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Abstract: This manuscript is concerned with the oscillatory properties of 4th-order differential
equations with variable coefficients. The main aim of this paper is the combination of the following
three techniques used: the comparison method, Riccati technique and integral averaging technique.
Two examples are given for applying the criteria.
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1. Introduction

Differential equations of fourth-order have applications in dynamical systems, optimization,
and in the mathematical modeling of engineering problems [1]. The p-Laplace equations have
some significant applications in elasticity theory and continuum mechanics, see, for example, [2,3].
Symmetry plays an important role in determining the right way to study these equations [4]. The main
aim of this paper is the combination of the following three techniques used:

(a) The comparison method.
(b) Riccati technique.
(c) Integral averaging technique.

We consider the following fourth-order delay differential equations with p-Laplacian
like operators (

a (ζ)
∣∣u′′′ (ζ)∣∣p−2 u′′′ (ζ)

)′
+ q (ζ) g (u (η (ζ))) = 0, (1)

where ζ ≥ ζ0. Throughout this work, we suppose that:

K1: p > 1 is a real number.
K2: a ∈ C1 ([ζ0, ∞),R) , a (ζ) > 0, a′ (ζ) ≥ 0 and under the condition∫ ∞

ζ0

1
a1/(p−1) (s)

ds = ∞, (2)

K3: q ∈ C ([ζ0, ∞),R) , q (ζ) > 0,
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K4: η ∈ C ([ζ0, ∞),R) , η (ζ) ≤ ζ, lim
ζ→∞

η (ζ) = ∞,

K5: g ∈ C (R,R) such that g (u) ≥ m |u|p−2 u > 0, for u 6= 0 and m is a constant.

Definition 1. The function u ∈ C3[ζu, ∞), ζu ≥ ζ0 is called a solution of (1), if a (ζ) |u′′′ (ζ)|p−2 u′′′ (ζ) ∈
C1[ζu, ∞), and u (ζ) satisfies (1) on [ζu, ∞). Moreover, the equation (1) is oscillatory if all its solutions oscillate.

In the last few decades, there have been a constant interest to investigate the asymptotic property
for oscillations of differential equation, see [5–25]. Furthermore, there are some results that study
the oscillatory behavior of 4th-order equations with p-Laplacian, we refer the reader to [26,27].

Now the following results are presented.
Grace and Lalli [28], Karpuz et al. [29] and Zafer [30] studied the even-order equation

u(γ) (ζ) + q (ζ) u (η (ζ)) = 0,

they used the Riccati substitution to find several oscillation criteria and established the following
results, respectively:

∫ ∞

ζ0

(
δ (s) q (s)− (γ− 1)! (δ′ (s))2

23−2γηγ−2 (s) η′ (s) δ (s)

)
ds = ∞, (3)

where δ ∈ C1 ([ζ0, ∞) , (0, ∞)) .

lim inf
ζ→∞

∫ ζ

η(ζ)
q (s) ηγ−2 (s) ds >

(γ− 1) 2(γ−1)(γ−2)

e
(4)

and

lim inf
ζ→∞

∫ ζ

η(ζ)
q (s) ηγ−2 (s) ds >

(γ− 1)!
e

. (5)

Zhang et al. [31,32] studied the even-order equation(
a (ζ)

(
u(γ−1) (ζ)

)β
)′

+ q (ζ) uβ (η (ζ)) = 0, (6)

where β is a quotient of odd positive integers. They proved that it is oscillatory, if

lim inf
ζ→∞

∫ η(ζ)

ζ

q (s)
a (η (s))

(
ηγ−2 (s)

)β
ds >

((γ− 1)!)β

e
, (7)

where γ ≥ 2 is even and they used the compare with first order equations. If there exists a function
δ ∈ C1 ([ζ0, ∞) , (0, ∞)) for all constants M > 0 such that

lim inf
ζ→∞

∫ ∞

ζ0

δ (s)

(
q (s)−

a (s)
(
θMηγ−2 (s) η′ (s)

)1−p

pp

(
δ′ (s)
δ (s)

− a (s)
r (s)

)p
)

ds = ∞, , (8)

for some constant θ ∈ (0, 1) .
Our aim in this work is to complement results in [28–32]. Two examples are given for applying

the criteria.
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2. Some Auxiliary Lemmas

Lemma 1. [13] Fixing V > 0 and U ≥ 0, we have that

Ux−Vx(β+1)/β ≤ ββ

(β + 1)β+1
Uβ+1

Vβ
.

Lemma 2. [14] For i = 0, 1, ..., γ, let u(i) (ζ) > 0, and u(γ+1) (ζ) < 0, then

u (ζ)

ζγ/γ!
≥ u′ (ζ)

ζγ−1/ (γ− 1)!
.

Lemma 3. [16] Suppose that u is an eventually positive solution of (1). Then, we distinguish the
following situations:

(S1) u (ζ) > 0, u′ (ζ) > 0, u′′ (ζ) > 0, u′′′ (ζ) > 0, u(4) (ζ) < 0,
(S2) u (ζ) > 0, u′ (ζ) > 0, u′′ (ζ) < 0, u′′′ (ζ) > 0, u(4) (ζ) < 0,

for ζ ≥ ζ1, where ζ1 ≥ ζ0 is sufficiently large.

3. Main Results

Let the differential equation[
a (ζ)

(
u′ (ζ)

)β
]′
+ q (ζ) uβ (g (ζ)) = 0‚ ζ ≥ ζ0, (9)

where a, q ∈ C ([ζ0, ∞),R+), is nonoscillatory if and only if ζ ≥ ζ0, and a function ς ∈ C1 ([ζ, ∞),R) ,
satisfying the inequality

ς′ (ζ) + γa−1/β (ζ) (ς (ζ))(1+β)/β + q (ζ) ≤ 0‚ on [ζ, ∞).

Definition 2. Let

D = {(ζ, s) ∈ R2 : ζ ≥ s ≥ ζ0} and D0 = {(ζ, s) ∈ R2 : ζ > s ≥ ζ0}.

A kernel function Hi ∈ C (D,R) is said to belong to the function class =, written by H ∈ =, if, for
i = 1, 2,

(i) Hi (ζ, s) = 0 for ζ ≥ ζ0, Hi (ζ, s) > 0, (ζ, s) ∈ D0;
(ii) Hi (ζ, s) has a continuous and nonpositive partial derivative ∂Hi/∂s on D0 and there exist functions

δ, ϑ ∈ C1 ([ζ0, ∞) , (0, ∞)) and hi ∈ C (D0,R) such that

∂

∂s
H1 (ζ, s) +

δ′ (s)
δ (s)

H1 (ζ, s) = h1 (ζ, s) Hβ/(β+1)
1 (ζ, s) (10)

and
∂

∂s
H2 (ζ, s) +

ϑ′ (s)
ϑ (s)

H2 (ζ, s) = h2 (ζ, s)
√

H2 (ζ, s). (11)

Theorem 1. Let (2) holds. If the equations2a
1

p−1 (ζ)

(θζ2)
p−1

(
u′ (ζ)

)p−1

′ + kq (ζ)
(

η3 (ζ)

ζ3

)p−1

up−1 (ζ) = 0 (12)



Symmetry 2020, 12, 1112 4 of 11

and

u′′ (ζ) + u (ζ)
∫ ∞

ζ

(
1

a (ς)

∫ ∞

ς
q (s)

(
η (ζ)

ζ

)p−1
ds

)1/p−1

dς = 0 (13)

are oscillatory, then every solution of (1) is oscillatory.

Proof. Assume, for the sake of contradiction, that u is a positive solution of (1). Then, we let u (ζ) > 0
and u (η (ζ)) > 0. By Lemma 3, we have (S1) and (S2).

Let case (S1) holds. Using [25], [Lemma 2.2.3], we find

u′ (ζ) ≥ θ

2
ζ2u′′′ (ζ) , (14)

for every θ ∈ (0, 1).

From Lemma 2, we get
u′ (ζ)
u (ζ)

≤ 3
ζ

.

Integrating from η (ζ) to ζ, we find

u (η (ζ))

u (ζ)
≥ η3 (ζ)

ζ3 . (15)

Defining

ϕ (ζ) := δ (ζ)

(
a (ζ) (u′′′ (ζ))p−1

up−1 (ζ)

)
, ϕ (ζ) > 0 , (16)

where δ ∈ C1 ([ζ0, ∞) , (0, ∞)) and

ϕ′ (ζ) = δ′ (ζ)
a (ζ) (u′′′ (ζ))p−1

up−1 (ζ)
+ δ (ζ)

(
a (u′′′)p−1

)′
(ζ)

up−1 (ζ)

− (p− 1) δ (ζ)
up−2 (ζ) u′ (ζ) a (ζ) (u′′′ (ζ))p−1

u2(p−1) (ζ)
.

Combining (14) and (16), we obtain

ϕ′ (ζ) ≤
δ′+ (ζ)

δ (ζ)
ϕ (ζ) + δ (ζ)

(
a (ζ) (u′′′ (ζ))p−1

)′
up−1 (ζ)

− (p− 1) δ (ζ)
θ

2
ζ2 a (ζ) (u′′′ (ζ))p

up (ζ)

≤ δ′ (ζ)

δ (ζ)
ϕ (ζ) + δ (ζ)

(
a (ζ) (u′′′ (ζ))β

)′
uβ (ζ)

− (p− 1) θζ2

2 (δ (ζ) a (ζ))
1

p−1
ϕ

p
p−1 (ζ) . (17)

From (1) and (17), we find

ϕ′ (ζ) ≤ δ′ (ζ)

δ (ζ)
ϕ (ζ)−mδ (ζ)

q (ζ) up−1 (η (ζ))

up−1 (ζ)
− (p− 1) θζ2

2 (δ (ζ) a (ζ))
1

p−1
ϕ

p
p−1 (ζ) .
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From (15), we have

ϕ′ (ζ) ≤ δ′ (ζ)

δ (ζ)
ϕ (ζ)−mδ (ζ) q (ζ)

(
η3 (ζ)

ζ3

)p−1

− (p− 1) θζ2

2 (δ (ζ) a (ζ))
1

p−1
ϕ

p
p−1 (ζ) . (18)

Let δ (ζ) = m = 1 in (18), we have

ϕ′ (ζ) +
(p− 1) θζ2

2a
1

p−1 (ζ)
ϕ

p
p−1 (ζ) + q (ζ)

(
η3 (ζ)

ζ3

)p−1

≤ 0.

Hence, the equation (12) is nonoscillatory, which is a contradiction.
Let case (S2) holds. By Lemma 2, we find

u′ (ζ)
u (ζ)

≤ 1
ζ

.

Integrating again from η (ζ) to ζ, we find

u (η (ζ))

u (ζ)
≥ η (ζ)

ζ
. (19)

Defining

ψ (ζ) := ϑ (ζ)
u′ (ζ)
u (ζ)

> 0,

where ϑ ∈ C1 ([ζ0, ∞) , (0, ∞)) and

ψ′ (ζ) =
ϑ′ (ζ)

ϑ (ζ)
ψ (ζ) + ϑ (ζ)

u′′ (ζ)
u (ζ)

− 1
ϑ (ζ)

ψ (ζ)2 . (20)

Integrating (1) from ζ to x and using u′ (ζ) > 0, we have

a (x)
(
u′′′ (x)

)p−1 − a (ζ)
(
u′′′ (ζ)

)p−1
= −

∫ x

ζ
q (s) g (u (η (s))) ds.

From (19), we get

a (x)
(
u′′′ (x)

)p−1 − a (ζ)
(
u′′′ (ζ)

)p−1 ≤ −kyp−1 (ζ)
∫ x

ζ
q (s)

(
η (s)

s

)p−1
ds.

Letting x → ∞ , we have

a (ζ)
(
u′′′ (ζ)

)p−1 ≥ kyp−1 (ζ)
∫ ∞

ζ
q (s)

(
η (s)

s

)p−1
ds

and so

u′′′ (ζ) ≥ u (ζ)

(
m

a (ζ)

∫ ∞

ζ
q (s)

(
η (s)

s

)p−1
ds

)1/(p−1)

.

Integrating again from ζ to ∞, we get

u′′ (ζ) + u (ζ)
∫ ∞

ζ

(
m

a (ς)

∫ ∞

ς
q (s)

(
η (s)

s

)p−1
ds

)1/(p−1)

dς ≤ 0. (21)
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Combining (20) and (21), we find

ψ′ (ζ) ≤ ϑ′ (ζ)

ϑ (ζ)
ψ (ζ)− ϑ (ζ)

∫ ∞

ζ

(
m

a (ς)

∫ ∞

ς
q (s)

(
η (s)

s

)p−1
ds

)1/(p−1)

dς− 1
ϑ (ζ)

ψ (ζ)2 . (22)

If ϑ (ζ) = m = 1 in (22), we get

ψ′ (ζ) + ψ2 (ζ) +
∫ ∞

ζ

(
1

a (ς)

∫ ∞

ς
q (s)

(
η (s)

s

)p−1
ds

)1/(p−1)

dς ≤ 0.

Thus, the Equation (13) is nonoscillatory, which is a contradiction. The proof of the theorem
is complete.

Next, we obtain the following Hille and Nehari type oscillation criteria for (1) with p = 2.

Theorem 2. Let p = 2, m = 1. Assume that

∫ ∞

ζ0

θζ2

2a (ζ)
dζ = ∞

and

lim inf
ζ→∞

(∫ ζ

ζ0

θs2

2a (s)
ds
) ∫ ∞

ζ
q (s)

(
η3 (s)

s3

)
ds >

1
4

, (23)

for some constant θ ∈ (0, 1) ,

lim inf
ζ→∞

ζ
∫ ζ

ζ0

∫ ∞

v

(
1

a (ς)

∫ ∞

ς
q (s)

(
η (s)

s

)
ds
)

dςdv >
1
4

, (24)

then all solutions of (1) is oscillatory.

In this theorem, we use the integral averaging technique:

Theorem 3. Let (2) holds. If there exist positive functions δ, ϑ ∈ C1 ([ζ0, ∞) ,R) such that

lim sup
ζ→∞

1
H1 (ζ, ζ1)

∫ ζ

ζ1

(
H1 (ζ, s)mδ (s) q (s)

(
η3 (s)

s3

)p−1

− π (s)

)
ds = ∞ (25)

and

lim sup
ζ→∞

1
H2 (ζ, ζ1)

∫ ζ

ζ1

(
H2 (ζ, s) ϑ (s)v (s)−

ϑ (s) h2
2 (ζ, s)
4

)
ds = ∞, (26)

where

π (s) =
hp

1 (ζ, s) Hp−1
1 (ζ, s)

pp
2p−1δ (s) a (s)

(θs2)
p−1 ,

for all θ ∈ (0, 1) , and

v (s) =

(
1

a (ς)

∫ ∞

ς
q (s)

(
η (s)

s

)p−1
ds

)1/(p−1)

dς,

then (1) is oscillatory.
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Proof. Proceeding as in the proof of Theorem 1. Assume that (S1) holds. From Theorem 1, we get
that (18) holds. Multiplying (18) by H1 (ζ, s) and integrating the resulting inequality from ζ1 to ζ,
we find that

∫ ζ

ζ1

H1 (ζ, s)mδ (s) q (s)
(

η3 (s)
s3

)p−1

ds ≤ ϕ (ζ1) H1 (ζ, ζ1) +
∫ ζ

ζ1

(
∂

∂s
H1 (ζ, s) +

δ′ (s)
δ (s)

H1 (ζ, s)
)

ϕ (s)ds

−
∫ ζ

ζ1

(p− 1) θs2

2 (δ (s) a (s))
1

p−1

H1 (ζ, s) ϕ
p

p−1 (s)ds.

From (10), we get

∫ ζ

ζ1

H1 (ζ, s)mδ (s) q (s)
(

η3 (s)
s3

)p−1

ds ≤ ϕ (ζ1) H1 (ζ, ζ1) +
∫ ζ

ζ1

h1 (ζ, s) H(p−1)/p
1 (ζ, s) ϕ (s)ds

−
∫ ζ

ζ1

(p− 1) θs2

2 (δ (s) a (s))
1

p−1
H1 (ζ, s) ϕ

p
p−1 (s)ds. (27)

Using Lemma 1 with V = (p− 1) θs2/
(

2 (δ (s) a (s))
1

p−1

)
H1 (ζ, s) , U = h1 (ζ, s) H(p−1)/p

1 (ζ, s)

and u = ϕ (s), we get

h1 (ζ, s) H(p−1)/p
1 (ζ, s) ϕ (s)− (p− 1) θs2

2 (δ (s) a (s))
1

p−1
H1 (ζ, s) ϕ

p
p−1 (s)

≤
hp

1 (ζ, s) Hp−1
1 (ζ, s)

pp
2p−1δ (s) a (s)

(θs2)
p−1 ,

which, with (27) gives

1
H1 (ζ, ζ1)

∫ ζ

ζ1

(
H1 (ζ, s)mδ (s) q (s)

(
η3 (s)

s3

)p−1

− π (s)

)
ds ≤ ϕ (ζ1) .

This contradicts (25).
Assume that (S2) holds. From Theorem 1, (22) holds. Multiplying (22) by H2 (ζ, s) and integrating

the resulting inequality from ζ1 to ζ, we get

∫ ζ

ζ1

H2 (ζ, s) ϑ (s)v (s)ds ≤ ψ (ζ1) H2 (ζ, ζ1)

+
∫ ζ

ζ1

(
∂

∂s
H2 (ζ, s) +

ϑ′ (s)
ϑ (s)

H2 (ζ, s)
)

ψ (s)ds

−
∫ ζ

ζ1

1
ϑ (s)

H2 (ζ, s)ψ2 (s)ds.

Thus, from (11), we get

∫ ζ

ζ1

H2 (ζ, s) ϑ (s)v (s)ds ≤ ψ (ζ1) H2 (ζ, ζ1) +
∫ ζ

ζ1

h2 (ζ, s)
√

H2 (ζ, s)ψ (s)ds

−
∫ ζ

ζ1

1
ϑ (s)

H2 (ζ, s)ψ2 (s)ds

≤ ψ (ζ1) H2 (ζ, ζ1) +
∫ ζ

ζ1

ϑ (s) h2
2 (ζ, s)
4

ds
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and so
1

H2 (ζ, ζ1)

∫ ζ

ζ1

(
H2 (ζ, s) ϑ (s)v (s)−

ϑ (s) h2
2 (ζ, s)
4

)
ds ≤ ψ (ζ1) ,

which contradicts (26). The proof of the theorem is complete.

Example 1. Consider the equation

u(4) (ζ) +
q0

ζ4 u
(

9ζ

10

)
= 0, ζ ≥ 1, q0 > 0. (28)

Let p = 2, a (ζ) = 1, q (ζ) = q0/ζ4 and η (ζ) = 9ζ/10. If we set m = 1, H1 (ζ, s) = (ζ − s)2

and δ (s) = s3, then h1 (ζ, s) = (ζ − s)
(
5− 3ζs−1) , and conditions (23) becomes

lim sup
ζ→∞

1
H1 (ζ, ζ1)

∫ ζ

ζ1

(
H1 (ζ, s)mδ (s) q (s)

(
η3 (s)

s3

)p−1

− π (s)

)
ds

= lim sup
ζ→∞

1

(ζ − 1)2

∫ ζ

ζ1

(
729q0ζ2s−1

1000
+

729q0s
1000

− 729q0ζ

500
−

s
(
25 + 9ζ2s−2 − 30ζs−1)

2θ

)
ds

= ∞,

if q0 > 500/ (81θ) for some θ ∈ (0, 1), letting θ = 81/82, then q0 > 6.25.
Also, set H2 (ζ, s) = (ζ − s)2 and ϑ (s) = s, then h2 (ζ, s) = (ζ − s)

(
3− ζs−1) , v (s) =

3q0/
(
20ζ2) and conditions (24) becomes

lim sup
ζ→∞

1
H2 (ζ, ζ1)

∫ ζ

ζ1

(
H2 (ζ, s) ϑ (s)v (s)−

ϑ (s) h2
2 (ζ, s)
4

)
ds

= lim sup
ζ→∞

1

(ζ − 1)2

∫ ζ

ζ1

(
3q0ζ2s−1

20
+

3q0s
20
− 3q0ζ

10
−

s
(
9− 6ζs−1 + ζ2s−2)

4

)
ds

= ∞,

if q0 > 5/3, From Theorem 3, all solutions of (28) are oscillatory, if q0 > 6.25.

Remark 1. By comparing our results with previous results
1. By applying condition (3) in [28], we get

q0 > 1728,

2. By applying condition (4) in [29], we get

q0 > 919.6,

3. By applying condition (5) in [30], we get

q0 > 28.73,

4. By applying condition (7) in [31], we get

q0 > 28.73,

5. The condition (8) in [32] cannot be applied to Equation (28) due to the arbitrariness in the choice of θ.
Therefore, our result complement results [28–32].
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Example 2. Let the equation

u(4) (ζ) +
q0

ζ4 u
(

1
2

ζ

)
= 0, ζ ≥ 1, q0 > 0. (29)

Let a (ζ) = 1, q (ζ) = q0/ζ4 and η (ζ) = ζ/2. If we set m = 1, then condition (23) becomes

lim inf
ζ→∞

(∫ ζ

ζ0

θs2

2a (s)
ds
) ∫ ∞

ζ
q (s)

(
η3 (s)

s3

)
ds = lim inf

ζ→∞

(
ζ3

3

) ∫ ∞

ζ

q0

8s4 ds

=
q0

72
>

1
4

and condition (24) becomes

lim inf
ζ→∞

ζ
∫ ζ

ζ0

∫ ∞

v

(
1

a (ς)

∫ ∞

ς
q (s)

(
η (s)

s

)
ds
)

dςdv = lim inf
ζ→∞

ζ

(
q0

12ζ

)
=

q0

12
>

1
4

.

Hence, by Theorem 2, all solution equation (29) is oscillatory if q0 > 18.

Remark 2. We point out that continuing this line of work, we can have oscillatory results for a fourth order
equation of the type:

(
a (ζ)

∣∣u′′′ (ζ)∣∣p−2 u′′′ (ζ)
)′

+
m

∑
i=1

qi (ζ) |u (ηi (ζ))|p−2 u (ηi (ζ)) = 0, where ζ ≥ ζ0, m ≥ 1,

under the condition ∫ ∞

ζ0

1
a1/(p−1) (s)

ds < ∞.

4. Conclusions

In this article, we studied some oscillation conditions for 4th-order differential equations by
the comparison method, Riccati technique and integral averaging technique.

Further, in the future work we study Equation (1) under the condition
∫ ∞

ζ0
1

a1/(p−1)(s)
ds < ∞.
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