equations have some significant applications in elasticity theory and continuum mechanics, see, for example, [2,3]. Symmetry plays an important role in determining the right way to study these equations [4]. The main aim of this paper is the combination of the following three techniques used:

- The comparison method. *(a)*
- (*b*) Riccati technique.
- (c)Integral averaging technique.

We consider the following fourth-order delay differential equations with p-Laplacian like operators

$$\left(a\left(\zeta\right)\left|u^{\prime\prime\prime}\left(\zeta\right)\right|^{p-2}u^{\prime\prime\prime}\left(\zeta\right)\right)' + q\left(\zeta\right)g\left(u\left(\eta\left(\zeta\right)\right)\right) = 0,\tag{1}$$

where $\zeta \geq \zeta_0$. Throughout this work, we suppose that:

K1: p > 1 is a real number.

K2: $a \in C^1([\zeta_0, \infty), \mathbb{R})$, $a(\zeta) > 0$, $a'(\zeta) \ge 0$ and under the condition

$$\int_{\zeta_0}^{\infty} \frac{1}{a^{1/(p-1)}(s)} \mathrm{d}s = \infty,$$
(2)

K3: $q \in C([\zeta_0, \infty), \mathbb{R}), q(\zeta) > 0$,

K4: $\eta \in C([\zeta_0, \infty), \mathbb{R}), \eta(\zeta) \leq \zeta, \lim_{\zeta \to \infty} \eta(\zeta) = \infty,$ **K5:** $g \in C(\mathbb{R}, \mathbb{R})$ such that $g(u) \geq m |u|^{p-2} u > 0$, for $u \neq 0$ and m is a constant.

Definition 1. The function $u \in C^3[\zeta_u, \infty)$, $\zeta_u \ge \zeta_0$ is called a solution of (1), if $a(\zeta) |u'''(\zeta)|^{p-2} u'''(\zeta) \in C^1[\zeta_u, \infty)$, and $u(\zeta)$ satisfies (1) on $[\zeta_u, \infty)$. Moreover, the equation (1) is oscillatory if all its solutions oscillate.

In the last few decades, there have been a constant interest to investigate the asymptotic property for oscillations of differential equation, see [5–25]. Furthermore, there are some results that study the oscillatory behavior of 4th-order equations with *p*-Laplacian, we refer the reader to [26,27].

Now the following results are presented.

Grace and Lalli [28], Karpuz et al. [29] and Zafer [30] studied the even-order equation

$$u^{(\gamma)}\left(\zeta\right) + q\left(\zeta\right)u\left(\eta\left(\zeta\right)\right) = 0,$$

they used the Riccati substitution to find several oscillation criteria and established the following results, respectively:

$$\int_{\zeta_0}^{\infty} \left(\delta\left(s\right) q\left(s\right) - \frac{\left(\gamma - 1\right)! \left(\delta'\left(s\right)\right)^2}{2^{3 - 2\gamma} \eta^{\gamma - 2}\left(s\right) \eta'\left(s\right) \delta\left(s\right)} \right) ds = \infty,\tag{3}$$

where $\delta \in C^1([\zeta_0,\infty),(0,\infty))$.

$$\liminf_{\zeta \to \infty} \int_{\eta(\zeta)}^{\zeta} q(s) \, \eta^{\gamma-2}(s) \, ds > \frac{(\gamma-1) \, 2^{(\gamma-1)(\gamma-2)}}{\mathbf{e}} \tag{4}$$

and

$$\liminf_{\zeta \to \infty} \int_{\eta(\zeta)}^{\zeta} q(s) \eta^{\gamma-2}(s) \, ds > \frac{(\gamma-1)!}{e}.$$
(5)

Zhang et al. [31,32] studied the even-order equation

$$\left(a\left(\zeta\right)\left(u^{\left(\gamma-1\right)}\left(\zeta\right)\right)^{\beta}\right)'+q\left(\zeta\right)u^{\beta}\left(\eta\left(\zeta\right)\right)=0,\tag{6}$$

where β is a quotient of odd positive integers. They proved that it is oscillatory, if

$$\liminf_{\zeta \to \infty} \int_{\zeta}^{\eta(\zeta)} \frac{q(s)}{a(\eta(s))} \left(\eta^{\gamma-2}(s)\right)^{\beta} ds > \frac{\left((\gamma-1)!\right)^{\beta}}{e},\tag{7}$$

where $\gamma \ge 2$ is even and they used the compare with first order equations. If there exists a function $\delta \in C^1([\zeta_0, \infty), (0, \infty))$ for all constants M > 0 such that

$$\liminf_{\zeta \to \infty} \int_{\zeta_0}^{\infty} \delta\left(s\right) \left(q\left(s\right) - \frac{a\left(s\right)\left(\theta M \eta^{\gamma-2}\left(s\right)\eta'\left(s\right)\right)^{1-p}}{p^p} \left(\frac{\delta'\left(s\right)}{\delta\left(s\right)} - \frac{a\left(s\right)}{r\left(s\right)}\right)^p\right) ds = \infty, , \tag{8}$$

for some constant $\theta \in (0, 1)$.

Our aim in this work is to complement results in [28–32]. Two examples are given for applying the criteria.

2. Some Auxiliary Lemmas

Lemma 1. [13] Fixing V > 0 and $U \ge 0$, we have that

$$Ux - Vx^{(\beta+1)/\beta} \leq \frac{\beta^{\beta}}{(\beta+1)^{\beta+1}} \frac{U^{\beta+1}}{V^{\beta}}.$$

Lemma 2. [14] For $i = 0, 1, ..., \gamma$, let $u^{(i)}(\zeta) > 0$, and $u^{(\gamma+1)}(\zeta) < 0$, then

$$\frac{u\left(\zeta\right)}{\zeta^{\gamma}/\gamma!} \geq \frac{u'\left(\zeta\right)}{\zeta^{\gamma-1}/\left(\gamma-1\right)!}.$$

Lemma 3. [16] Suppose that *u* is an eventually positive solution of (1). Then, we distinguish the following situations:

$$\begin{array}{ll} (\mathbf{S}_1) & u\left(\zeta\right) > 0, \ u'\left(\zeta\right) > 0, \ u''\left(\zeta\right) > 0, \ u'''\left(\zeta\right) > 0, \ u^{(4)}\left(\zeta\right) < 0, \\ (\mathbf{S}_2) & u\left(\zeta\right) > 0, \ u'\left(\zeta\right) > 0, \ u''\left(\zeta\right) < 0, \ u'''\left(\zeta\right) > 0, \ u^{(4)}\left(\zeta\right) < 0, \end{array}$$

for $\zeta \geq \zeta_1$, where $\zeta_1 \geq \zeta_0$ is sufficiently large.

3. Main Results

Let the differential equation

$$\left[a\left(\zeta\right)\left(u'\left(\zeta\right)\right)^{\beta}\right]' + q\left(\zeta\right)u^{\beta}\left(g\left(\zeta\right)\right) = 0, \quad \zeta \ge \zeta_{0},\tag{9}$$

where $a, q \in C([\zeta_0, \infty), \mathbb{R}^+)$, is nonoscillatory if and only if $\zeta \ge \zeta_0$, and a function $\zeta \in C^1([\zeta, \infty), \mathbb{R})$, satisfying the inequality

$$\zeta'(\zeta) + \gamma a^{-1/\beta}(\zeta)(\zeta(\zeta))^{(1+\beta)/\beta} + q(\zeta) \le 0, \text{ on } [\zeta,\infty).$$

Definition 2. Let

$$D = \{(\zeta, s) \in \mathbb{R}^2 : \zeta \ge s \ge \zeta_0\}$$
 and $D_0 = \{(\zeta, s) \in \mathbb{R}^2 : \zeta > s \ge \zeta_0\}$.

A kernel function $H_i \in C(D, \mathbb{R})$ is said to belong to the function class \mathfrak{T} , written by $H \in \mathfrak{T}$, if, for i = 1, 2,

(i) $H_i(\zeta, s) = 0$ for $\zeta \ge \zeta_0$, $H_i(\zeta, s) > 0$, $(\zeta, s) \in D_0$;

(ii) $H_i(\zeta, s)$ has a continuous and nonpositive partial derivative $\partial H_i/\partial s$ on D_0 and there exist functions $\delta, \vartheta \in C^1([\zeta_0, \infty), (0, \infty))$ and $h_i \in C(D_0, \mathbb{R})$ such that

$$\frac{\partial}{\partial s}H_1(\zeta,s) + \frac{\delta'(s)}{\delta(s)}H_1(\zeta,s) = h_1(\zeta,s)H_1^{\beta/(\beta+1)}(\zeta,s)$$
(10)

and

$$\frac{\partial}{\partial s}H_2(\zeta,s) + \frac{\vartheta'(s)}{\vartheta(s)}H_2(\zeta,s) = h_2(\zeta,s)\sqrt{H_2(\zeta,s)}.$$
(11)

Theorem 1. Let (2) holds. If the equations

$$\left(\frac{2a^{\frac{1}{p-1}}(\zeta)}{(\theta\zeta^2)^{p-1}}\left(u'(\zeta)\right)^{p-1}\right)' + kq(\zeta)\left(\frac{\eta^3(\zeta)}{\zeta^3}\right)^{p-1}u^{p-1}(\zeta) = 0$$
(12)

and

$$u''(\zeta) + u(\zeta) \int_{\zeta}^{\infty} \left(\frac{1}{a(\varsigma)} \int_{\varsigma}^{\infty} q(s) \left(\frac{\eta(\zeta)}{\zeta}\right)^{p-1} \mathrm{d}s\right)^{1/p-1} \mathrm{d}\varsigma = 0$$
(13)

are oscillatory, then every solution of (1) is oscillatory.

Proof. Assume, for the sake of contradiction, that *u* is a positive solution of (1). Then, we let $u(\zeta) > 0$ and $u(\eta(\zeta)) > 0$. By Lemma 3, we have (\mathbf{S}_1) and (\mathbf{S}_2) .

Let case (S_1) holds. Using [25], [Lemma 2.2.3], we find

$$u'(\zeta) \ge \frac{\theta}{2} \zeta^2 u'''(\zeta) , \qquad (14)$$

for every $\theta \in (0, 1)$.

From Lemma 2, we get

$$\frac{u'(\zeta)}{u(\zeta)} \leq \frac{3}{\zeta}.$$

Integrating from η (ζ) to ζ , we find

$$\frac{u\left(\eta\left(\zeta\right)\right)}{u\left(\zeta\right)} \ge \frac{\eta^{3}\left(\zeta\right)}{\zeta^{3}}.$$
(15)

Defining

$$\varphi\left(\zeta\right) := \delta\left(\zeta\right) \left(\frac{a\left(\zeta\right) \left(u^{\prime\prime\prime\prime}\left(\zeta\right)\right)^{p-1}}{u^{p-1}\left(\zeta\right)}\right), \varphi\left(\zeta\right) > 0,$$
(16)

where $\delta \in C^1\left([\zeta_0,\infty),(0,\infty)\right)$ and

$$\begin{aligned} \varphi'\left(\zeta\right) &= \delta'\left(\zeta\right) \frac{a\left(\zeta\right) \left(u'''\left(\zeta\right)\right)^{p-1}}{u^{p-1}\left(\zeta\right)} + \delta\left(\zeta\right) \frac{\left(a\left(u'''\right)^{p-1}\right)'\left(\zeta\right)}{u^{p-1}\left(\zeta\right)} \\ &- \left(p-1\right)\delta\left(\zeta\right) \frac{u^{p-2}\left(\zeta\right) u'\left(\zeta\right) a\left(\zeta\right) \left(u'''\left(\zeta\right)\right)^{p-1}}{u^{2(p-1)}\left(\zeta\right)}. \end{aligned}$$

Combining (14) and (16), we obtain

$$\varphi'(\zeta) \leq \frac{\delta'_{+}(\zeta)}{\delta(\zeta)}\varphi(\zeta) + \delta(\zeta) \frac{\left(a(\zeta)(u'''(\zeta))^{p-1}\right)'}{u^{p-1}(\zeta)} - (p-1)\delta(\zeta)\frac{\theta}{2}\zeta^{2}\frac{a(\zeta)(u'''(\zeta))^{p}}{u^{p}(\zeta)} \leq \frac{\delta'(\zeta)}{\delta(\zeta)}\varphi(\zeta) + \delta(\zeta)\frac{\left(a(\zeta)(u'''(\zeta))^{\beta}\right)'}{u^{\beta}(\zeta)} - \frac{(p-1)\theta\zeta^{2}}{2(\delta(\zeta)a(\zeta))^{\frac{1}{p-1}}}\varphi^{\frac{p}{p-1}}(\zeta).$$
(17)

From (1) and (17), we find

$$\varphi'\left(\zeta\right) \leq \frac{\delta'\left(\zeta\right)}{\delta\left(\zeta\right)}\varphi\left(\zeta\right) - m\delta\left(\zeta\right)\frac{q\left(\zeta\right)u^{p-1}\left(\eta\left(\zeta\right)\right)}{u^{p-1}\left(\zeta\right)} - \frac{\left(p-1\right)\theta\zeta^{2}}{2\left(\delta\left(\zeta\right)a\left(\zeta\right)\right)^{\frac{1}{p-1}}}\varphi^{\frac{p}{p-1}}\left(\zeta\right).$$

From (15), we have

$$\varphi'(\zeta) \leq \frac{\delta'(\zeta)}{\delta(\zeta)}\varphi(\zeta) - m\delta(\zeta)q(\zeta) \left(\frac{\eta^3(\zeta)}{\zeta^3}\right)^{p-1} - \frac{(p-1)\theta\zeta^2}{2(\delta(\zeta)a(\zeta))^{\frac{1}{p-1}}}\varphi^{\frac{p}{p-1}}(\zeta).$$
(18)

Let $\delta(\zeta) = m = 1$ in (18), we have

$$\varphi'\left(\zeta\right) + \frac{\left(p-1\right)\theta\zeta^2}{2a^{\frac{1}{p-1}}\left(\zeta\right)}\varphi^{\frac{p}{p-1}}\left(\zeta\right) + q\left(\zeta\right)\left(\frac{\eta^3\left(\zeta\right)}{\zeta^3}\right)^{p-1} \le 0$$

Hence, the equation (12) is nonoscillatory, which is a contradiction. Let case (\mathbf{S}_2) holds. By Lemma 2, we find

$$\frac{u'\left(\zeta\right)}{u\left(\zeta\right)} \leq \frac{1}{\zeta}$$

Integrating again from η (ζ) to ζ , we find

$$\frac{u\left(\eta\left(\zeta\right)\right)}{u\left(\zeta\right)} \ge \frac{\eta\left(\zeta\right)}{\zeta}.$$
(19)

Defining

$$\psi(\zeta) := \vartheta(\zeta) \frac{u'(\zeta)}{u(\zeta)} > 0,$$

where $\vartheta \in C^1\left([\zeta_0,\infty),(0,\infty)\right)$ and

$$\psi'(\zeta) = \frac{\vartheta'(\zeta)}{\vartheta(\zeta)}\psi(\zeta) + \vartheta(\zeta)\frac{u''(\zeta)}{u(\zeta)} - \frac{1}{\vartheta(\zeta)}\psi(\zeta)^2.$$
⁽²⁰⁾

Integrating (1) from ζ to *x* and using $u'(\zeta) > 0$, we have

$$a(x) (u'''(x))^{p-1} - a(\zeta) (u'''(\zeta))^{p-1} = -\int_{\zeta}^{x} q(s) g(u(\eta(s))) ds.$$

From (19), we get

$$a(x)(u'''(x))^{p-1} - a(\zeta)(u'''(\zeta))^{p-1} \le -ky^{p-1}(\zeta)\int_{\zeta}^{x}q(s)\left(\frac{\eta(s)}{s}\right)^{p-1}ds.$$

Letting $x \to \infty$, we have

$$a(\zeta) (u'''(\zeta))^{p-1} \ge ky^{p-1}(\zeta) \int_{\zeta}^{\infty} q(s) \left(\frac{\eta(s)}{s}\right)^{p-1} \mathrm{d}s$$

and so

$$u'''\left(\zeta\right) \ge u\left(\zeta\right) \left(\frac{m}{a\left(\zeta\right)} \int_{\zeta}^{\infty} q\left(s\right) \left(\frac{\eta\left(s\right)}{s}\right)^{p-1} \mathrm{d}s\right)^{1/(p-1)}$$

Integrating again from ζ to ∞ , we get

$$u''(\zeta) + u(\zeta) \int_{\zeta}^{\infty} \left(\frac{m}{a(\varsigma)} \int_{\varsigma}^{\infty} q(s) \left(\frac{\eta(s)}{s} \right)^{p-1} \mathrm{d}s \right)^{1/(p-1)} \mathrm{d}\varsigma \le 0.$$
(21)

Combining (20) and (21), we find

$$\psi'(\zeta) \leq \frac{\vartheta'(\zeta)}{\vartheta(\zeta)}\psi(\zeta) - \vartheta(\zeta)\int_{\zeta}^{\infty} \left(\frac{m}{a(\zeta)}\int_{\zeta}^{\infty}q(s)\left(\frac{\eta(s)}{s}\right)^{p-1}\mathrm{d}s\right)^{1/(p-1)}\mathrm{d}\zeta - \frac{1}{\vartheta(\zeta)}\psi(\zeta)^{2}.$$
 (22)

If $\vartheta(\zeta) = m = 1$ in (22), we get

$$\psi'(\zeta) + \psi^2(\zeta) + \int_{\zeta}^{\infty} \left(\frac{1}{a(\zeta)} \int_{\zeta}^{\infty} q(s) \left(\frac{\eta(s)}{s}\right)^{p-1} \mathrm{d}s\right)^{1/(p-1)} \mathrm{d}\zeta \le 0.$$

Thus, the Equation (13) is nonoscillatory, which is a contradiction. The proof of the theorem is complete. $\ \Box$

Next, we obtain the following Hille and Nehari type oscillation criteria for (1) with p = 2.

Theorem 2. Let p = 2, m = 1. Assume that

$$\int_{\zeta_0}^{\infty} \frac{\theta \zeta^2}{2a\left(\zeta\right)} \mathrm{d}\zeta = \infty$$

and

$$\liminf_{\zeta \to \infty} \left(\int_{\zeta_0}^{\zeta} \frac{\theta s^2}{2a(s)} \mathrm{d}s \right) \int_{\zeta}^{\infty} q(s) \left(\frac{\eta^3(s)}{s^3} \right) \mathrm{d}s > \frac{1}{4}, \tag{23}$$

for some constant $\theta \in (0, 1)$,

$$\liminf_{\zeta \to \infty} \zeta \int_{\zeta_0}^{\zeta} \int_{v}^{\infty} \left(\frac{1}{a(\varsigma)} \int_{\varsigma}^{\infty} q(s) \left(\frac{\eta(s)}{s} \right) ds \right) d\zeta dv > \frac{1}{4},$$
(24)

then all solutions of (1) is oscillatory.

In this theorem, we use the integral averaging technique:

Theorem 3. Let (2) holds. If there exist positive functions δ , $\vartheta \in C^1([\zeta_0, \infty), \mathbb{R})$ such that

$$\limsup_{\zeta \to \infty} \frac{1}{H_1(\zeta, \zeta_1)} \int_{\zeta_1}^{\zeta} \left(H_1(\zeta, s) \, m\delta\left(s\right) q\left(s\right) \left(\frac{\eta^3\left(s\right)}{s^3}\right)^{p-1} - \pi\left(s\right) \right) \mathrm{d}s = \infty$$
(25)

and

$$\limsup_{\zeta \to \infty} \frac{1}{H_2(\zeta,\zeta_1)} \int_{\zeta_1}^{\zeta} \left(H_2(\zeta,s) \,\vartheta(s) \,\omega(s) - \frac{\vartheta(s) \,h_2^2(\zeta,s)}{4} \right) \mathrm{d}s = \infty, \tag{26}$$

where

$$\pi\left(s\right) = \frac{h_{1}^{p}\left(\zeta,s\right)H_{1}^{p-1}\left(\zeta,s\right)}{p^{p}}\frac{2^{p-1}\delta\left(s\right)a\left(s\right)}{\left(\theta s^{2}\right)^{p-1}},$$

for all $\theta \in (0,1)$, and

$$\varpi(s) = \left(\frac{1}{a(\varsigma)} \int_{\varsigma}^{\infty} q(s) \left(\frac{\eta(s)}{s}\right)^{p-1} \mathrm{d}s\right)^{1/(p-1)} \mathrm{d}\varsigma,$$

then (1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 1. Assume that (S_1) holds. From Theorem 1, we get that (18) holds. Multiplying (18) by $H_1(\zeta, s)$ and integrating the resulting inequality from ζ_1 to ζ , we find that

$$\int_{\zeta_1}^{\zeta} H_1\left(\zeta,s\right) m\delta\left(s\right) q\left(s\right) \left(\frac{\eta^3\left(s\right)}{s^3}\right)^{p-1} \mathrm{d}s \quad \leq \quad \varphi\left(\zeta_1\right) H_1\left(\zeta,\zeta_1\right) + \int_{\zeta_1}^{\zeta} \left(\frac{\partial}{\partial s} H_1\left(\zeta,s\right) + \frac{\delta'\left(s\right)}{\delta\left(s\right)} H_1\left(\zeta,s\right)\right) \varphi\left(s\right) \mathrm{d}s \\ - \int_{\zeta_1}^{\zeta} \frac{\left(p-1\right) \theta s^2}{2\left(\delta\left(s\right) a\left(s\right)\right)^{\frac{1}{p-1}}} H_1\left(\zeta,s\right) \varphi^{\frac{p}{p-1}}\left(s\right) \mathrm{d}s.$$

From (10), we get

$$\int_{\zeta_{1}}^{\zeta} H_{1}(\zeta, s) \, m\delta(s) \, q(s) \left(\frac{\eta^{3}(s)}{s^{3}}\right)^{p-1} \mathrm{d}s \leq \varphi(\zeta_{1}) \, H_{1}(\zeta, \zeta_{1}) + \int_{\zeta_{1}}^{\zeta} h_{1}(\zeta, s) \, H_{1}^{(p-1)/p}(\zeta, s) \, \varphi(s) \, \mathrm{d}s \\
- \int_{\zeta_{1}}^{\zeta} \frac{(p-1) \, \theta s^{2}}{2 \left(\delta(s) \, a(s)\right)^{\frac{1}{p-1}}} H_{1}(\zeta, s) \, \varphi^{\frac{p}{p-1}}(s) \, \mathrm{d}s.$$
(27)

Using Lemma 1 with $V = (p-1) \theta s^2 / \left(2 \left(\delta(s) a(s) \right)^{\frac{1}{p-1}} \right) H_1(\zeta, s)$, $U = h_1(\zeta, s) H_1^{(p-1)/p}(\zeta, s)$ and $u = \varphi(s)$, we get

$$\begin{split} & h_{1}\left(\zeta,s\right)H_{1}^{(p-1)/p}\left(\zeta,s\right)\varphi\left(s\right) - \frac{(p-1)\,\theta s^{2}}{2\left(\delta\left(s\right)a\left(s\right)\right)^{\frac{1}{p-1}}}H_{1}\left(\zeta,s\right)\varphi^{\frac{p}{p-1}}\left(s\right) \\ & \leq \quad \frac{h_{1}^{p}\left(\zeta,s\right)H_{1}^{p-1}\left(\zeta,s\right)}{p^{p}}\frac{2^{p-1}\delta\left(s\right)a\left(s\right)}{\left(\theta s^{2}\right)^{p-1}}, \end{split}$$

which, with (27) gives

$$\frac{1}{H_{1}\left(\zeta,\zeta_{1}\right)}\int_{\zeta_{1}}^{\zeta}\left(H_{1}\left(\zeta,s\right)m\delta\left(s\right)q\left(s\right)\left(\frac{\eta^{3}\left(s\right)}{s^{3}}\right)^{p-1}-\pi\left(s\right)\right)\mathrm{d}s\leq\varphi\left(\zeta_{1}\right).$$

This contradicts (25).

Assume that (S_2) holds. From Theorem 1, (22) holds. Multiplying (22) by $H_2(\zeta, s)$ and integrating the resulting inequality from ζ_1 to ζ , we get

$$\begin{split} \int_{\zeta_1}^{\zeta} H_2\left(\zeta,s\right)\vartheta\left(s\right)\omega\left(s\right)\mathrm{d}s &\leq \psi\left(\zeta_1\right)H_2\left(\zeta,\zeta_1\right) \\ &+ \int_{\zeta_1}^{\zeta} \left(\frac{\partial}{\partial s}H_2\left(\zeta,s\right) + \frac{\vartheta'\left(s\right)}{\vartheta\left(s\right)}H_2\left(\zeta,s\right)\right)\psi\left(s\right)\mathrm{d}s \\ &- \int_{\zeta_1}^{\zeta}\frac{1}{\vartheta\left(s\right)}H_2\left(\zeta,s\right)\psi^2\left(s\right)\mathrm{d}s. \end{split}$$

Thus, from (11), we get

$$\begin{split} \int_{\zeta_{1}}^{\zeta} H_{2}\left(\zeta,s\right)\vartheta\left(s\right)\varpi\left(s\right)ds &\leq \psi\left(\zeta_{1}\right)H_{2}\left(\zeta,\zeta_{1}\right) + \int_{\zeta_{1}}^{\zeta}h_{2}\left(\zeta,s\right)\sqrt{H_{2}\left(\zeta,s\right)}\psi\left(s\right)ds \\ &- \int_{\zeta_{1}}^{\zeta}\frac{1}{\vartheta\left(s\right)}H_{2}\left(\zeta,s\right)\psi^{2}\left(s\right)ds \\ &\leq \psi\left(\zeta_{1}\right)H_{2}\left(\zeta,\zeta_{1}\right) + \int_{\zeta_{1}}^{\zeta}\frac{\vartheta\left(s\right)h_{2}^{2}\left(\zeta,s\right)}{4}ds \end{split}$$

and so

$$\frac{1}{H_{2}\left(\zeta,\zeta_{1}\right)}\int_{\zeta_{1}}^{\zeta}\left(H_{2}\left(\zeta,s\right)\vartheta\left(s\right)\varpi\left(s\right)-\frac{\vartheta\left(s\right)h_{2}^{2}\left(\zeta,s\right)}{4}\right)\mathrm{d}s\leq\psi\left(\zeta_{1}\right),$$

which contradicts (26). The proof of the theorem is complete. \Box

Example 1. Consider the equation

$$u^{(4)}(\zeta) + \frac{q_0}{\zeta^4} u\left(\frac{9\zeta}{10}\right) = 0, \ \zeta \ge 1, \ q_0 > 0.$$
⁽²⁸⁾

Let p = 2, $a(\zeta) = 1$, $q(\zeta) = q_0/\zeta^4$ and $\eta(\zeta) = 9\zeta/10$. If we set m = 1, $H_1(\zeta,s) = (\zeta - s)^2$ and $\delta(s) = s^3$, then $h_1(\zeta,s) = (\zeta - s)(5 - 3\zeta s^{-1})$, and conditions (23) becomes

$$\begin{split} &\limsup_{\zeta \to \infty} \frac{1}{H_1(\zeta,\zeta_1)} \int_{\zeta_1}^{\zeta} \left(H_1(\zeta,s) \, m\delta(s) \, q(s) \left(\frac{\eta^3(s)}{s^3}\right)^{p-1} - \pi(s) \right) \mathrm{d}s \\ &= \limsup_{\zeta \to \infty} \frac{1}{(\zeta-1)^2} \int_{\zeta_1}^{\zeta} \left(\frac{729q_0\zeta^2 s^{-1}}{1000} + \frac{729q_0s}{1000} - \frac{729q_0\zeta}{500} - \frac{s\left(25 + 9\zeta^2 s^{-2} - 30\zeta s^{-1}\right)}{2\theta} \right) \mathrm{d}s \\ &= \infty, \end{split}$$

if $q_0 > 500 / (81\theta)$ *for some* $\theta \in (0, 1)$ *, letting* $\theta = 81/82$ *, then* $q_0 > 6.25$ *.*

Also, set $H_2(\zeta,s) = (\zeta-s)^2$ and $\vartheta(s) = s$, then $h_2(\zeta,s) = (\zeta-s)(3-\zeta s^{-1})$, $\varpi(s) = 3q_0/(20\zeta^2)$ and conditions (24) becomes

$$\begin{split} \limsup_{\zeta \to \infty} \frac{1}{H_2(\zeta, \zeta_1)} \int_{\zeta_1}^{\zeta} \left(H_2(\zeta, s) \,\vartheta\left(s\right) \,\omega\left(s\right) - \frac{\vartheta\left(s\right) h_2^2(\zeta, s)}{4} \right) ds \\ &= \limsup_{\zeta \to \infty} \frac{1}{(\zeta - 1)^2} \int_{\zeta_1}^{\zeta} \left(\frac{3q_0 \zeta^2 s^{-1}}{20} + \frac{3q_0 s}{20} - \frac{3q_0 \zeta}{10} - \frac{s\left(9 - 6\zeta s^{-1} + \zeta^2 s^{-2}\right)}{4} \right) ds \\ &= \infty, \end{split}$$

if $q_0 > 5/3$, *From Theorem 3, all solutions of (28) are oscillatory, if* $q_0 > 6.25$.

Remark 1. By comparing our results with previous results 1. By applying condition (3) in [28], we get

$$q_0 > 1728$$
,

2. By applying condition (4) in [29], we get

$$q_0 > 919.6$$
,

3. By applying condition (5) in [30], we get

$$q_0 > 28.73$$
,

4. By applying condition (7) in [31], we get

$$q_0 > 28.73$$
,

5. The condition (8) in [32] cannot be applied to Equation (28) due to the arbitrariness in the choice of θ . Therefore, our result complement results [28–32].

Symmetry 2020, 12, 1112

Example 2. Let the equation

$$u^{(4)}(\zeta) + \frac{q_0}{\zeta^4} u\left(\frac{1}{2}\zeta\right) = 0, \ \zeta \ge 1, \ q_0 > 0.$$
⁽²⁹⁾

Let $a(\zeta) = 1$, $q(\zeta) = q_0/\zeta^4$ and $\eta(\zeta) = \zeta/2$. If we set m = 1, then condition (23) becomes

$$\liminf_{\zeta \to \infty} \left(\int_{\zeta_0}^{\zeta} \frac{\theta s^2}{2a(s)} ds \right) \int_{\zeta}^{\infty} q(s) \left(\frac{\eta^3(s)}{s^3} \right) ds = \liminf_{\zeta \to \infty} \left(\frac{\zeta^3}{3} \right) \int_{\zeta}^{\infty} \frac{q_0}{8s^4} ds$$
$$= \frac{q_0}{72} > \frac{1}{4}$$

and condition (24) becomes

$$\begin{split} \liminf_{\zeta \to \infty} \zeta \int_{\zeta_0}^{\zeta} \int_{v}^{\infty} \left(\frac{1}{a(\varsigma)} \int_{\varsigma}^{\infty} q(s) \left(\frac{\eta(s)}{s} \right) \mathrm{d}s \right) \mathrm{d}\varsigma \mathrm{d}v &= \liminf_{\zeta \to \infty} \zeta \left(\frac{q_0}{12\zeta} \right) \\ &= \frac{q_0}{12} > \frac{1}{4}. \end{split}$$

Hence, by Theorem 2, all solution equation (29) is oscillatory if $q_0 > 18$ *.*

Remark 2. We point out that continuing this line of work, we can have oscillatory results for a fourth order equation of the type:

$$\left(a\left(\zeta\right)\left|u^{\prime\prime\prime}\left(\zeta\right)\right|^{p-2}u^{\prime\prime\prime}\left(\zeta\right)\right)' + \sum_{i=1}^{m}q_{i}\left(\zeta\right)\left|u\left(\eta_{i}\left(\zeta\right)\right)\right|^{p-2}u\left(\eta_{i}\left(\zeta\right)\right) = 0, \text{ where } \zeta \geq \zeta_{0}, m \geq 1,$$

under the condition

$$\int_{\zeta_0}^\infty \frac{1}{a^{1/(p-1)}(s)} \mathrm{d} s < \infty.$$

4. Conclusions

In this article, we studied some oscillation conditions for 4th-order differential equations by the comparison method, Riccati technique and integral averaging technique.

Further, in the future work we study Equation (1) under the condition $\int_{\zeta_0}^{\infty} \frac{1}{a^{1/(p-1)}(s)} ds < \infty$.

Author Contributions: O.B.: Writing original draft, writing review and editing. M.P.: Formal analysis, writing review and editing, funding and supervision. All authors have read and agreed to the published version of the manuscript.

Funding: The authors received no direct funding for this work.

Acknowledgments: The authors thank the reviewers for for their useful comments, which led to the improvement of the content of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977.
- 2. Agarwal, R.; Grace, S.; O'Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2000.
- 3. Aronsson, G.; Janfalk, U. On Hele-Shaw flow of power-law fluids. *Eur. J. Appl. Math.* **1992**, *3*, 343–366. [CrossRef]
- 4. Walcher, S. Symmetries of Ordinary Differential Equations: A Short Introduction. *arXiv* 2019, arXiv:1911.01053.

- 5. Bazighifan, O.; Abdeljawad, T. Improved Approach for Studying Oscillatory Properties of Fourth-Order Advanced Differential Equations with p-Laplacian Like Operator. *Mathematics* **2020**, *8*, 656. [CrossRef]
- 6. Bazighifan, O.; Ahmed, H.; Yao, S. New Oscillation Criteria for Advanced Differential Equations of Fourth Order. *Mathematics* **2020**, *8*, 728. [CrossRef]
- Agarwal, R.; Shieh, S.L.; Yeh, C.C. Oscillation criteria for second order retarde ddifferential equations. *Math. Comput. Model.* 1997, 26, 1–11. [CrossRef]
- 8. Baculikova, B.; Dzurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. *Math. Slovaca* **2012**, *187*, 387–400. [CrossRef]
- 9. Bazighifan, O.; Minhos, F.; Moaaz, O. Sufficient Conditions for Oscillation of Fourth-Order Neutral Differential Equations with Distributed Deviating Arguments. *Axioms* **2020**, *9*, 39. [CrossRef]
- 10. Bazighifan, O.; Postolache, M. An improved conditions for oscillation of functional nonlinear differential equations. *Mathematics* **2020**, *8*, 552. [CrossRef]
- 11. Bazighifan, O.; Cesarano, C. A Philos-Type Oscillation Criteria for Fourth-Order Neutral Differential Equations. *Symmetry* **2020**, *12*, 379. [CrossRef]
- 12. Bazighifan, O. An Approach for Studying Asymptotic Properties of Solutions of Neutral Differential Equations. *Symmetry* **2020**, *12*, 555. [CrossRef]
- 13. Bazighifan, O.; Elabbasy, E.M.; Moaaz, O. Oscillation of higher-order differential equations with distributed delay. *J. Inequal. Appl.* **2019**, *55*, 1–9. [CrossRef]
- 14. Bazighifan, O.; Ramos, H. On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term. *Appl. Math. Lett.* **2020**, *107*, 106431. [CrossRef]
- 15. Cesarano, C.; Pinelas, S.; Al-Showaikh, F.; Bazighifan, O. Asymptotic Properties of Solutions of Fourth-Order Delay Differential Equations. *Symmetry* **2019**, *11*, 628. [CrossRef]
- 16. Bazighifan, O.; Dassios, I. On the Asymptotic Behavior of Advanced Differential Equations with a Non-Canonical Operator. *Appl. Sci.* **2020**, *10*, 3130. [CrossRef]
- 17. Bazighifan, O.; Kumam, P. Oscillation Theorems for Advanced Differential Equations with p-Laplacian Like Operators. *Mathematics* **2020**, *8*, 821. [CrossRef]
- 18. Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991.
- 19. Bazighifan, O.; Dassios, I. Riccati Technique and Asymptotic Behavior of Fourth-Order Advanced Differential Equations. *Mathematics* **2020**, *8*, 590. [CrossRef]
- 20. Bazighifan, O.; Ruggieri, M.; Scapellato, A. An Improved Criterion for the Oscillation of Fourth-Order Differential Equations. *Mathematics* **2020**, *8*, 610. [CrossRef]
- 21. Moaaz, O.; Kumam, P.; Bazighifan, O. On the Oscillatory Behavior of a Class of Fourth-Order Nonlinear Differential Equation. *Symmetry* **2020**, *12*, 524. [CrossRef]
- 22. Moaaz, O.; Elabbasy, E.M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. *Adv. Differ. Eq.* **2019**, *1*, 297. [CrossRef]
- 23. Nehari, Z. Oscillation criteria for second order linear differential equations. *Trans. Amer. Math. Soc.* **1957**, *85*, 428–445. [CrossRef]
- 24. Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. *Arch. Math.* **1981**, *36*, 168–178. [CrossRef]
- 25. Bazighifan, O. Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations. *Adv. Differ. Eq.* **2020**, 201, 1–12. [CrossRef]
- 26. Li, T.; Baculikova, B.; Dzurina, J.; Zhang, C. Oscillation of fourth order neutral differential equations with p-Laplacian like operators. *Bound. Value Probl.* **2014**, *56*, 41–58. [CrossRef]
- 27. Zhang, C.; Agarwal, R.P.; Li, T. Oscillation and asymptotic behavior of higher-order delay differential equations with p -Laplacian like operators. *J. Math. Anal. Appl.* **2014**, *409*, 1093–1106. [CrossRef]
- 28. Grace, S.R.; Lalli, B.S. Oscillation theorems for nth-order differential equations with deviating arguments. *Proc. Am. Math. Soc.* **1984**, *90*, 65–70.
- 29. Karpuz, B.; Ocalan, O.; Ozturk, S. Comparison theorems on the oscillation and asymptotic behavior of higher-order neutral differential equations. *Glasg. Math. J.* **2010**, *52*, 107–114. [CrossRef]
- 30. Zafer, A. Oscillation criteria for even order neutral differential equations. *Appl. Math. Lett.* **1998**, *11*, 21–25.[CrossRef]

- 31. Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. *Appl. Math. Lett.* **2013**, *26*, 179–183. [CrossRef]
- 32. Moaaz, O.; El-Nabulsi, R.A.; Bazighifan, O.; Muhib, A. New Comparison Theorems for the Even-Order Neutral Delay Differential Equation. *Symmetry* **2020**, *12*, 764. [CrossRef]

 \odot 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).