
symmetryS S

Article

Second Gradient Electromagnetostatics: Electric Point
Charge, Electrostatic and Magnetostatic Dipoles

Markus Lazar * and Jakob Leck

Department of Physics, Darmstadt University of Technology, Hochschulstr. 6, D-64289 Darmstadt, Germany;
leck@fkp.tu-darmstadt.de
* Correspondence: lazar@fkp.tu-darmstadt.de

Received: 6 May 2020; Accepted: 8 June 2020; Published: 2 July 2020
����������
�������

Abstract: In this paper, we study the theory of second gradient electromagnetostatics as the static
version of second gradient electrodynamics. The theory of second gradient electrodynamics is
a linear generalization of higher order of classical Maxwell electrodynamics whose Lagrangian
is both Lorentz and U(1)-gauge invariant. Second gradient electromagnetostatics is a gradient
field theory with up to second-order derivatives of the electromagnetic field strengths in the
Lagrangian. Moreover, it possesses a weak nonlocality in space and gives a regularization based on
higher-order partial differential equations. From the group theoretical point of view, in second
gradient electromagnetostatics the (isotropic) constitutive relations involve an invariant scalar
differential operator of fourth order in addition to scalar constitutive parameters. We investigate the
classical static problems of an electric point charge, and electric and magnetic dipoles in the framework
of second gradient electromagnetostatics, and we show that all the electromagnetic fields (potential,
field strength, interaction energy, interaction force) are singularity-free, unlike the corresponding
solutions in the classical Maxwell electromagnetism and in the Bopp–Podolsky theory. The theory of
second gradient electromagnetostatics delivers a singularity-free electromagnetic field theory with
weak spatial nonlocality.
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1. Introduction

In recent years, there has been a continuous interest in the so-called Bopp–Podolsky theory [1–7],
a first-order linear gradient theory of electrodynamics. The theory was introduced in the early 1940s by
Bopp and Podolsky [8–10] as a method to remove singularities in classical Maxwell electrodynamics
and to obtain a consistent Lorentz and gauge-invariant theory of point charges with finite self-energy
(see also [11]), thereby proposing an alternative to earlier theories that achieved the same goal through a
nonlinear generalization of electrodynamics [12]. While the motivation was ultimately the quantization of
the theory (e.g., [13]), it is, first of all, a classical field theory. Through the introduction of an additional
gradient term in the Lagrangian, the generalized Maxwell equations yield linear partial differential
equations of fourth order for the electromagnetic potentials. Along with the additional term, a new
constant has to be introduced, the Bopp–Podolsky length scale parameter `, which by the original idea was
supposed to be related to the electron self-energy. Indeed, Iwanenko and Sokolow [14], Kvasnica [15] and
Cuzinatto et al. [16] reasoned that the Bopp–Podolsky length scale parameter ` is of the order of∼10−15 m
which is the order of the classical electron radius; however, Accioly and Mukai [17], and Carley et al. [3]
argued that the Bopp–Podolsky length scale parameter ` should be equal to or smaller than ∼10−18 m.
From the mathematical point of view the length scale parameter ` plays the role of a regularization
parameter. The regularization through the higher-order field equations provides a finite self-energy for
the point charge, and its electrostatic potential is finite and nonsingular; its electric field is finite, but with
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a directional discontinuity. Additionally, in Bopp–Podolsky electrodynamics the electromagnetic fields of
a non-uniformly moving point charge possess a directional discontinuity on the light cone. In order to
obtain electromagnetic fields of a non-uniformly moving point charge with no directional discontinuity
on the light cone, the theory of second gradient electrodynamics has recently been proposed and used
in [18]. Further important advantages of gradient electrodynamics in comparison to the classical Maxwell
electrodynamics are: no infamous “4/3-problem”, no unphysical runaway solutions to the equation of
motion of a moving charged particle (the analogue of the Lorentz-Dirac equation), no singularities of
the electromagnetic fields on the light cone, the self-force of a non-uniformly moving charged particle is
regular (see also the discussion in [18]).

Besides the point charge, other important textbook examples of the Maxwell theory are the
electrostatic and magnetostatic dipoles possessing typical dipole singularities (1/r3 and Dirac
delta-singularity) in the electromagnetic fields [19–22]. In the mathematical literature, there is an
interest in the regularization of the dipole singularities arising from the second-order derivatives of 1/r
in the sense of generalized functions (see, e.g., [23–25]). The ideal magnetostatic dipole in first-order
gradient electrodynamics was already studied by Landé and Thomas [26], giving the magnetic fields
and a finite self-energy. The latter result, however, turns out to be erroneous. Using the Bopp–Podolsky
theory, the electric and magnetic fields of electrostatic and magnetostatic dipoles are still singular and
their self-energy is also infinite, as will be shown in this paper.

Our purpose is to investigate the theory of second gradient electromagnetostatics which is the static
version of the theory of second gradient electrodynamics [18]. We will study the textbook examples
of electric point charge, electrostatic dipole and magnetostatic dipole in the framework of generalized
electrodynamics, and show that second gradient electromagnetostatics yields nonsingular dipole fields
and gives a straightforward regularization of the dipole singularities based on higher-order partial
differential equations.

In general, in generalized electrodynamics, the electromagnetic fields (electric and magnetic
potential, electric and magnetic field strengths) should satisfy the following conditions:

• The field must be finite at r = 0;
• The field must be everywhere continuous;
• The self-energy of the field must be finite.

As mentioned, not all conditions can be satisfied for an electric point charge, an electrostatic
dipole and a magnetostatic dipole using Bopp–Podolsky electrodynamics.

Nowadays, generalized continuum theories and in particular gradient continuum theories are very
popular in physics, applied mathematics, material science and engineering science. Gradient continuum
theories are continuum theories which might possess characteristic length scales and characteristic
time scales in order to describe size effects and memory effects, respectively. In particular, gradient
theories are continuum theories valid at small scales, unlike classical continuum theories such as
Maxwell electrodynamics. Because classical continuum theories are not valid at small scales, they lead
to unphysical singularities at such scales. Thus, we are forced to regularize at short distances the classical
continuum theories by means of generalized continuum theories. Gradient continuum theories provide
nonsingular solutions of the field equations and a regularization of classical singularities is achieved.
In physics, the most popular gradient continuum theory is the Bopp–Podolsky theory [8,9], which is the
first-order gradient version of the theory of electrodynamics as mentioned above. In engineering science,
a very popular gradient continuum theory is Mindlin’s theory of first strain gradient elasticity [27].
An advantage of gradient elasticity theory is that it can be connected with atomistic theories and all
material parameters, including the appearing length scale parameters, can be determined from ab initio
calculations and using atomistic potentials (see, e.g., [28–30]). Exciting gradient effects, which are
important for applications in material science, exist due to the coupling between gradient elasticity
and gradient electricity in gradient electroelasticity [31], like flexoelectricity in solids [32], which is
the property of a dielectric material whereby it exhibits a spontaneous electrical polarization induced
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by an elastic strain gradient (see also the papers on flexoelectricity published in this Special Issue
on Recent Advances in the Study of Symmetry and Continuum Mechanics). Furthermore, Mindlin [33]
introduced the theory of second strain gradient elasticity (see also [34–36]). Mindlin’s theory of second
strain gradient elasticity involves additional material constants, in addition to the elastic constants,
which can be determined from atomistic potentials (see [37]). Second strain gradient elasticity provides
better modelling of atomistics than first strain gradient elasticity. Using a simplified version of second
gradient elasticity, it was possible to obtain nonsingular solutions for the elastic field produced by
point defects which are elastic dipoles in solids [38]. The theory of second gradient electrodynamics
has been recently proposed by Lazar [18]. It turns out that second gradient electrodynamics provides
better mathematical modeling of electromagnetic fields at small distances than the Bopp–Podolsky
electrodynamics (first gradient electrodynamics). In this paper, we study the static version of it called
second gradient electromagnetostatics. Of course, the coupling between second strain gradient elasticity
and second gradient electromagnetostatics may lead to many interesting gradient effects of higher order
which will be worth studying more in detail in future work. Therefore, gradient continuum theories are
very exciting research areas of physics on small scales.

While structurally, as mathematical theories, gradient electrodynamics and gradient elasticity of
n-th order are analogous, their physical significance differs slightly. Both can serve the purpose of
regularization at small scales, but while gradient elasticity can be interpreted to describe microstructure
and can, for example, also be derived as an approximation of lattice theories (see, e.g., [33,39]),
in gradient electrodynamics analogous interpretations are not as clear. Moreover, the length scale
for gradient elasticity is of the order of 10−10 m, and thus, as mentioned above, can be compared
with atomistic simulations; however, in gradient electrodynamics the smallness of the length scale
parameter has so far eluded experimental verification. While possible approaches have been suggested
(e.g., [16]), so far none has reached the scale of 10−15 m or smaller for the Bopp–Podolsky parameter,
and comparisons with quantum mechanical effects have yielded upper estimates for the length
scale parameter (e.g., [3,17]). However, gradient electrodynamics remain an interesting subject,
as a candidate for a consistent classical field theory of electrodynamics including point charges
(see also [40]), as a candidate for a generalized quantum electrodynamics (see, e.g., [41,42]) and in
comparison with other mathematical techniques of regularization.

The outline of this paper is as follows. In Section 2, the theory of second gradient electromagnetostatics
is presented. In Section 3, we give the collection of all relevant Green functions and their derivatives.
In Section 4, the nonsingular electromagnetic fields of a point charge, an electrostatic dipole and a
magnetostatic dipole are computed in the framework of second gradient electromagnetostatics. The limits
of those electromagnetic fields to the Bopp–Podolsky theory and to the classical Maxwell theory are given
in Sections 5 and 6, respectively. The conclusions are given in Section 7.

2. Second Gradient Electromagnetostatics

In this Section, we provide the theoretical framework of second gradient electromagnetostatics.
Second gradient electromagnetostatics is the static version of second gradient electrodynamics
given in [18] (for details of second gradient electrodynamics we refer to [18]). In the theory of
second gradient electromagnetostatics, the electrostatic and magnetostatic fields are described by
the Lagrangian density

Lgrad =
ε0

2

(
E · E + `2

1∇E : ∇E + `4
2∇∇E

...∇∇E
)

− 1
2µ0

(
B · B + `2

1∇B : ∇B + `4
2∇∇B

...∇∇B
)
− ρφ + J · A , (1)

with the notation ∇∇E
...∇∇E = ∂k∂jEi∂k∂jEi, ∇E : ∇E = ∂jEi∂jEi and E · E = EiEi. Here φ is

the electrostatic scalar potential, A is the magnetostatic vector potential, E is the electrostatic field
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strength vector, B is the magnetostatic field strength vector, ρ is the electric charge density and J is the
electric current density vector. ε0 is the electric constant and µ0 is the magnetic constant (also called
permittivity of vacuum and permeability of vacuum, respectively). Moreover, `1 and `2 are the two
(positive) characteristic length scale parameters in second gradient electrodynamics and∇ is the vector
operator Del (or Nabla). In addition to the classical terms, first and second spatial derivatives of the
(static) electromagnetic field strengths (E, B) multiplied by the characteristic lengths `1 and `2 appear
in Equation (1) describing a weak nonlocality in space.

While in classical electrodynamics and electromagnetostatics the requirements of isotropy and
gauge invariance lead to a unique choice for the Lagrangian, we here only have uniqueness up to
null-Lagrangians (cf. [43]). Bopp [8] and Podolsky [9] introduced first-order gradient electrodynamics
using different Lagrangians both being equal up to null-Lagrangians and leading to identical field
equations. Our choice of Lagrangian is closer to Bopp’s convention, using contractions of field gradients
rather than divergences. Of course, with the introduction of higher-order terms the number of possible
null-Lagrangians increases.

Note that, as is the case in classical electromagnetostatics with linear constitutive relations,
the Lagrangian (1) is a sum of two purely electrostatic or magnetostatic terms. In consequence, unlike
in Born-Infeld electromagnetostatics [44], it is obvious that electrostatics and magnetostatics are
separated: electric currents do not produce electric fields and electric charges do not produce magnetic
fields. Additionally, note that the two energy densities are positive definite, which results in positive
definite energy functionals and thus in well-posed variational problems. While in the second gradient
term the positive sign is both necessary and sufficient for positivity of the energy functional, in the first
term it is only sufficient. As long as `4

1 < 4`4
2, a negative sign could be allowed from the mathematical

point of view; however, as will be seen below (case (3)), this would be unphysical. While the static
theory works formally with this choice of parameters, the dynamic generalization contains serious
problems. Additionally, the Lagrangian with a negative sign in the first gradient term would not be a
generalization of the Bopp–Podolsky theory where the positive sign is mandatory.

In electromagnetostatics, the electromagnetic field strengths (E, B) can be expressed in terms of
the static electromagnetic potentials (φ, A)

E = −∇φ , (2)

B = ∇× A (3)

because they satisfy the two electromagnetostatic Bianchi identities

∇× E = 0 , (4)

∇ · B = 0 , (5)

which are known as the homogeneous Maxwell equations. Equation (4) states that the electrostatic
field E is irrotational, and Equation (5) states that the magnetostatic field B has no scalar sources.

The Euler–Lagrange equations of the Lagrangian (1) with respect to the scalar potential φ and the
vector potential A give the electromagnetic field equations

L(∆)∇ · E =
1
ε0

ρ , (6)

L(∆)∇× B = µ0 J , (7)

respectively, and the scalar differential operator of fourth order is given by

L(∆) = 1− `2
1∆ + `4

2∆2 , (8)
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where ∆ is the Laplacian. Equations (6) and (7) are the generalized inhomogeneous Maxwell equations
in second gradient electromagnetostatics, which are partial differential equations of fifth order.
Equation (6) represents the generalized Gauss law, and Equation (7) represents the generalized Ampère
law. The electric current density vector fulfills the equation of continuity

∇ · J = 0 . (9)

If we use the variational derivative with respect to the electromagnetic fields (E, B), then we
obtain the (isotropic) constitutive relations in second gradient electromagnetostatics for the response
quantities (D, H) in vacuum

D :=
δLgrad

δE
= ε0 L(∆) E , (10)

H := −
δLgrad

δB
=

1
µ0

L(∆) B , (11)

where D is the electric excitation vector and H is the magnetic excitation vector. Therefore, in second
gradient electromagnetostatics the (isotropic) constitutive relations (10) and (11) involve an invariant
scalar constitutive operator of fourth order, L(∆), in addition to the scalar constitutive parameters
ε0 and 1

µ0
. The constitutive operator L(∆) is the only linear scalar isotropic operator of fourth

order, a fact that is related to the uniqueness up to null-Lagrangians of the Lagrangian for the
theory. Constitutive operators of this form already showed up in second strain gradient elasticity
(e.g., [33,35,38]). The higher-order terms in Equations (10) and (11) describe the polarization of
the vacuum present in second gradient electrodynamics (see, e.g., [18,45]). Using the constitutive
relations (10) and (11), the Euler–Lagrange Equations (6) and (7) can be rewritten in the form of
inhomogeneous Maxwell equations

∇ · D = ρ , (12)

∇× H = J . (13)

From Equations (6) and (7), the following inhomogeneous partial differential equations, being partial
differential equations of sixth order, can be derived for the static electromagnetic field strengths

L(∆)∆ E =
1
ε0
∇ρ , (14)

L(∆)∆ B = −µ0∇× J . (15)

Using the generalized Coulomb gauge condition (here the standard Coulomb gauge yields
the same results; the necessity for the generalized condition only arises in quantum field theories
corresponding to the theory presented here) (see [4,46,47]),

L(∆)∇ · A = 0 , (16)

the electromagnetic gauge potentials fulfill the following inhomogeneous partial differential equations
of sixth order

L(∆)∆ φ = − 1
ε0

ρ , (17)

L(∆)∆ A = −µ0 J . (18)
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The differential operator of fourth order (8) can be written in the form as product of two Helmholtz
operators with two length scale parameters a1 and a2, which is called bi-Helmholtz operator,

L(∆) =
(
1− a2

1∆
)(

1− a2
2∆
)

(19)

with

`2
1 = a2

1 + a2
2 , (20)

`4
2 = a2

1 a2
2 (21)

and

a2
1,2 =

`2
1

2

(
1±

√
1− 4

`4
2
`4

1

)
. (22)

The two length scales a1 and a2 may be real or complex. In the theory of second gradient
electromagnetostatics, the condition for the character, real or complex, of the two lengths a1 and a2 is
the condition for the discriminant in Equation (22), 1− 4`4

2/`4
1, to be positive or negative. Depending

on the character of the two length scales a1 and a2 one can distinguish between the following cases:

(1) `4
1 > 4`4

2 :
The length scales a1 and a2 are real and distinct and they read

a1,2 = `1

√√√√1
2
± 1

2

√
1− 4

(
`2

`1

)4
(23)

with a1 > a2. The limit to the Bopp–Podolsky theory is given by `4
2 → 0.

(2) `4
1 = 4`4

2 :
The length scales a1 and a2 are real and equal,

a1 = a2 =
`1√

2
= `2 . (24)

There is no limit to the Bopp–Podolsky theory. This case can lead to Green functions having a
time dependence that increases or decreases slowly, which can give rise to unphysical results
(e.g., [18,48]).

(3) `4
1 < 4`4

2 :
The two length scales a1 and a2 are complex conjugate,

a1,2 = A± iB (25)

with

A = `2

√
1
2
+

`2
1

4`2
2

, B = `2

√
1
2
−

`2
1

4`2
2

. (26)

There is no limit to the Bopp–Podolsky theory. For generalized electrodynamics, this case leads to
Green functions having a time dependence that increases exponentially, an acausal propagation
and complex mass terms (e.g., [18,48,49]). The dispersion relations of the vacuum, analogous to
those computed in [45], have complex coefficients, suggesting instabilities or dissipation in
the vacuum.
The possible negative sign in the first gradient term of the Lagrangian mentioned above also
yields complex a1 and a2 and thus has similar consequences.
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Therefore, the case (1) is the physical one and is the generalization of the Bopp–Podolsky theory
(first gradient electromagnetostatics) towards second gradient electromagnetostatics.

3. Green Functions in Second Gradient Electromagnetostatics

Second gradient electromagnetostatics is a linear theory with partial differential equations of sixth
order, and the method of Green functions (fundamental solutions) can be used.

The Green function GL∆ of the sixth order differential operator L(∆)∆ is defined by

L(∆)∆ GL∆(R) = δ(R) , (27)

where R = r− r′ and δ is the Dirac delta-function. The partial differential equation of sixth order (27)
can be written as an equivalent system of partial differential equations of lower order

L(∆) GL∆(R) = G∆(R) , (28)

∆ G∆(R) = δ(R) , (29)

or alternatively

∆ GL∆(R) = GL(R) , (30)

L(∆) GL(R) = δ(R) , (31)

where G∆ is the Green function of the Laplace operator (29) and GL is the Green function of the
bi-Helmholtz operator (31).

Using partial fraction decomposition, the inverse differential operators
[
L(∆)

]−1 and
[
L(∆)∆

]−1

with Equation (19) read in the formal operator notation (see also [50])

[
L(∆)

]−1
=

1
a2

1 − a2
2

(
a2

1
[
1− a2

1∆
]−1 − a2

2
[
1− a2

2∆
]−1
)

(32)

and [
L(∆)∆

]−1
= ∆−1 +

1
a2

1 − a2
2

(
a4

1
[
1− a2

1∆
]−1 − a4

2
[
1− a2

2∆
]−1
)

. (33)

This formal notation directly translates into relations for the Green functions so that the Green
function GL can be written as a linear combination of two Green functions GH(a1) and GH(a2)

corresponding to the two length scale parameters a1 and a2 and Helmholtz operators [1 − a2
1∆]

and [1− a2
2∆],

GL =
1

a2
1 − a2

2

(
a2

1 GH(a1)− a2
2 GH(a2)

)
. (34)

Similarly, the Green function GL∆ can be written as a linear combination of the Green function G∆

of the Laplace operator and the two Green functions GH(a1) and GH(a2) corresponding to the two
length scale parameters a1 and a2,

GL∆ = G∆ +
1

a2
1 − a2

2

(
a4

1 GH(a1)− a4
2 GH(a2)

)
. (35)

Note that the foregoing is essentially an application of proposition 1.4.4 in [51] and could
analogously be applied in linear gradient theories of any order. Using Equation (34), the Green function
of the bi-Helmholtz equation might be derived from the Green function of the Helmholtz equation
(see, e.g., [50,52,53]). Sometimes, the differential operator L = 1− `2∆ is called modified Helmholtz
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operator [52] or metaharmonic operator [54]. Therefore, the bi-Helmholtz field is a superposition of
two Helmholtz fields with length scales a1 and a2. Using Equation (35), the Green function of the
bi-Helmholtz-Laplace equation might be derived by using the expressions of the Green function
of the Laplace operator (see, e.g., [50,55,56]) and the Green function of the Helmholtz operator
(see, e.g., [50,52,53]). Therefore, the bi-Helmholtz-Laplace field is a superposition of the Laplace
field and two Helmholtz fields.

On the other hand, resulting from the decomposition into the systems Equations (28) and (29), or (30)
and (31), the Green function of the bi-Helmholtz-Laplace operator can be written as the convolution of
the Green function of the Laplace operator and the Green function of the bi-Helmholtz equation

GL∆ = G∆ ∗ GL . (36)

Here, the symbol ∗ denotes the spatial convolution. Therefore, the Green function GL plays the
role of the regularization function in second gradient electromagnetostatics. Moreover, the Green
function of the bi-Helmholtz equation can be written as convolution of the Green functions of the two
Helmholtz operators

GL = GH(a1) ∗ GH(a2) , (37)

satisfying Equations (31) and (19).

3.1. Green Functions

The (three-dimensional) Green functions (or fundamental solutions) of the Laplace operator (29),
the Helmholtz operator with length parameter a1, the bi-Helmholtz operator (31) and the
bi-Helmholtz-Laplace operator are given by

G∆(R) = − 1
4πR

, (38)

GH(R) =
1

4πa2
1R

e−R/a1 , (39)

GL(R) =
1

4π(a2
1 − a2

2)R

(
e−R/a1 − e−R/a2

)
, (40)

GL∆(R) = − 1
4πR

(
1− 1

a2
1 − a2

2

[
a2

1e−R/a1 − a2
2e−R/a2

])
. (41)

Equation (40) is obtained by substituting Equation (39) into Equation (34), and Equation (41) is
obtained by substituting Equations (38) and (39) into Equation (35). Moreover, the Green function (41)
may be written as

GL∆(R) = − 1
4πR

f0(R, a1, a2) (42)

with the auxiliary function

f0(R, a1, a2) = 1− 1
a2

1 − a2
2

[
a2

1e−R/a1 − a2
2e−R/a2

]
. (43)

The series expansion (near field) of the auxiliary function (43) reads as

f0(R, a1, a2) =
1

(a1 + a2)
R− 1

6a1a2(a1 + a2)
R3 +O(R4) . (44)
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Therefore, the function f0(R, a1, a2) regularizes up to a 1/R-singularity towards a nonsingular
field expression. Indeed, the Green function (41) is nonsingular and finite at R = 0, namely

GL∆(0) = − 1
4π(a1 + a2)

. (45)

On the other hand, the Green function (40) is nonsingular and possesses a maximum value at
R = 0, namely (see Figure 1)

GL(0) =
1

4πa1a2(a1 + a2)
. (46)

Moreover, the Green function (40) is a Dirac-delta sequence with parametric dependence a1 and a2

lim
a1→0

lim
a2→0

GL(R) = lim
a1→0

GH(R) = δ(R) (47)

with

lim
a2→0

GL(R) = GH(R) , (48)

where the limit is to be understood in the weak sense for distributions. The Green functions (39) and (40)
are plotted in Figure 1.

G
L

G
H

0 1 2 3 4 5
0.00

0.05

0.10

0.15

R/a1

Figure 1. Plot of the Green function GL for a1 = 2a2 in second gradient electromagnetostatics and of
the Green function GH.

3.2. Derivatives of the Green Function GL∆

Now, we calculate the first, second and third gradients of the Green function GL∆. The first,
second and third gradients of the Green function (41) are obtained as (the expression sym(1R) means
δijRk + δjkRi + δkiRj)

∇GL∆(R) =
1

4π

R
R3 f1(R, a1, a2) , (49)

∇∇GL∆(R) =
1

4π

[ 1
R3 f1(R, a1, a2)−

3RR
R5 f2(R, a1, a2)

]
, (50)

∇∇∇GL∆(R) = − 1
4π

[
3 sym(1R)

R5 f2(R, a1, a2)−
15RRR

R7 f3(R, a1, a2)

]
(51)
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and (cf. Equation (30))

∆GL∆(R) =
3

4π

1
R3

[
f1(R, a1, a2)− f2(R, a1, a2)

]
≡ GL(R) , (52)

∇∆GL∆(R) = − 15
4π

R
R5

[
f2(R, a1, a2)− f3(R, a1, a2)

]
≡ ∇GL(R) (53)

with the auxiliary functions

f1(R, a1, a2) = 1− 1
a2

1 − a2
2

[
a2

1e−R/a1 − a2
2e−R/a2

]
− R

a2
1 − a2

2

[
a1e−R/a1 − a2e−R/a2

]
, (54)

f2(R, a1, a2) = 1− 1
a2

1 − a2
2

[
a2

1e−R/a1 − a2
2e−R/a2

]
− R

a2
1 − a2

2

[
a1e−R/a1 − a2e−R/a2

]
− R2

3(a2
1 − a2

2)

[
e−R/a1 − e−R/a2

]
, (55)

f3(R, a1, a2) = 1− 1
a2

1 − a2
2

[
a2

1 e−R/a1 − a2
2 e−R/a2

]
− R

a2
1 − a2

2

[
a1 e−R/a1 − a2 e−R/a2

]
− 2R2

5(a2
1 − a2

2)

[
e−R/a1 − e−R/a2

]
− R3

15(a2
1 − a2

2)

[ 1
a1

e−R/a1 − 1
a2

e−R/a2
]

. (56)

Note that the auxiliary functions for the gradients of a Green function in the form (42) obey

fi+1(x, a1, a2) = fi(x, a1, a2)−
1

2i + 1
x f ′i (x, a1, a2) (57)

for i = 0, 1, 2. This procedure might even carry on to higher orders of the derivatives in an approach to
Equation (42) similar to the results of [57], but this level of generality is not needed here. This relation
has direct consequences for the series expansions (the fi are analytic and can be differentiated term by
term): f1 has no linear term, f2 neither linear nor cubic, f3 no R, R3 and R5-term, and so forth. Therefore,
the first non-vanishing term of even order in f0, which here is the fourth-order term, determines the
strength of the regularization.

The relevant series expansions of the auxiliary functions (54)–(56) (near fields) read as

f1(R, a1, a2) =
1

3a1a2(a1 + a2)
R3 − 1

8a2
1a2

2
R4 +O(R5) , (58)

f2(R, a1, a2) =
1

24a2
1a2

2
R4 +O(R5) , (59)

f3(R, a1, a2) =
1

120a2
1a2

2
R4 +O(R6) . (60)

In Equations (58)–(60), it can be seen that the function f1(R, a1, a2) regularizes up to a 1/R3-singularity
and the functions f2(R, a1, a2) and f3(R, a1, a2) regularize up to a 1/R4-singularity towards nonsingular
field expressions.

The auxiliary functions (43), (54)–(56) are plotted in Figure 2. In the far field, the auxiliary
functions (43), (54)–(56) approach the value of 1 and in the near field, they are modified due to
gradient parts and approach the value of 0 at the position R = 0 (see Figure 2).
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Figure 2. Plot of the auxiliary functions f0, f1, f2 and f3 for a1 = 2a2 in second gradient
electromagnetostatics.

4. Electromagnetic Fields in Second Gradient Electromagnetostatics

The electromagnetic potentials are the solutions of the inhomogeneous partial differential
equations of sixth order (17) and (18) for given charge and current densities (ρ, J)

φ = − 1
ε0

GL∆ ∗ ρ , (61)

A = −µ0 GL∆ ∗ J . (62)

4.1. Electric Point Charge

The charge density of an electric point charge located at the position r′ is given by

ρ = q δ(r− r′) , (63)

where q denotes the electric charge. This means that r′ is the position vector of the point charge and r
is the field vector.

Substituting Equation (63) into Equation (61) and performing the convolution, the electrostatic
potential of a point charge reads as

φ = − q
ε0

GL∆ . (64)

If we insert the Green function (42) into Equation (64), the explicit expression of the electrostatic
potential of a point charge reads in terms of the auxiliary function (43)

φ =
q

4πε0

1
R

f0(R, a1, a2) . (65)

Using the near field of f0, Equation (44), it can be seen that the electrostatic potential (65) is finite
at R = 0, namely (see Figure 3a)

φ(0) =
q

4πε0(a1 + a2)
. (66)

The electric field strength (2) of a point charge is given by the negative gradient of the electrostatic
potential (64) and reads as

E =
q
ε0
∇GL∆ . (67)
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Using Equation (49), Equation (67) reduces to

E =
q

4πε0

R
R3 f1(R, a1, a2) . (68)

Using the near field of f1, Equation (58), it can be seen that the electric field (68) is zero at R = 0.
In general, it is nonsingular and possesses an extremum value near the origin (see Figure 3b).
It does not have a directional discontinuity at the origin, unlike the electric field strength in the
Bopp–Podolsky theory (see Equation (117) and Figure 3b). For an overview and a comparison of point
charge potentials and fields in second gradient electromagnetostatics and the limits to Bopp–Podolsky
theory and classical theory, see Figure 4. Unlike dipole fields, the electric field of the point charge in
the gradient theory shows no changes in direction as compared to the classical result; it is, of course,
spherically symmetric.

2nd GEM

BPT

Maxwell

0 2 4 6 8 10
0.0

0.5

1.0

1.5

R/a1
(a) (b) R/a1

2nd GEM

BPT

Maxwell

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

2nd GEM
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0.0
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(c) R/a1

(d)
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0.10

Figure 3. Plots of the radial functions in second gradient electromagnetostatics (2nd GEM) for a1 = 2a2,
Bopp–Podolsky electromagnetostatics (BPT) and classical Maxwell electromagnetostatics (Maxwell):
(a) f0/R, (b) f1/R2, (c) f1/R3, (d) f2/R3, (e) f2/R4 and (f) f3/R4.
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Figure 4. Electric potential φ 4πε0`
q (a,c) or φ 4πε0a1

q (e), and electric field strength E 4πε0`2

q

(b,d) or E 4πε0a2
1

q (f), in classical (a,b), Bopp–Podolsky (c,d) and second gradient electromagnetostatics
(e,f) for an electric point charge and for x2 = 0. Arrows indicate field direction, the color its absolute
value. Note that in (a,b) the color scale fails to display the singularities.
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The electric field energy can be written as

Ue =
∫
R3

ε0

(
E · E + `2

1∇E : ∇E + `4
2∇∇E

...∇∇E
)

dV

=
∫
R3

ε0 L(∆)E · E dV

=
∫
R3

D · E dV

=
∫
R3

ρ φ dV , (69)

where we have used integration by parts and the surface terms vanish at infinity. Substituting
Equation (63) into Equation (69), the interaction energy of two point charges reads

Uqq′ = qφq′

=
qq′

4πε0

1
R

f0(R, a1, a2) , (70)

which is finite in the whole space. The electrostatic self-energy of a point charge is obtained as

Uself =
1
2

Uqq(0)

=
q2

8πε0 (a1 + a2)
, (71)

which is finite.
The electrostatic part of the Lorentz force reads as [18]

F =
∫
R3

ρE dV . (72)

Substituting Equations (63) and (68) into Equation (72), the electrostatic interaction force between two
point charges q′ at r′ and q at r is obtained as

Fqq′ = qEq′

=
qq′

4πε0

R
R3 f1(R, a1, a2) , (73)

which is zero at R = 0 and nonsingular. Equation (73) is the force exerted by one charge q′ at r′ on the
other charge q at r. It holds Fqq′ = −Fq′q.

4.2. Electric Dipole

The charge density of an ideal electric dipole is given by

ρ = −p · ∇ δ(r− r′) , (74)

where p is the electric dipole moment.
Substituting Equation (74) into Equation (61) and employing the convolution, we obtain for the

electrostatic potential of an electric dipole, or the electric dipole potential,

φ =
1
ε0

p · ∇ GL∆ . (75)
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Now, using Equation (49), Equation (75) becomes

φ =
1

4πε0

p · R
R3 f1(R, a1, a2) . (76)

It is zero at R = 0 and possesses an extremum value near the origin (see Figure 3b).
The electric field strength (2) of an electric dipole is given by the negative gradient of the electric

dipole potential (75)

E = − 1
ε0

(p · ∇)∇GL∆ (77)

and, using Equation (50), it reads as

E =
1

4πε0

[
3(p · R)R

R5 f2(R, a1, a2)−
p

R3 f1(R, a1, a2)

]
. (78)

Moreover, using the near fields of f1 and f2, Equations (58) and (59), it can be seen that the electric
dipole field (78) is finite at R = 0 due to the f1-term, namely (see Figure 3c,d)

E(0) = − p
12πε0a1a2(a1 + a2)

, (79)

and it does not have a directional discontinuity. See Figure 5 for a comparison of dipole potentials
and fields in second gradient electromagnetostatics and the limits to Bopp–Podolsky theory and
classical Maxwell theory. Along with the regularization, directional changes in the electric field of
the dipole in the gradient theory are introduced, due to the appearance of two different auxiliary
functions in the two terms of the dipole field (78). These modifications are stronger in second gradient
electromagnetostatics than in the Bopp–Podolsky theory and even lead to qualitatively new behavior:
There exist two zeros of the dipole field.

Substituting Equation (74) into Equation (69), the interaction energy of two electric dipoles p and
p′, a distance R = r− r′ apart, becomes

Upp′ = −p · Ep′

=
1

4πε0

[
p · p′

R3 f1(R, a1, a2)−
3(p · R)(p′ · R)

R5 f2(R, a1, a2)

]
. (80)

The electrostatic self-energy of an electric dipole reduces to

Uself =
1
2

Upp(0)

=
p · p

24πε0a1a2(a1 + a2)
, (81)

which is finite.
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Figure 5. Electric potential φ 4πε0`2

p (a,c) or φ
4πε0a2

1
p (e), and electric field strength E 4πε0`3

p

(b,d) or E 4πε0a3
1

p (f) in classical (a,b), Bopp–Podolsky (c,d) and second gradient electromagnetostatics
(e,f) for an electric dipole with p = pe3, e3 being the unit vector along the third coordinate, for x2 = 0.
Arrows indicate field direction, the color its absolute value. Note that in (a,b,d) the color scale fails to
display the singularities.
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Substituting Equations (74) and (77) into Equation (72) and using Equation (51), the electrostatic
interaction force between two electric dipoles reduces to

Fpp′ = (p · ∇)Ep′

= − 1
ε0

(p · ∇)(p′ · ∇)∇GL∆

=
1

4πε0

[
3(p · R)p′ + 3(p′ · R)p + 3(p · p′)R

R5 f2(R, a1, a2)

− 15(p · R)(p′ · R)R
R7 f3(R, a1, a2)

]
, (82)

which is finite at R = 0 and nonsingular (see Figure 3e,f), but it has a directional discontinuity at
R = 0. Equation (73) is the force exerted by one electric dipole p′ at r′ on the other electric dipole p at r.
It holds Fpp′ = −Fp′p.

4.3. Magnetic Dipole

The electric current density vector of a magnetic dipole is given by

J = −m×∇ δ(r− r′) , (83)

where m is the magnetic dipole moment.
Substituting Equation (83) into Equation (62) and performing the convolution, we obtain for the

magnetic vector potential of a magnetic dipole, or the magnetic dipole potential,

A = µ0 m×∇GL∆ . (84)

Using Equation (49), Equation (84) becomes

A =
µ0

4π

m× R
R3 f1(R, a1, a2) , (85)

which is zero at R = 0 and possesses an extremum value (see Figure 3b).
The magnetic field strength (3) of a magnetic dipole is given by the curl of the magnetic dipole

potential (84)

B = µ0∇×
[
m×∇GL∆]

= µ0
[
m ∆− (m · ∇)∇

]
GL∆ (86)

and, using Equation (50), it becomes

B =
µ0

4π

[
4π m GL(R) +

3(m · R)R
R5 f2(R, a1, a2)−

m
R3 f1(R, a1, a2)

]
=

µ0

4π

[
3(m · R)R

R5 f2(R, a1, a2) +
m
R3

[
2 f1(R, a1, a2)− 3 f2(R, a1, a2)

]]
. (87)

Using the near fields of f1 and f2, Equations (58) and (59), it can be seen that the magnetic dipole
field (87) is finite at R = 0 due to the f1-term, namely (see Figure 3c,d)

B(0) =
µ0 m

6πa1a2(a1 + a2)
(88)

and it does not have a directional discontinuity. A comparison of vector potentials and magnetic fields in
second gradient electromagnetostatics, the Bopp–Podolsky theory and classical electromagnetostatics
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is given in Figure 6. Again, similarly to the electric dipole fields, the regularization modifies the field
direction in the near field.
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Figure 6. Magnetic vector potential A 4π`2

µ0m (a,c) or A 4πa2
1

µ0m (e), and magnetic field strength B 4π`3

µ0m (b,d)

or B 4πa3
1

µ0m (f) in classical (a,b), Bopp–Podolsky (c,d) and second gradient electromagnetostatics (e,f)
for a magnetic dipole with m = me3 aligned along the third coordinate direction, for x3 = 0 (left) and
x2 = 0 (right). Arrows indicate field direction, the color its absolute value. Note that in (a,b,d) the color
scale fails to display the singularities.
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The magnetic field energy can be written as

Um =
∫
R3

1
µ0

(
B · B + `2

1∇B : ∇B + `4
2∇∇B

...∇∇B
)

dV

=
∫
R3

1
µ0

L(∆)B · B dV

=
∫
R3

H · B dV

=
∫
R3

J · A dV , (89)

where we have used integration by parts and the surface terms vanish at infinity. Substituting
Equation (83) into Equation (89), the interaction energy of two magnetic dipoles m and m′, a distance
R = r− r′ apart, is given by

Umm′ = m · Bm′

=
µ0

4π

[
3(m · R)(m′ · R)

R5 f2(R, a1, a2) +
m ·m′

R3

[
2 f1(R, a1, a2)− 3 f2(R, a1, a2)

]]
. (90)

The magnetostatic self-energy of a magnetic dipole reduces to

Uself =
1
2

Umm(0)

=
µ0 (m ·m)

12πa1a2(a1 + a2)
, (91)

which is finite.
The magnetostatic part of the Lorentz force reads as [18]

F =
∫
R3

J × B dV . (92)

Substituting Equations (83) and (86) into Equation (92) and using Equations (51) and (53),
the magnetostatic interaction force between two magnetic dipoles becomes

Fmm′ = ∇(m · Bm′)

= µ0
[
(m ·m′)∇∆− (m · ∇)(m′ · ∇)∇

]
GL∆

=
µ0

4π

[
3(m · R)m′ + 3(m′ · R)m + 3(m ·m′)R

R5 f2(R, a1, a2)

− 15(m · R)(m′ · R)R
R7 f3(R, a1, a2)−

15(m ·m′)R
R5

[
f2(R, a1, a2)− f3(R, a1, a2)

]]
, (93)

which is finite at R = 0 and nonsingular (see Figure 3e,f), but it possesses a directional discontinuity
at R = 0.

4.4. Some Qualitative Side-Effects of Regularization

As we have seen, the gradient theory for large distances approaches the classical results
asymptotically, while on small length scales Green functions and therefore electric and magnetic
fields are modified. These modifications introduce new qualitative behavior that the reader should be
aware of.

For example, apart from weakening or removal of singularities, the field of the electric dipole is
reversed in the direct vicinity of the dipole and two singular points appear, zeros of the electric field,
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where a point charge would be in equilibrium (see Figure 5f). These singular points also exist in the
fields of real dipoles, i.e., two point charges a certain distance apart, and thus motivate the following.

Consider three point charges on a straight line; for simplicity we take two charges q at the same
distance r to a charge q′ in the middle. Due to the symmetry of the situation the force on the charge q′

is zero, and through Equation (73) the force on the other two charges is

F =
qq′

4πε0

1
r2

(
f1(r, a1, a2) +

q
4q′

f1(2r, a1, a2)

)
. (94)

For q
q′ > 0 this expression is positive, the force is therefore repulsive for all r, while for q

q′ < 0
we find (

f1(r, a1, a2) +
q

4q′
f1(2r, a1, a2)

)
∼ 1 +

q
4q′

(95)

asymptotically for large r and(
f1(r, a1, a2) +

q
4q′

f1(2r, a1, a2)

)
=

1
3a1a2(a1 + a2)

r3
(

1 +
2q
q′

)
+O(r4) (96)

for small r. Now, for a charge ratio with 1
2 |q′| < |q| < 4|q′|, we can have F negative at large distances

and positive at sufficiently small distances, by continuity we thus find a zero. This means there exists
a situation where three point charges at rest can be in equilibrium just through the electromagnetic
forces in vacuum in second gradient electromagnetostatics. This situation has no analogue in classical
or Bopp–Podolsky electromagnetostatics. A linear stability analysis shows that the state is stable with
respect to small perturbations in r.

4.5. Reinterpretation of Second Gradient Electromagnetostatics as Electromagnetostatics with Extended Charge
and Current Densities

Now, we demonstrate that the solutions, Equations (61) and (62), in second gradient
electromagnetostatics with point and dipole charge and current densities (63), (74) and (83) correspond
to solutions in classical electromagnetostatics with finite, extended charge and current densities.
Substituting Equation (36) into Equations (61) and (62), we obtain

φ = − 1
ε0

G∆ ∗ ρL , (97)

A = −µ0 G∆ ∗ JL , (98)

where we have introduced the following extended charge and current densities

ρL = GL ∗ ρ , (99)

JL = GL ∗ J , (100)

as convolution of the Green function GL and the singular, classical charge and current densities ρ

and J. Because the Green function GL of the bi-Helmholtz operator is finite, the extended charge and
current densities are finite, unlike the Bopp–Podolsky case with singular Green function GH of the
Helmholtz operator (see Figure 1). The interpretation of extended, singular charge distribution was
proposed in the Bopp–Podolsky theory in [5,15]. From the physical point of view, the Green function
GL, Equation (40), plays the role of a "form factor" in Equations (99) and (100) since it characterizes the
shape of the charge and the current. Thus, the electromagnetostatic potentials (97) and (98) satisfy the
following Poisson equations
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∆ φ = − 1
ε0

ρL , (101)

∆ A = −µ0 JL , (102)

with the extended charge and current densities (99) and (100) as sources. Moreover, the convolution of
the Euler–Lagrange Equations (6) and (7) with the Green function GL and the use of Equations (31),
(99) and (100) lead to “classical” inhomogeneous Maxwell equations

∇ · E =
1
ε0

ρL , (103)

∇× B = µ0 JL , (104)

with the extended charge and current densities (99) and (100) as sources. Of course, the extended
charge and current densities (99) and (100) satisfy inhomogeneous bi-Helmholtz equations

L(∆) ρL = ρ , (105)

L(∆) JL = J . (106)

This proves that Equations (103) and (104) are equivalent to Equations (6) and (7).

5. Electromagnetic Fields in First Gradient Electromagnetostatics
(Bopp–Podolsky Electromagnetostatics)

Now we use the limit from second gradient electromagnetostatics to Bopp–Podolsky
electromagnetostatics for the electromagnetic fields of a point charge, an electric dipole and a magnetic
dipole. In the limit a2 → 0 and a1 → ` (Bopp–Podolsky limit), the auxiliary functions (43), (54)–(56)
simplify to

f0(R, `) = 1− e−R/` , (107)

f1(R, `) = 1−
[

1 +
R
`

]
e−R/` , (108)

f2(R, `) = 1−
[

1 +
R
`
+

1
3

R2

`2

]
e−R/` , (109)

f3(R, `) = 1−
[

1 +
R
`
+

2
5

R2

`2 +
1
15

R3

`3

]
e−R/` . (110)

The auxiliary functions (107)–(110) are plotted in Figure 7. The relevant series expansions (near
field behavior) of the auxiliary functions (108)–(110) read

f0(R, `) =
1
`

R− 1
2`2 R2 +O(R3) , (111)

f1(R, `) =
1

2`2 R2 − 1
3`3 R3 +

1
8`4 R4 +O(R5) , (112)

f2(R, `) =
1

6`2 R2 − 1
24`4 R4 +O(R5) , (113)

f3(R, `) =
1

10`2 R2 − 1
120`4 R4 +O(R6) . (114)

In Equation (111), it can be seen that the function f0(R, `) regularizes up to a 1/R-singularity and
gives a nonsingular field expression. In Equations (112)–(114), it can be seen that the functions f1(R, `),
f2(R, `) and f3(R, `) regularize up to a 1/R2-singularity and give nonsingular fields. At R = 0 the
auxiliary functions (107)–(110) are zero and in the far field they approach the value of 1.
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Figure 7. Plot of the auxiliary functions f0, f1, f2 and f3 in Bopp–Podolsky electromagnetostatics.

5.1. Electric Point Charge

In the Bopp–Podolsky limit, the electrostatic potential (65) reduces to

φ =
q

4πε0

1
R

f0(R, `) , (115)

which is finite at R = 0, namely (see Figure 3a)

φ(0) =
q

4πε0 `
. (116)

Of course, Equation (115) is in agreement with the original expression given by Bopp [8] and
Podolsky [9].

Moreover, the electric field strength (68) reduces to

E =
q

4πε0

R
R3 f1(R, `) , (117)

which is in agreement with the expression given by Bopp [8] (see also [26]). The electric field strength
of a point charge is nonsingular but has a directional discontinuity at the origin, namely

E(R) =
q

8πε0`2 R̂ +O(R) , (118)

where R̂ = R/R. Therefore, the projection of the electric field (117) onto a curve passing trough the
location of the charge jumps from q/(8πε0`

2) to −q/(8πε0`
2) at R = 0.

The self-energy (71) of a point charge becomes

Uself =
q2

8πε0 `
, (119)

which is positive and finite for ` > 0.

5.2. Electric Dipole

In the Bopp–Podolsky limit, the electrostatic potential (76) reduces to

φ =
1

4πε0

p · R
R3 f1(R, `) , (120)
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which is in agreement with the expression given by Bonin et al. [4]. The electrostatic potential of an
electric dipole is finite and possesses a directional discontinuity at the origin, namely

φ(R) =
1

8πε0`2 (p · R̂) +O(R) . (121)

The electrostatic field strength (78) becomes

E =
1

4πε0

[
3(p · R)R

R5 f2(R, `)− p
R3 f1(R, `)

]
, (122)

which is singular because it has a 1/R-singularity at the origin. Therefore, the self-energy (81) of an
electric dipole and the interaction force (82) between two electric dipoles become infinite and singular
in the Bopp–Podolsky theory.

5.3. Magnetic Dipole

In the Bopp–Podolsky limit, the magnetic vector potential (85) reduces to

A =
µ0

4π

m× R
R3 f1(R, `) , (123)

which is in agreement with the expression given by Bonin et al. [4]. The magnetostatic potential of a
magnetic dipole is finite and possesses a directional discontinuity at the origin

A(R) =
µ0

8π`2 (m× R̂) +O(R) . (124)

The magnetic field strength (87) becomes

B =
µ0

4π

[
4π m GH(R) +

3(m · R)R
R5 f2(R, `)− m

R3 f1(R, `)
]

=
µ0

4π

[
3(m · R)R

R5 f2(R, `) +
m
R3

[
2 f1(R, `)− 3 f2(R, `)

]]
, (125)

which is singular since it possesses a 1/R-singularity at the origin. Therefore, the self-energy (89) of
a magnetic dipole and the interaction force (93) between two magnetic dipoles become infinite and
singular in the Bopp–Podolsky theory. Note that Equation (125) is in agreement with the expression
given by Bonin et al. [4].

6. Electromagnetic Fields in Classical Maxwell Electromagnetostatics

The limit from the Bopp–Podolsky electromagnetostatics to the classical Maxwell electromagnetostatics
is `→ 0.

6.1. Electric Point Charge

From Equations (115) and (117), the classical electrostatic potential and electric field strength of a
point charge

φ =
q

4πε0

1
R

(126)

and

E =
q

4πε0

R
R3 , (127)

respectively, are recovered.
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6.2. Electric Dipole

From Equations (120) and (122), the classical electrostatic potential and the electric field strength
of an electric dipole are obtained as

φ =
1

4πε0

p · R
R3 (128)

and

E =
1

4πε0

[
3(p · R)R

R5 − p
R3 −

4π

3
p δ(R)

]
, (129)

respectively. Note that Equations (128) and (129) are in agreement with the expressions given in the
literature [19–22]. In the classical Maxwell electromagnetostatics of dipoles, the term proportional to
the Dirac delta function follows from the second-order derivatives of 1/R in the sense of generalized
functions [53] and is known as the Frahm formula [20]

∇∇
(

1
R

)
=

3RR
R5 −

1
R3 −

4π

3
1 δ(R) . (130)

6.3. Magnetic Dipole

From Equations (123) and (125), the classical magnetic vector potential and the magnetic field
strength of a magnetic dipole are obtained as

A =
µ0

4π

m× R
R3 (131)

and

B =
µ0

4π

[
3(m · R)R

R5 − m
R3 +

8π

3
m δ(R)

]
, (132)

respectively. Note that Equations (131) and (132) are in agreement with the expressions given in the
literature [19–22].

7. Conclusions

We have presented second gradient electromagnetostatics, which is the static version of second
gradient electrodynamics, a generalization of Bopp–Podolsky electrodynamics, as a singularity-free
field theory of electromagnetic fields, in particular, for an electrostatic point charge, an electrostatic
dipole and a magnetostatic dipole. Through linear field equations of sixth order, second gradient
electromagnetostatics yields an even stronger regularization than the Bopp–Podolsky theory: The field
of a point charge is nonsingular and zero at the origin, the fields of electric and magnetic dipoles are
nonsingular as well and dipoles have a finite self-energy, which diverges in the limit to Bopp–Podolsky
electrodynamics (see Table 1).

The regularization stems from the fact that the Green function of the bi-Helmholtz-Laplace
operator appearing in second gradient electromagnetostatics and its first, second, and third gradients
are singularity-free:
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GL∆ = reg
[
G∆] , (133)

∇GL∆ = reg
[
∇G∆] , (134)

∇∇GL∆ = reg
[
∇∇G∆] , (135)

∇∇∇GL∆ = reg
[
∇∇∇G∆] . (136)

In every single problem studied, we were able to recover the Bopp–Podolsky results and the
Maxwell results in the proper limits, when the length scale parameter `2 (or a2) goes to zero and the
Bopp–Podolsky length scale parameter ` goes to zero, respectively.

Table 1. Comparison of the near-field behaviors of the electromagnetic fields of an electric point charge,
an electrostatic dipole and a magnetostatic dipole.

Theory Electric Point Charge Electric and Magnetic Dipoles

φ E φ, A E, B

Maxwell theory 1/R 1/R2 1/R2 1/R3 and δ(R)
Bopp–Podolsky theory finite discontinuity discontinuity 1/R
Second gradient theory finite approaching zero approaching zero finite

We have also demonstrated that, much like in Bopp–Podolsky electrodynamics, the above results
can be obtained through a special ansatz for extended charge distributions in classical electrostatics
instead of an invariant generalized field theory. This is due to the structure of the Green function,
a convolution of multiple Green functions to second-order operators, some of which can be attributed
to a charge distribution in this interpretation.

Another interesting detail in second gradient electromagnetostatics is the existence of stable
equilibria of three point charges. While in classical electrodynamics the maximum principle for
the Poisson equation forbids such states (this is sometimes referred to as Earnshaw’s theorem),
the higher-order generalized analogue to the Poisson equation has no maximum principle. The same is
true for the fourth-order equation for the potential in Bopp–Podolsky electrostatics, although a stable
configuration of point charges might be harder to construct there.

Finally, we conclude that the theory of second gradient electromagnetostatics provides a
singularity-free, generalized continuum theory of electromagnetostatics with generalized Gauss
law and generalized Ampère law valid down to short distances. The covariant form of second
gradient electrodynamics and its meaning as a nonsingular relativistic field theory will be given
in a forthcoming publication.
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