Article

Multiple Techniques for Studying Asymptotic Properties of a Class of Differential Equations with Variable Coefficients

Omar Bazighifan ${ }^{1,2, *, t(\mathbb{D})}$ and Mihai Postolache ${ }^{3,4,5, *, 4(\mathbb{D})}$
1 Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, Yemen
2 Department of Mathematics, Faculty of Education, Seiyun University, Hadhramout 50512, Yemen
3 Center for General Education, China Medical University, Taichung 40402, Taiwan
4 Department of Mathematics and Informatics, University Politehnica of Bucharest, 060042 Bucharest, Romania
5 Gh. Mihoc-C. Iacob Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, 050711 Bucharest, Romania
* Correspondence: o.bazighifan@gmail.com (O.B.); mihai@mathem.pub.ro (M.P.)
\dagger These authors contributed equally to this work.

Received: 16 April 2020; Accepted: 11 June 2020; Published: 3 July 2020

Abstract

This manuscript is concerned with the oscillatory properties of 4th-order differential equations with variable coefficients. The main aim of this paper is the combination of the following three techniques used: the comparison method, Riccati technique and integral averaging technique. Two examples are given for applying the criteria.

Keywords: delay differential equations; oscillation; fourth-order

1. Introduction

Differential equations of fourth-order have applications in dynamical systems, optimization, and in the mathematical modeling of engineering problems [1]. The p-Laplace equations have some significant applications in elasticity theory and continuum mechanics, see, for example, [2,3]. Symmetry plays an important role in determining the right way to study these equations [4]. The main aim of this paper is the combination of the following three techniques used:
(a) The comparison method.
(b) Riccati technique.
(c) Integral averaging technique.

We consider the following fourth-order delay differential equations with p-Laplacian like operators

$$
\begin{equation*}
\left(a(\zeta)\left|u^{\prime \prime \prime}(\zeta)\right|^{p-2} u^{\prime \prime \prime}(\zeta)\right)^{\prime}+q(\zeta) g(u(\eta(\zeta)))=0 \tag{1}
\end{equation*}
$$

where $\zeta \geq \zeta_{0}$. Throughout this work, we suppose that:
K1: $p>1$ is a real number.
K2: $a \in C^{1}\left(\left[\zeta_{0}, \infty\right), \mathbb{R}\right), a(\zeta)>0, a^{\prime}(\zeta) \geq 0$ and under the condition

$$
\begin{equation*}
\int_{\zeta_{0}}^{\infty} \frac{1}{a^{1 /(p-1)}(s)} \mathrm{d} s=\infty, \tag{2}
\end{equation*}
$$

K3: $q \in C\left(\left[\zeta_{0}, \infty\right), \mathbb{R}\right), q(\zeta)>0$,

K4: $\eta \in C\left(\left[\zeta_{0}, \infty\right), \mathbb{R}\right), \eta(\zeta) \leq \zeta, \lim _{\zeta \rightarrow \infty} \eta(\zeta)=\infty$,
K5: $g \in C(\mathbb{R}, \mathbb{R})$ such that $g(u) \geq m|u|^{p-2} u>0$, for $u \neq 0$ and m is a constant.
Definition 1. The function $u \in C^{3}\left[\zeta_{u}, \infty\right), \zeta_{u} \geq \zeta_{0}$ is called a solution of (1), if $a(\zeta)\left|u^{\prime \prime \prime}(\zeta)\right|^{p-2} u^{\prime \prime \prime}(\zeta) \in$ $C^{1}\left[\zeta_{u}, \infty\right)$, and $u(\zeta)$ satisfies (1) on $\left[\zeta_{u}, \infty\right)$. Moreover, the equation (1) is oscillatory if all its solutions oscillate.

In the last few decades, there have been a constant interest to investigate the asymptotic property for oscillations of differential equation, see [5-25]. Furthermore, there are some results that study the oscillatory behavior of 4th-order equations with p-Laplacian, we refer the reader to [26,27].

Now the following results are presented.
Grace and Lalli [28], Karpuz et al. [29] and Zafer [30] studied the even-order equation

$$
u^{(\gamma)}(\zeta)+q(\zeta) u(\eta(\zeta))=0
$$

they used the Riccati substitution to find several oscillation criteria and established the following results, respectively:

$$
\begin{equation*}
\int_{\zeta_{0}}^{\infty}\left(\delta(s) q(s)-\frac{(\gamma-1)!\left(\delta^{\prime}(s)\right)^{2}}{2^{3-2 \gamma} \eta^{\gamma-2}(s) \eta^{\prime}(s) \delta(s)}\right) d s=\infty, \tag{3}
\end{equation*}
$$

where $\delta \in C^{1}\left(\left[\zeta_{0}, \infty\right),(0, \infty)\right)$.

$$
\begin{equation*}
\liminf _{\zeta \rightarrow \infty} \int_{\eta(\zeta)}^{\zeta} q(s) \eta^{\gamma-2}(s) d s>\frac{(\gamma-1) 2^{(\gamma-1)(\gamma-2)}}{\mathrm{e}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{\zeta \rightarrow \infty} \int_{\eta(\zeta)}^{\zeta} q(s) \eta^{\gamma-2}(s) d s>\frac{(\gamma-1)!}{\mathrm{e}} \tag{5}
\end{equation*}
$$

Zhang et al. [31,32] studied the even-order equation

$$
\begin{equation*}
\left(a(\zeta)\left(u^{(\gamma-1)}(\zeta)\right)^{\beta}\right)^{\prime}+q(\zeta) u^{\beta}(\eta(\zeta))=0 \tag{6}
\end{equation*}
$$

where β is a quotient of odd positive integers. They proved that it is oscillatory, if

$$
\begin{equation*}
\liminf _{\zeta \rightarrow \infty} \int_{\zeta}^{\eta(\zeta)} \frac{q(s)}{a(\eta(s))}\left(\eta^{\gamma-2}(s)\right)^{\beta} d s>\frac{((\gamma-1)!)^{\beta}}{e} \tag{7}
\end{equation*}
$$

where $\gamma \geq 2$ is even and they used the compare with first order equations. If there exists a function $\delta \in C^{1}\left(\left[\zeta_{0}, \infty\right),(0, \infty)\right)$ for all constants $M>0$ such that

$$
\begin{equation*}
\liminf _{\zeta \rightarrow \infty} \int_{\zeta_{0}}^{\infty} \delta(s)\left(q(s)-\frac{a(s)\left(\theta M \eta^{\gamma-2}(s) \eta^{\prime}(s)\right)^{1-p}}{p^{p}}\left(\frac{\delta^{\prime}(s)}{\delta(s)}-\frac{a(s)}{r(s)}\right)^{p}\right) d s=\infty_{,} \tag{8}
\end{equation*}
$$

for some constant $\theta \in(0,1)$.
Our aim in this work is to complement results in [28-32]. Two examples are given for applying the criteria.

2. Some Auxiliary Lemmas

Lemma 1. [13] Fixing $V>0$ and $U \geq 0$, we have that

$$
U x-V x^{(\beta+1) / \beta} \leq \frac{\beta^{\beta}}{(\beta+1)^{\beta+1}} \frac{U^{\beta+1}}{V^{\beta}}
$$

Lemma 2. [14] For $i=0,1, \ldots, \gamma$, let $u^{(i)}(\zeta)>0$, and $u^{(\gamma+1)}(\zeta)<0$, then

$$
\frac{u(\zeta)}{\zeta^{\gamma} / \gamma!} \geq \frac{u^{\prime}(\zeta)}{\zeta^{\gamma-1} /(\gamma-1)!}
$$

Lemma 3. [16] Suppose that u is an eventually positive solution of (1). Then, we distinguish the following situations:

$$
\begin{array}{ll}
\left(\mathbf{S}_{1}\right) & u(\zeta)>0, u^{\prime}(\zeta)>0, u^{\prime \prime}(\zeta)>0, \\
\mathbf{S}^{\prime \prime \prime}(\zeta)>0, & u^{(4)}(\zeta)<0, \\
\left(\mathbf{S}_{2}\right) & u(\zeta)>0, u^{\prime}(\zeta)>0, u^{\prime \prime}(\zeta)<0, \\
u^{\prime \prime \prime}(\zeta)>0, & u^{(4)}(\zeta)<0,
\end{array}
$$

for $\zeta \geq \zeta_{1}$, where $\zeta_{1} \geq \zeta_{0}$ is sufficiently large.

3. Main Results

Let the differential equation

$$
\begin{equation*}
\left[a(\zeta)\left(u^{\prime}(\zeta)\right)^{\beta}\right]^{\prime}+q(\zeta) u^{\beta}(g(\zeta))=0, \quad \zeta \geq \zeta_{0} \tag{9}
\end{equation*}
$$

where $a, q \in C\left(\left[\zeta_{0}, \infty\right), \mathbb{R}^{+}\right)$, is nonoscillatory if and only if $\zeta \geq \zeta_{0}$, and a function $\varsigma \in C^{1}([\zeta, \infty), \mathbb{R})$, satisfying the inequality

$$
\varsigma^{\prime}(\zeta)+\gamma a^{-1 / \beta}(\zeta)(\zeta(\zeta))^{(1+\beta) / \beta}+q(\zeta) \leq 0, \quad \text { on }[\zeta, \infty)
$$

Definition 2. Let

$$
D=\left\{(\zeta, s) \in \mathbb{R}^{2}: \zeta \geq s \geq \zeta_{0}\right\} \text { and } D_{0}=\left\{(\zeta, s) \in \mathbb{R}^{2}: \zeta>s \geq \zeta_{0}\right\}
$$

A kernel function $H_{i} \in C(D, \mathbb{R})$ is said to belong to the function class \Im, written by $H \in \Im$, if, for $i=1,2$,
(i) $H_{i}(\zeta, s)=0$ for $\zeta \geq \zeta_{0}, H_{i}(\zeta, s)>0,(\zeta, s) \in D_{0}$;
(ii) $H_{i}(\zeta, s)$ has a continuous and nonpositive partial derivative ∂H_{i} / ∂s on D_{0} and there exist functions $\delta, \vartheta \in C^{1}\left(\left[\zeta_{0}, \infty\right),(0, \infty)\right)$ and $h_{i} \in C\left(D_{0}, \mathbb{R}\right)$ such that

$$
\begin{equation*}
\frac{\partial}{\partial s} H_{1}(\zeta, s)+\frac{\delta^{\prime}(s)}{\delta(s)} H_{1}(\zeta, s)=h_{1}(\zeta, s) H_{1}^{\beta /(\beta+1)}(\zeta, s) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial s} H_{2}(\zeta, s)+\frac{\vartheta^{\prime}(s)}{\vartheta(s)} H_{2}(\zeta, s)=h_{2}(\zeta, s) \sqrt{H_{2}(\zeta, s)} \tag{11}
\end{equation*}
$$

Theorem 1. Let (2) holds. If the equations

$$
\begin{equation*}
\left(\frac{2 a^{\frac{1}{p-1}}(\zeta)}{\left(\theta \zeta^{2}\right)^{p-1}}\left(u^{\prime}(\zeta)\right)^{p-1}\right)^{\prime}+k q(\zeta)\left(\frac{\eta^{3}(\zeta)}{\zeta^{3}}\right)^{p-1} u^{p-1}(\zeta)=0 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{\prime \prime}(\zeta)+u(\zeta) \int_{\zeta}^{\infty}\left(\frac{1}{a(\zeta)} \int_{\zeta}^{\infty} q(s)\left(\frac{\eta(\zeta)}{\zeta}\right)^{p-1} \mathrm{~d} s\right)^{1 / p-1} \mathrm{~d} \varsigma=0 \tag{13}
\end{equation*}
$$

are oscillatory, then every solution of (1) is oscillatory.
Proof. Assume, for the sake of contradiction, that u is a positive solution of (1). Then, we let $u(\zeta)>0$ and $u(\eta(\zeta))>0$. By Lemma 3, we have $\left(\mathbf{S}_{1}\right)$ and $\left(\mathbf{S}_{2}\right)$.

Let case (\mathbf{S}_{1}) holds. Using [25], [Lemma 2.2.3], we find

$$
\begin{equation*}
u^{\prime}(\zeta) \geq \frac{\theta}{2} \zeta^{2} u^{\prime \prime \prime}(\zeta) \tag{14}
\end{equation*}
$$

for every $\theta \in(0,1)$.

From Lemma 2, we get

$$
\frac{u^{\prime}(\zeta)}{u(\zeta)} \leq \frac{3}{\zeta}
$$

Integrating from $\eta(\zeta)$ to ζ, we find

$$
\begin{equation*}
\frac{u(\eta(\zeta))}{u(\zeta)} \geq \frac{\eta^{3}(\zeta)}{\zeta^{3}} \tag{15}
\end{equation*}
$$

Defining

$$
\begin{equation*}
\varphi(\zeta):=\delta(\zeta)\left(\frac{a(\zeta)\left(u^{\prime \prime \prime}(\zeta)\right)^{p-1}}{u^{p-1}(\zeta)}\right), \varphi(\zeta)>0 \tag{16}
\end{equation*}
$$

where $\delta \in C^{1}\left(\left[\zeta_{0}, \infty\right),(0, \infty)\right)$ and

$$
\begin{aligned}
\varphi^{\prime}(\zeta)= & \delta^{\prime}(\zeta) \frac{a(\zeta)\left(u^{\prime \prime \prime}(\zeta)\right)^{p-1}}{u^{p-1}(\zeta)}+\delta(\zeta) \frac{\left(a\left(u^{\prime \prime \prime}\right)^{p-1}\right)^{\prime}(\zeta)}{u^{p-1}(\zeta)} \\
& -(p-1) \delta(\zeta) \frac{u^{p-2}(\zeta) u^{\prime}(\zeta) a(\zeta)\left(u^{\prime \prime \prime}(\zeta)\right)^{p-1}}{u^{2(p-1)}(\zeta)}
\end{aligned}
$$

Combining (14) and (16), we obtain

$$
\begin{align*}
\varphi^{\prime}(\zeta) \leq & \frac{\delta_{+}^{\prime}(\zeta)}{\delta(\zeta)} \varphi(\zeta)+\delta(\zeta) \frac{\left(a(\zeta)\left(u^{\prime \prime \prime}(\zeta)\right)^{p-1}\right)^{\prime}}{u^{p-1}(\zeta)} \\
& -(p-1) \delta(\zeta) \frac{\theta}{2} \zeta^{2} \frac{a(\zeta)\left(u^{\prime \prime \prime}(\zeta)\right)^{p}}{u^{p}(\zeta)} \\
\leq & \frac{\delta^{\prime}(\zeta)}{\delta(\zeta)} \varphi(\zeta)+\delta(\zeta) \frac{\left(a(\zeta)\left(u^{\prime \prime \prime}(\zeta)\right)^{\beta}\right)^{\prime}}{u^{\beta}(\zeta)} \\
& -\frac{(p-1) \theta \zeta^{2}}{2(\delta(\zeta) a(\zeta))^{\frac{1}{p-1}}} \varphi^{\frac{p}{p-1}}(\zeta) \tag{17}
\end{align*}
$$

From (1) and (17), we find

$$
\varphi^{\prime}(\zeta) \leq \frac{\delta^{\prime}(\zeta)}{\delta(\zeta)} \varphi(\zeta)-m \delta(\zeta) \frac{q(\zeta) u^{p-1}(\eta(\zeta))}{u^{p-1}(\zeta)}-\frac{(p-1) \theta \zeta^{2}}{2(\delta(\zeta) a(\zeta))^{\frac{1}{p-1}}} \varphi^{\frac{p}{p-1}}(\zeta)
$$

From (15), we have

$$
\begin{equation*}
\varphi^{\prime}(\zeta) \leq \frac{\delta^{\prime}(\zeta)}{\delta(\zeta)} \varphi(\zeta)-m \delta(\zeta) q(\zeta)\left(\frac{\eta^{3}(\zeta)}{\zeta^{3}}\right)^{p-1}-\frac{(p-1) \theta \zeta^{2}}{2(\delta(\zeta) a(\zeta))^{\frac{1}{p-1}}} \varphi^{\frac{p}{p-1}}(\zeta) \tag{18}
\end{equation*}
$$

Let $\delta(\zeta)=m=1$ in (18), we have

$$
\varphi^{\prime}(\zeta)+\frac{(p-1) \theta \zeta^{2}}{2 a^{\frac{1}{p-1}}(\zeta)} \varphi^{\frac{p}{p-1}}(\zeta)+q(\zeta)\left(\frac{\eta^{3}(\zeta)}{\zeta^{3}}\right)^{p-1} \leq 0
$$

Hence, the equation (12) is nonoscillatory, which is a contradiction.
Let case (\mathbf{S}_{2}) holds. By Lemma 2, we find

$$
\frac{u^{\prime}(\zeta)}{u(\zeta)} \leq \frac{1}{\zeta}
$$

Integrating again from $\eta(\zeta)$ to ζ, we find

$$
\begin{equation*}
\frac{u(\eta(\zeta))}{u(\zeta)} \geq \frac{\eta(\zeta)}{\zeta} \tag{19}
\end{equation*}
$$

Defining

$$
\psi(\zeta):=\vartheta(\zeta) \frac{u^{\prime}(\zeta)}{u(\zeta)}>0
$$

where $\vartheta \in C^{1}\left(\left[\zeta_{0}, \infty\right),(0, \infty)\right)$ and

$$
\begin{equation*}
\psi^{\prime}(\zeta)=\frac{\vartheta^{\prime}(\zeta)}{\vartheta(\zeta)} \psi(\zeta)+\vartheta(\zeta) \frac{u^{\prime \prime}(\zeta)}{u(\zeta)}-\frac{1}{\vartheta(\zeta)} \psi(\zeta)^{2} . \tag{20}
\end{equation*}
$$

Integrating (1) from ζ to x and using $u^{\prime}(\zeta)>0$, we have

$$
a(x)\left(u^{\prime \prime \prime}(x)\right)^{p-1}-a(\zeta)\left(u^{\prime \prime \prime}(\zeta)\right)^{p-1}=-\int_{\zeta}^{x} q(s) g(u(\eta(s))) d s
$$

From (19), we get

$$
a(x)\left(u^{\prime \prime \prime}(x)\right)^{p-1}-a(\zeta)\left(u^{\prime \prime \prime}(\zeta)\right)^{p-1} \leq-k y^{p-1}(\zeta) \int_{\zeta}^{x} q(s)\left(\frac{\eta(s)}{s}\right)^{p-1} d s
$$

Letting $x \rightarrow \infty$, we have

$$
a(\zeta)\left(u^{\prime \prime \prime}(\zeta)\right)^{p-1} \geq k y^{p-1}(\zeta) \int_{\zeta}^{\infty} q(s)\left(\frac{\eta(s)}{s}\right)^{p-1} \mathrm{~d} s
$$

and so

$$
u^{\prime \prime \prime}(\zeta) \geq u(\zeta)\left(\frac{m}{a(\zeta)} \int_{\zeta}^{\infty} q(s)\left(\frac{\eta(s)}{s}\right)^{p-1} \mathrm{~d} s\right)^{1 /(p-1)}
$$

Integrating again from ζ to ∞, we get

$$
\begin{equation*}
u^{\prime \prime}(\zeta)+u(\zeta) \int_{\zeta}^{\infty}\left(\frac{m}{a(\varsigma)} \int_{\varsigma}^{\infty} q(s)\left(\frac{\eta(s)}{s}\right)^{p-1} \mathrm{~d} s\right)^{1 /(p-1)} \mathrm{d} \varsigma \leq 0 \tag{21}
\end{equation*}
$$

Combining (20) and (21), we find

$$
\begin{equation*}
\psi^{\prime}(\zeta) \leq \frac{\vartheta^{\prime}(\zeta)}{\vartheta(\zeta)} \psi(\zeta)-\vartheta(\zeta) \int_{\zeta}^{\infty}\left(\frac{m}{a(\zeta)} \int_{\zeta}^{\infty} q(s)\left(\frac{\eta(s)}{s}\right)^{p-1} \mathrm{~d} s\right)^{1 /(p-1)} \mathrm{d} \zeta-\frac{1}{\vartheta(\zeta)} \psi(\zeta)^{2} \tag{22}
\end{equation*}
$$

If $\vartheta(\zeta)=m=1$ in (22), we get

$$
\psi^{\prime}(\zeta)+\psi^{2}(\zeta)+\int_{\zeta}^{\infty}\left(\frac{1}{a(\varsigma)} \int_{\varsigma}^{\infty} q(s)\left(\frac{\eta(s)}{s}\right)^{p-1} \mathrm{~d} s\right)^{1 /(p-1)} \mathrm{d} \varsigma \leq 0
$$

Thus, the Equation (13) is nonoscillatory, which is a contradiction. The proof of the theorem is complete.

Next, we obtain the following Hille and Nehari type oscillation criteria for (1) with $p=2$.
Theorem 2. Let $p=2, m=1$. Assume that

$$
\int_{\zeta_{0}}^{\infty} \frac{\theta \zeta^{2}}{2 a(\zeta)} \mathrm{d} \zeta=\infty
$$

and

$$
\begin{equation*}
\liminf _{\zeta \rightarrow \infty}\left(\int_{\zeta_{0}}^{\zeta} \frac{\theta s^{2}}{2 a(s)} \mathrm{d} s\right) \int_{\zeta}^{\infty} q(s)\left(\frac{\eta^{3}(s)}{s^{3}}\right) \mathrm{d} s>\frac{1}{4} \tag{23}
\end{equation*}
$$

for some constant $\theta \in(0,1)$,

$$
\begin{equation*}
\liminf _{\zeta \rightarrow \infty} \zeta \int_{\zeta_{0}}^{\zeta} \int_{v}^{\infty}\left(\frac{1}{a(\varsigma)} \int_{\zeta}^{\infty} q(s)\left(\frac{\eta(s)}{s}\right) \mathrm{d} s\right) \mathrm{d} \varsigma \mathrm{~d} v>\frac{1}{4} \tag{24}
\end{equation*}
$$

then all solutions of (1) is oscillatory.
In this theorem, we use the integral averaging technique:
Theorem 3. Let (2) holds. If there exist positive functions $\delta, \vartheta \in C^{1}\left(\left[\zeta_{0}, \infty\right), \mathbb{R}\right)$ such that

$$
\begin{equation*}
\limsup _{\zeta \rightarrow \infty} \frac{1}{H_{1}\left(\zeta, \zeta_{1}\right)} \int_{\zeta_{1}}^{\zeta}\left(H_{1}(\zeta, s) m \delta(s) q(s)\left(\frac{\eta^{3}(s)}{s^{3}}\right)^{p-1}-\pi(s)\right) \mathrm{d} s=\infty \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{\zeta \rightarrow \infty} \frac{1}{H_{2}\left(\zeta, \zeta_{1}\right)} \int_{\zeta_{1}}^{\zeta}\left(H_{2}(\zeta, s) \vartheta(s) \omega(s)-\frac{\vartheta(s) h_{2}^{2}(\zeta, s)}{4}\right) \mathrm{d} s=\infty, \tag{26}
\end{equation*}
$$

where

$$
\pi(s)=\frac{h_{1}^{p}(\zeta, s) H_{1}^{p-1}(\zeta, s)}{p^{p}} \frac{2^{p-1} \delta(s) a(s)}{\left(\theta s^{2}\right)^{p-1}}
$$

for all $\theta \in(0,1)$, and

$$
\omega(s)=\left(\frac{1}{a(\varsigma)} \int_{\zeta}^{\infty} q(s)\left(\frac{\eta(s)}{s}\right)^{p-1} \mathrm{~d} s\right)^{1 /(p-1)} \mathrm{d} \varsigma
$$

then (1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 1. Assume that $\left(\mathbf{S}_{1}\right)$ holds. From Theorem 1, we get that (18) holds. Multiplying (18) by $H_{1}(\zeta, s)$ and integrating the resulting inequality from ζ_{1} to ζ, we find that

$$
\begin{aligned}
\int_{\zeta_{1}}^{\zeta} H_{1}(\zeta, s) m \delta(s) q(s)\left(\frac{\eta^{3}(s)}{s^{3}}\right)^{p-1} \mathrm{~d} s \leq & \varphi\left(\zeta_{1}\right) H_{1}\left(\zeta, \zeta \zeta_{1}\right)+\int_{\zeta_{1}}^{\zeta}\left(\frac{\partial}{\partial s} H_{1}(\zeta, s)+\frac{\delta^{\prime}(s)}{\delta(s)} H_{1}(\zeta, s)\right) \varphi(s) \mathrm{d} s \\
& -\int_{\zeta_{1}}^{\zeta} \frac{(p-1) \theta s^{2}}{2(\delta(s) a(s))^{\frac{1}{p-1}}} H_{1}(\zeta, s) \varphi^{\frac{p}{p-1}}(s) \mathrm{d} s
\end{aligned}
$$

From (10), we get

$$
\begin{align*}
\int_{\zeta_{1}}^{\zeta} H_{1}(\zeta, s) m \delta(s) q(s)\left(\frac{\eta^{3}(s)}{s^{3}}\right)^{p-1} \mathrm{~d} s \leq & \varphi\left(\zeta_{1}\right) H_{1}\left(\zeta, \zeta_{1}\right)+\int_{\zeta_{1}}^{\zeta} h_{1}(\zeta, s) H_{1}^{(p-1) / p}(\zeta, s) \varphi(s) \mathrm{d} s \\
& -\int_{\zeta_{1}}^{\zeta} \frac{(p-1) \theta s^{2}}{2(\delta(s) a(s))^{\frac{1}{p-1}}} H_{1}(\zeta, s) \varphi^{\frac{p}{p-1}}(s) \mathrm{d} s \tag{27}
\end{align*}
$$

Using Lemma 1 with $V=(p-1) \theta s^{2} /\left(2(\delta(s) a(s))^{\frac{1}{p-1}}\right) H_{1}(\zeta, s), U=h_{1}(\zeta, s) H_{1}^{(p-1) / p}(\zeta, s)$ and $u=\varphi(s)$, we get

$$
\begin{aligned}
& h_{1}(\zeta, s) H_{1}^{(p-1) / p}(\zeta, s) \varphi(s)-\frac{(p-1) \theta s^{2}}{2(\delta(s) a(s))^{\frac{1}{p-1}}} H_{1}(\zeta, s) \varphi^{\frac{p}{p-1}}(s) \\
\leq & \frac{h_{1}^{p}(\zeta, s) H_{1}^{p-1}(\zeta, s)}{p^{p}} \frac{2^{p-1} \delta(s) a(s)}{\left(\theta s^{2}\right)^{p-1}}
\end{aligned}
$$

which, with (27) gives

$$
\frac{1}{H_{1}\left(\zeta, \zeta_{1}\right)} \int_{\zeta_{1}}^{\zeta}\left(H_{1}(\zeta, s) m \delta(s) q(s)\left(\frac{\eta^{3}(s)}{s^{3}}\right)^{p-1}-\pi(s)\right) \mathrm{d} s \leq \varphi\left(\zeta_{1}\right)
$$

This contradicts (25).
Assume that $\left(\mathbf{S}_{2}\right)$ holds. From Theorem 1, (22) holds. Multiplying (22) by $H_{2}(\zeta, s)$ and integrating the resulting inequality from ζ_{1} to ζ, we get

$$
\begin{aligned}
\int_{\zeta_{1}}^{\zeta} H_{2}(\zeta, s) \vartheta(s) \omega(s) \mathrm{d} s \leq & \psi\left(\zeta_{1}\right) H_{2}\left(\zeta, \zeta_{1}\right) \\
& +\int_{\zeta_{1}}^{\zeta}\left(\frac{\partial}{\partial s} H_{2}(\zeta, s)+\frac{\vartheta^{\prime}(s)}{\vartheta(s)} H_{2}(\zeta, s)\right) \psi(s) \mathrm{d} s \\
& -\int_{\zeta_{1}}^{\zeta} \frac{1}{\vartheta(s)} H_{2}(\zeta, s) \psi^{2}(s) \mathrm{d} s
\end{aligned}
$$

Thus, from (11), we get

$$
\begin{aligned}
\int_{\zeta_{1}}^{\zeta} H_{2}(\zeta, s) \vartheta(s) \omega(s) \mathrm{d} s \leq & \psi\left(\zeta_{1}\right) H_{2}\left(\zeta, \zeta_{1}\right)+\int_{\zeta_{1}}^{\zeta} h_{2}(\zeta, s) \sqrt{H_{2}(\zeta, s)} \psi(s) \mathrm{d} s \\
& -\int_{\zeta_{1}}^{\zeta} \frac{1}{\vartheta(s)} H_{2}(\zeta, s) \psi^{2}(s) \mathrm{d} s \\
\leq & \psi\left(\zeta_{1}\right) H_{2}\left(\zeta, \zeta_{1}\right)+\int_{\zeta_{1}}^{\zeta} \frac{\vartheta(s) h_{2}^{2}(\zeta, s)}{4} \mathrm{~d} s
\end{aligned}
$$

and so

$$
\frac{1}{H_{2}\left(\zeta, \zeta_{1}\right)} \int_{\zeta_{1}}^{\zeta}\left(H_{2}(\zeta, s) \vartheta(s) \omega(s)-\frac{\vartheta(s) h_{2}^{2}(\zeta, s)}{4}\right) \mathrm{d} s \leq \psi\left(\zeta_{1}\right)
$$

which contradicts (26). The proof of the theorem is complete.
Example 1. Consider the equation

$$
\begin{equation*}
u^{(4)}(\zeta)+\frac{q_{0}}{\zeta^{4}} u\left(\frac{9 \zeta}{10}\right)=0, \zeta \geq 1, q_{0}>0 \tag{28}
\end{equation*}
$$

Let $p=2, a(\zeta)=1, q(\zeta)=q_{0} / \zeta^{4}$ and $\eta(\zeta)=9 \zeta / 10$. If we set $m=1, H_{1}(\zeta, s)=(\zeta-s)^{2}$ and $\delta(s)=s^{3}$, then $h_{1}(\zeta, s)=(\zeta-s)\left(5-3 \zeta s^{-1}\right)$, and conditions (23) becomes

$$
\begin{aligned}
& \limsup _{\zeta \rightarrow \infty} \frac{1}{H_{1}\left(\zeta, \zeta_{1}\right)} \int_{\zeta_{1}}^{\zeta}\left(H_{1}(\zeta, s) m \delta(s) q(s)\left(\frac{\eta^{3}(s)}{s^{3}}\right)^{p-1}-\pi(s)\right) \mathrm{d} s \\
= & \limsup _{\zeta \rightarrow \infty} \frac{1}{(\zeta-1)^{2}} \int_{\zeta_{1}}^{\zeta}\left(\frac{729 q_{0} \zeta^{2} s^{-1}}{1000}+\frac{729 q_{0} s}{1000}-\frac{729 q_{0} \zeta}{500}-\frac{s\left(25+9 \zeta^{2} s^{-2}-30 \zeta s^{-1}\right)}{2 \theta}\right) \mathrm{d} s \\
= & \infty,
\end{aligned}
$$

if $q_{0}>500 /(81 \theta)$ for some $\theta \in(0,1)$, letting $\theta=81 / 82$, then $q_{0}>6.25$.
Also, set $H_{2}(\zeta, s)=(\zeta-s)^{2}$ and $\vartheta(s)=s$, then $h_{2}(\zeta, s)=(\zeta-s)\left(3-\zeta s^{-1}\right), \omega(s)=$ $3 q_{0} /\left(20 \zeta^{2}\right)$ and conditions (24) becomes

$$
\begin{aligned}
& \limsup _{\zeta \rightarrow \infty} \frac{1}{H_{2}\left(\zeta, \zeta \zeta_{1}\right)} \int_{\zeta_{1}}^{\zeta}\left(H_{2}(\zeta, s) \vartheta(s) \omega(s)-\frac{\vartheta(s) h_{2}^{2}(\zeta, s)}{4}\right) \mathrm{d} s \\
= & \limsup _{\zeta \rightarrow \infty} \frac{1}{(\zeta-1)^{2}} \int_{\zeta_{1}}^{\zeta}\left(\frac{3 q_{0} \zeta^{2} s^{-1}}{20}+\frac{3 q_{0} s}{20}-\frac{3 q_{0} \zeta}{10}-\frac{s\left(9-6 \zeta s^{-1}+\zeta^{2} s^{-2}\right)}{4}\right) \mathrm{d} s \\
= & \infty,
\end{aligned}
$$

if $q_{0}>5 / 3$, From Theorem 3, all solutions of (28) are oscillatory, if $q_{0}>6.25$.
Remark 1. By comparing our results with previous results

1. By applying condition (3) in [28], we get

$$
q_{0}>1728
$$

2. By applying condition (4) in [29], we get

$$
q_{0}>919.6
$$

3. By applying condition (5) in [30], we get

$$
q_{0}>28.73
$$

4. By applying condition (7) in [31], we get

$$
q_{0}>28.73
$$

5. The condition (8) in [32] cannot be applied to Equation (28) due to the arbitrariness in the choice of θ. Therefore, our result complement results [28-32].

Example 2. Let the equation

$$
\begin{equation*}
u^{(4)}(\zeta)+\frac{q_{0}}{\zeta^{4}} u\left(\frac{1}{2} \zeta\right)=0, \zeta \geq 1, q_{0}>0 \tag{29}
\end{equation*}
$$

Let $a(\zeta)=1, q(\zeta)=q_{0} / \zeta^{4}$ and $\eta(\zeta)=\zeta / 2$. If we set $m=1$, then condition (23) becomes

$$
\begin{aligned}
\liminf _{\zeta \rightarrow \infty}\left(\int_{\zeta_{0}}^{\zeta} \frac{\theta s^{2}}{2 a(s)} \mathrm{d} s\right) \int_{\zeta}^{\infty} q(s)\left(\frac{\eta^{3}(s)}{s^{3}}\right) \mathrm{d} s & =\liminf _{\zeta \rightarrow \infty}\left(\frac{\zeta^{3}}{3}\right) \int_{\zeta}^{\infty} \frac{q_{0}}{8 s^{4}} d s \\
& =\frac{q_{0}}{72}>\frac{1}{4}
\end{aligned}
$$

and condition (24) becomes

$$
\begin{aligned}
\liminf _{\zeta \rightarrow \infty} \zeta \int_{\zeta_{0}}^{\zeta} \int_{v}^{\infty}\left(\frac{1}{a(\varsigma)} \int_{\zeta}^{\infty} q(s)\left(\frac{\eta(s)}{s}\right) \mathrm{d} s\right) \mathrm{d} \zeta \mathrm{~d} v & =\liminf _{\zeta \rightarrow \infty} \zeta\left(\frac{q_{0}}{12 \zeta}\right) \\
& =\frac{q_{0}}{12}>\frac{1}{4}
\end{aligned}
$$

Hence, by Theorem 2, all solution equation (29) is oscillatory if $q_{0}>18$.
Remark 2. We point out that continuing this line of work, we can have oscillatory results for a fourth order equation of the type:

$$
\left(a(\zeta)\left|u^{\prime \prime \prime}(\zeta)\right|^{p-2} u^{\prime \prime \prime}(\zeta)\right)^{\prime}+\sum_{i=1}^{m} q_{i}(\zeta)\left|u\left(\eta_{i}(\zeta)\right)\right|^{p-2} u\left(\eta_{i}(\zeta)\right)=0, \text { where } \zeta \geq \zeta_{0}, m \geq 1
$$

under the condition

$$
\int_{\zeta_{0}}^{\infty} \frac{1}{a^{1 /(p-1)}(s)} \mathrm{d} s<\infty .
$$

4. Conclusions

In this article, we studied some oscillation conditions for 4th-order differential equations by the comparison method, Riccati technique and integral averaging technique.

Further, in the future work we study Equation (1) under the condition $\int_{\zeta_{0}}^{\infty} \frac{1}{a^{1 /(p-1)(s)}} \mathrm{d} s<\infty$.
Author Contributions: O.B.: Writing original draft, writing review and editing. M.P.: Formal analysis, writing review and editing, funding and supervision. All authors have read and agreed to the published version of the manuscript.
Funding: The authors received no direct funding for this work.
Acknowledgments: The authors thank the reviewers for for their useful comments, which led to the improvement of the content of the paper.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977.
2. Agarwal, R.; Grace, S.; O'Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2000.
3. Aronsson, G.; Janfalk, U. On Hele-Shaw flow of power-law fluids. Eur. J. Appl. Math. 1992, 3, 343-366. [CrossRef]
4. Walcher, S. Symmetries of Ordinary Differential Equations: A Short Introduction. arXiv 2019, arXiv:1911.01053.
5. Bazighifan, O.; Abdeljawad, T. Improved Approach for Studying Oscillatory Properties of Fourth-Order Advanced Differential Equations with p-Laplacian Like Operator. Mathematics 2020, 8, 656. [CrossRef]
6. Bazighifan, O.; Ahmed, H.; Yao, S. New Oscillation Criteria for Advanced Differential Equations of Fourth Order. Mathematics 2020, 8, 728. [CrossRef]
7. Agarwal, R.; Shieh, S.L.; Yeh, C.C. Oscillation criteria for second order retarde ddifferential equations. Math. Comput. Model. 1997, 26, 1-11. [CrossRef]
8. Baculikova, B.; Dzurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. Math. Slovaca 2012, 187, 387-400. [CrossRef]
9. Bazighifan, O.; Minhos, F.; Moaaz, O. Sufficient Conditions for Oscillation of Fourth-Order Neutral Differential Equations with Distributed Deviating Arguments. Axioms 2020, 9, 39. [CrossRef]
10. Bazighifan, O.; Postolache, M. An improved conditions for oscillation of functional nonlinear differential equations. Mathematics 2020, 8, 552. [CrossRef]
11. Bazighifan, O.; Cesarano, C. A Philos-Type Oscillation Criteria for Fourth-Order Neutral Differential Equations. Symmetry 2020, 12, 379. [CrossRef]
12. Bazighifan, O. An Approach for Studying Asymptotic Properties of Solutions of Neutral Differential Equations. Symmetry 2020, 12, 555. [CrossRef]
13. Bazighifan, O.; Elabbasy, E.M.; Moaaz, O. Oscillation of higher-order differential equations with distributed delay. J. Inequal. Appl. 2019, 55, 1-9. [CrossRef]
14. Bazighifan, O.; Ramos, H. On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term. Appl. Math. Lett. 2020, 107, 106431. [CrossRef]
15. Cesarano, C.; Pinelas, S.; Al-Showaikh, F.; Bazighifan, O. Asymptotic Properties of Solutions of Fourth-Order Delay Differential Equations. Symmetry 2019, 11, 628. [CrossRef]
16. Bazighifan, O.; Dassios, I. On the Asymptotic Behavior of Advanced Differential Equations with a Non-Canonical Operator. Appl. Sci. 2020, 10, 3130. [CrossRef]
17. Bazighifan, O.; Kumam, P. Oscillation Theorems for Advanced Differential Equations with p-Laplacian Like Operators. Mathematics 2020, 8, 821. [CrossRef]
18. Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991.
19. Bazighifan, O.; Dassios, I. Riccati Technique and Asymptotic Behavior of Fourth-Order Advanced Differential Equations. Mathematics 2020, 8, 590. [CrossRef]
20. Bazighifan, O.; Ruggieri, M.; Scapellato, A. An Improved Criterion for the Oscillation of Fourth-Order Differential Equations. Mathematics 2020, 8, 610. [CrossRef]
21. Moaaz, O.; Kumam, P.; Bazighifan, O. On the Oscillatory Behavior of a Class of Fourth-Order Nonlinear Differential Equation. Symmetry 2020, 12, 524. [CrossRef]
22. Moaaz, O.; Elabbasy, E.M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. Adv. Differ. Eq. 2019, 1, 297. [CrossRef]
23. Nehari, Z. Oscillation criteria for second order linear differential equations. Trans. Amer. Math. Soc. 1957, 85, 428-445. [CrossRef]
24. Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. Arch. Math. 1981, 36, 168-178. [CrossRef]
25. Bazighifan, O. Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations. Adv. Differ. Eq. 2020, 201, 1-12. [CrossRef]
26. Li, T.; Baculikova, B.; Dzurina, J.; Zhang, C. Oscillation of fourth order neutral differential equations with p-Laplacian like operators. Bound. Value Probl. 2014, 56, 41-58. [CrossRef]
27. Zhang, C.; Agarwal, R.P.; Li, T. Oscillation and asymptotic behavior of higher-order delay differential equations with p-Laplacian like operators. J. Math. Anal. Appl. 2014, 409, 1093-1106. [CrossRef]
28. Grace, S.R.; Lalli, B.S. Oscillation theorems for nth-order differential equations with deviating arguments. Proc. Am. Math. Soc. 1984, 90, 65-70.
29. Karpuz, B.; Ocalan, O.; Ozturk, S. Comparison theorems on the oscillation and asymptotic behavior of higher-order neutral differential equations. Glasg. Math. J. 2010, 52, 107-114. [CrossRef]
30. Zafer, A. Oscillation criteria for even order neutral differential equations. Appl. Math. Lett. 1998, 11, 21-25.[CrossRef]
31. Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Math. Lett. 2013, 26, 179-183. [CrossRef]
32. Moaaz, O.; El-Nabulsi, R.A.; Bazighifan, O.; Muhib, A. New Comparison Theorems for the Even-Order Neutral Delay Differential Equation. Symmetry 2020, 12, 764. [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http:/ / creativecommons.org/licenses/by/4.0/).
