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Abstract: Topological indices are useful for predicting the physicochemical behavior of chemical
compounds. A main problem in this topic is finding good bounds for the indices, usually when some
parameters of the graph are known. The aim of this paper is to use a unified approach in order to
obtain several new inequalities for a wide family of topological indices restricted to trees and to
characterize the corresponding extremal trees. The main results give upper and lower bounds for a
large class of topological indices on trees, fixing or not the maximum degree. This class includes the
first variable Zagreb, the Narumi–Katayama, the modified Narumi–Katayama and the Wiener index.
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1. Introduction

A topological descriptor is a number computed from a molecular graph representing some
information of the corresponding chemical compound. These descriptors are commonly used in
mathematical chemistry, and in particular, in the QSPR/QSAR research. A topological index is a
topological descriptor that correlates with a physicochemical property of some molecule. Topological
indices are useful for predicting the physicochemical behavior of chemical compounds.

The Wiener index of a graph G was defined in [1]. There are many generalizations of this index;
see [2–9].

After this original work, many topological indices have been defined. A common strategy to
define a topological index is to consider some computation with the end-vertex degrees of edges.
This approach has given some particularly useful indices. Possibly the best known of them is the Randić
connectivity index (see [10]). There are more than thousand papers and a couple of books dealing with
this molecular descriptor (see, e.g., [11–15] and the references therein). Additionally, Gutman et al.
defined the first and second Zagreb indices, denoted respectively as M1 and M2 (see [16]).

The first and the second variable Zagreb indices were introduced in [17] by Miličević and Nikolić as

Mα
1 (G) = ∑

u∈V(G)

dα
u, Mα

2 (G) = ∑
uv∈E(G)

(dudv)
α, (1)

where α ∈ R, uv denotes the edge joining the vertices u and v in the graph G, and du denotes the
degree of u. There are many papers dealing with these indices; see, e.g., [18–24].
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Note that M0
1 is n, M1

1 is 2m, M2
1 is the first Zagreb index M1, M−1

1 is the inverse index ID [25],
M3

1 is the forgotten index F, etc.; additionally, M0
2 is m, M−1/2

2 is the Randić index, M1
2 is the second

Zagreb index M2, M−1
2 is the modified Zagreb index [26], etc.

Variable molecular descriptors were introduced to characterize heteroatoms in molecules
(see [27,28]). Additionally, they are useful for studying structural differences in the molecule
(for example, the role of carbon atoms in alkylcycloalkanes in [29]). In these descriptors, the variables
can be fixed along the regression. This way, the error produced estimating some property can be reduced.
For example, Gutman and Tosovic compared in [30] the correlation between 20 (vertex-degree-based)
topological indices and the standard heat of formation and boiling points of octane isomers. They
proved that the second variable Zagreb index Mα

2 with exponent α = −1 improved the performance in
this case from the Randić index (R = M−1/2

2 ). Ref. [31] shows that the second variable Zagreb index is
used in the structure-boiling point modeling of benzenoid hydrocarbons. Several properties of these
indices are discussed in several papers (see, e.g., [32–37]).

Among the many uses of topological indices we shall specially mention the medical and
pharmacological applications. Moreover, in the 1990s, the field lived an important expansion with
many published works. We may cite at least the publications by Erdös, [38,39].

A typical problem in this topic is finding good bounds for the indices, usually when some
parameters of the graph (the diameter, the girth, the maximum or minimum degree, etc.) are known.
The aim of this paper is to use a unified approach in order to prove new inequalities when the graph is
a tree for a wide family of topological indices. Additionally, we try to characterize those trees which
are extremal for them. The main results give upper and lower bounds for a wide class of topological
indices when the graph is a tree, fixing or not the maximum degree. This class includes the first variable
Zagreb, the Narumi–Katayama, the modified Narumi–Katayama and the Wiener index. Our unified
approach allows us to obtain quite a few inequalities at once; some were already known, but many
are new.

The outline of the paper is as follows. In Section 2 we obtain, by using Schur-convexity,
the extremal trees with n vertices for a large family of topological indices (see Theorems 1–4);
these results are applied for the first variable Zagreb, the Narumi–Katayama and the modified
Narumi–Katayama indices in Theorems 5–8. The Schur-convexity also allows us to find the extremal
trees with n vertices and maximum degree ∆ for the previous family of topological indices (see
Theorems 9–12); these results are applied for the first variable Zagreb, the Narumi–Katayama and the
modified Narumi–Katayama indices in Theorems 13–16. Section 3 contains the results on extremal
trees with n vertices for a large class of topological indices, including the Wiener index and many
generalizations of this index (see Theorems 17 and 18); Theorems 19 and 20 provide similar results for
trees with n vertices and maximum degree ∆.

Herein, G = (V(G), E(G)) will denote a non-oriented, finite, connected, simple (i.e., without
multiple edges and loops), non-trivial (i.e., E(G) 6= ∅) graph. Notice that asking the graph G to be
connected is not a relevant restriction, since any graph representing a molecule is connected. T denotes
a tree; i.e., a graph without cycles. Throughout this work, m will denote the cardinality of E(G) and n
the cardinality of V(G).

2. First Variable Zagreb Index

Given two n-tuples x = (x1, . . . , xn), y = (y1, . . . , yn) with x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥
· · · ≥ yn, then x majorizes y (and we write x � y or y ≺ x) if

k

∑
i=1

xi ≥
k

∑
i=1

yi,

for 1 ≤ k ≤ n− 1 and
n

∑
i=1

xi =
n

∑
i=1

yi.



Symmetry 2020, 12, 1097 3 of 15

A function Φ : Rn → R is said to be Schur-convex if Φ(x) ≥ Φ(y) for all x � y. Similarly, Φ is
Schur-concave if Φ(x) ≤ Φ(y) for all x � y. We say that Φ is strictly Schur-convex (respectively, strictly
Schur-concave) if Φ(x) > Φ(y) (respectively, Φ(x) < Φ(y)) for all x � y with x 6= y.

If

Φ(x) =
n

∑
i=1

f (xi), (2)

where f is a convex (respectively, concave) function defined on a real interval, then Φ is Schur-convex
(respectively, Schur-concave). If f is strictly convex (respectively, strictly concave), then Φ is strictly
Schur-convex (respectively, strictly Schur-concave).

Thus, by (1) and (2), with f (x) = xα,

Mα
1 (G) = ∑

u∈V(G)

dα
u ,

is strictly Schur-convex if α ∈ (−∞, 0) ∪ (1, ∞) and strictly Schur-concave if α ∈ (0, 1).

Given n ≥ 2, let S2n−2 be the set of n-tuples x = (x1, x2, . . . , xn−2, 1, 1) with xi ∈ Z+ such that
x1 ≥ x2 ≥ · · · ≥ xn−2 ≥ 1 and ∑n−2

i=1 xi = 2n− 4 (i.e., ∑n
i=1 xi = 2n− 2).

Remark 1. Consider any tree T with n vertices v1, . . . , vn, ordered in such a way that if x = x T = (x1, . . . , xn)

is the n-tuple where xi is the degree of the vertex vi, then xi ≥ xi+1 for every 1 ≤ i ≤ n− 1. By handshaking
Lemma, it is urgent to check that x ∈ S2n−2.

Lemma 1. If T is a tree with n ≥ 3 vertices, then

(2, . . . , 2, 1, 1) ≺ x T ≺ (n− 1, 1, . . . , 1).

Proof. Given a tree T, let us consider x = x T = (x1, . . . , xn). Since T is connected and n ≥ 3, we have
x1 ≥ 2.

Seeking for a contradiction assume that ∑k
i=1 xi < 2k for some 1 ≤ k ≤ n− 2. Thus, xk = 1, and

so, xi = 1 for every k ≤ i ≤ n, and

n

∑
i=1

xi < 2k + n− k = n + k ≤ 2n− 2,

leading to a contradiction. Therefore,

k

∑
i=1

xi ≥ 2k =
k

∑
i=1

2,

for every 1 ≤ k ≤ n− 2, and so,
(2, . . . , 2, 1, 1) ≺ x.

Since
n

∑
i=k+1

xi ≥
n

∑
i=k+1

1 = n− k,

for any 1 ≤ k ≤ n− 1, we have

k

∑
i=1

xi = 2n− 2−
n

∑
i=k+1

xi ≤ n + k− 2 = n− 1 +
k

∑
i=2

1,

where we use the convention ∑k
i=j ai = 0 when j > k, as usual.
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Thus,
x ≺ (n− 1, 1, . . . , 1).

Given any function f : [1, ∞)→ R, let us define the index

I f (G) = ∑
u∈V(G)

f (du).

Besides, if f takes positive values, then we can define the index

I I f (G) = ∏
u∈V(G)

f (du).

Lemma 1 implies the following results.

Theorem 1. If T is a tree with n ≥ 2 vertices and f : [1, ∞)→ R is a convex function, then

(n− 2) f (2) + 2 f (1) ≤ I f (T) ≤ f (n− 1) + (n− 1) f (1).

Moreover, if f is a strictly convex function, then the lower bound is attained if and only if T is the path graph,
and the upper bound is attained if and only if T is the star graph.

Theorem 2. If T is a tree with n ≥ 2 vertices and f : [1, ∞)→ R is a concave function, then

f (n− 1) + (n− 1) f (1) ≤ I f (T) ≤ (n− 2) f (2) + 2 f (1).

Moreover, if f is a strictly concave function, then the lower bound is attained if and only if T is the star graph,
and the upper bound is attained if and only if T is the path graph.

Since the logarithm is a strictly increasing function, a tree is extremal for I I f (T) if and only if it is
extremal for

log I I f (T) = ∑
u∈V(G)

log f (du). (3)

Thus, Lemma 1 and (3) imply the following results.

Theorem 3. If T is a tree with n ≥ 2 vertices and f : [1, ∞)→ R+ is a function such that log f is convex, then

f (2)n−2 f (1)2 ≤ I I f (T) ≤ f (n− 1) f (1)n−1.

Moreover, if log f is a strictly convex function, then the lower bound is attained if and only if T is the path
graph, and the upper bound is attained if and only if T is the star graph.

Theorem 4. If T is a tree with n ≥ 2 vertices and f : [1, ∞)→ R+ is a function such that log f is concave, then

f (n− 1) f (1)n−1 ≤ I I f (T) ≤ f (2)n−2 f (1)2.

Moreover, if log f is a strictly concave function, then the lower bound is attained if and only if T is the star
graph, and the upper bound is attained if and only if T is the path graph.

Since tα is strictly convex if α ∈ (−∞, 0) ∪ (1, ∞) and strictly concave if α ∈ (0, 1), Theorems 1
and 2 imply, respectively, the following results.
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Theorem 5. If T is a tree with n ≥ 2 vertices and α ∈ (−∞, 0) ∪ (1, ∞), then

(n− 2)2α + 2 ≤ Mα
1 (T) ≤ (n− 1)α + n− 1.

Moreover, the lower bound is attained if and only if T is the path graph, and the upper bound is attained if and
only if T is the star graph.

The lower bound in Theorem 5 appears in [40].

Theorem 6. If T is a tree with n ≥ 2 vertices and α ∈ (0, 1), then

(n− 1)α + n− 1 ≤ Mα
1 (T) ≤ (n− 2)2α + 2.

Moreover, the lower bound is attained if and only if T is the star graph, and the upper bound is attained if and
only if T is the path graph.

The upper bound in Theorem 6 appears in [40].

Note that the cases α = 0 and α = 1 are trivial, since M0
1(G) = |V(G)| and M1

1(G) = 2|E(G)| for
every graph G.

Theorem 5 has the following consequences.

Corollary 1. If T is a tree with n ≥ 2 vertices, then the following inequalities hold:

4n− 6 ≤ M1(T) ≤ n2 − n,

8n− 14 ≤ F(T) ≤ (n− 1)3 + n− 1,
n
2
+ 1 ≤ ID(T) ≤ 1

n− 1
+ n− 1.

Moreover, each lower bound is attained if and only if T is the path graph and each upper bound is attained if and
only if T is the star graph.

The inequalities for M1(T) in Corollary 1 appear in [41].

Corollary 2. If T is a tree with n vertices and α < 1, then

Mα
1 (T) = O(n).

The Narumi–Katayama index was defined in [42] as

NK(G) = ∏
u∈V(G)

du.

Based on this, it was defined in [43] the modified Narumi–Katayama index

NK∗(G) = ∏
u∈V(G)

ddu
u .

Since t log t is a strictly convex function and log t is a strictly concave function, Theorems 3 and 4
imply, respectively, the following results.

Theorem 7. If T is a tree with n ≥ 2 vertices, then

22n−4 ≤ NK∗(T) ≤ (n− 1)n−1.
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Moreover, the lower bound is attained if and only if T is the path graph, and the upper bound is attained if and
only if T is the star graph.

Theorem 8. If T is a tree with n ≥ 2 vertices, then

n− 1 ≤ NK(T) ≤ 2n−2.

Moreover, the lower bound is attained if and only if T is the star graph, and the upper bound is attained if and
only if T is the path graph.

Theorems 7 and 8 were proven in [43,44], respectively, with different arguments.

Given n ≥ 3 and 2 ≤ ∆ ≤ n− 1, let S∆
2n−2 be the set of n-tuples x = (x1, x2, . . . , xn−2, 1, 1) ∈ S2n−2

with x1 = ∆.

For any t ∈ R, we denote it as usual by btc, the lower integer part of t; i.e., the greater integer less
than or equal to t.

Lemma 2. Let n ≥ 3 and 2 ≤ ∆ ≤ n− 1. If j0 =
⌊ n−2

∆−1
⌋
, y = (y1, y2, . . . , yn) is such that

• yj = ∆ for every 1 ≤ j ≤ j0;
• yj0+1 = 2n− 2− j0∆− (n− j0 − 1) = n− 1− j0(∆− 1);
• yj = 1 for every j0 + 1 < j ≤ n;

and z = (z1, z2, . . . , zn) is such that

• z1 = ∆;
• zj = 2 for every 1 < j ≤ n− ∆;
• zj = 1 for every n− ∆ < j ≤ n;

then y, z ∈ S∆
2n−2 and

z ≺ x ≺ y

for all x ∈ S∆
2n−2.

Proof. First of all, note that 1 ≤ j0 ≤ n− 2: Since ∆ ≤ n− 1, it is trivial to check that j0 ≥ 1. Since
j0(∆− 1) ≤ n− 2 and ∆ ≥ 2, we conclude that j0 ≤ n− 2.

Additionally notice that, since j0∆ ≤ n− 2 + j0, we have 2n− 2− j0∆− (n− j0 − 1) ≥ 1, and
since (j0 + 1)∆ > n− 2 ≥ n− j0 − 1, then ∆ > n− j0∆ + j0 − 1 and 2n− 2− j0∆− (n− j0 − 1) < ∆.
Let us check that j0 ≤ n− ∆. Since n ≥ ∆ + 1, we have

∆(∆− 1) ≤ n(∆− 2) + 2

n− 2 ≤ (n− ∆)(∆− 1)

j0 ≤
n− 2
∆− 1

≤ n− ∆.

Thus, yn−1 = 1 if ∆ ≥ 3. If ∆ = 2, then j0 = n− 2,

yn−1 = yj0+1 = n− 1− j0(∆− 1) = n− 1− (n− 2)(2− 1) = 1.

Additionally,
∆j0 + n− 1− j0∆ + j0 + n− (j0 + 1) = 2n− 2,

and we conclude y ∈ S∆
2n−2.

Since n− ∆ ≤ n− 2 and

∆ + 2(n− ∆− 1) + n− (n− ∆) = 2n− 2,
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we have z ∈ S∆
2n−2.

Seeking for a contradiction assume that

∆ + 2(k− 1) =
k

∑
i=1

zi >
k

∑
i=1

xi,

for some k ≤ n− ∆. Thus, xk = 1 and we conclude xi = 1 for every k ≤ i ≤ n, and so,

n

∑
i=1

xi >
n

∑
i=1

zi = 2n− 2,

leading to a contradiction. Hence, for every k ≤ n− ∆,

∆ + 2(k− 1) =
k

∑
i=1

zi ≤
k

∑
i=1

xi,

and for every k > n− ∆,

k

∑
i=1

zi =
n−∆

∑
i=1

zi +
k

∑
i=n−∆+1

1 ≤
n−∆

∑
i=1

xi +
k

∑
i=n−∆+1

xi =
k

∑
i=1

xi.

Hence, z ≺ x.

For every k ≤ j0 it is trivial to check that

k

∑
i=1

xi ≤
k

∑
i=1

∆ =
k

∑
i=1

yi.

Additionally, since for every k > j0, xk ≥ yk = 1, it is readily seen that

n

∑
i=k+1

xi ≥
n

∑
i=k+1

1 =
n

∑
i=k+1

yi,

k

∑
i=1

xi = 2n− 2−
n

∑
i=k+1

xi ≤ 2n− 2−
n

∑
i=k+1

yi =
k

∑
i=1

yi.

Thus, x ≺ y.

Lemma 2 has the following consequences.

Theorem 9. If T is a tree with n ≥ 3 vertices and maximum degree ∆, j0 =
⌊ n−2

∆−1
⌋

and f : [1, ∞) → R is a
convex function, then

f (∆) + (n− ∆− 1) f (2) + ∆ f (1) ≤ I f (T) ≤ j0 f (∆) + f (n− 1− j0(∆− 1)) + (n− j0 − 1) f (1).

Moreover, the lower bound is attained if and only if T has the degree sequence z in Lemma 2, and the upper
bound is attained if and only if T has the degree sequence y in Lemma 2.

Theorem 10. If T is a tree with n ≥ 3 vertices and maximum degree ∆, j0 =
⌊ n−2

∆−1
⌋

and f : [1, ∞)→ R is a
concave function, then

j0 f (∆) + f (n− 1− j0(∆− 1)) + (n− j0 − 1) f (1) ≤ I f (T) ≤ f (∆) + (n− ∆− 1) f (2) + ∆ f (1).

Moreover, the lower bound is attained if and only if T has the degree sequence y in Lemma 2, and the upper
bound is attained if and only if T has the degree sequence z in Lemma 2.
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Theorem 11. If T is a tree with n ≥ 3 vertices and maximum degree ∆, j0 =
⌊ n−2

∆−1
⌋

and f : [1, ∞)→ R+ is a
function such that log f is convex, then

f (∆) f (2)n−∆−1 f (1)∆ ≤ I I f (T) ≤ f (∆)j0 f (n− 1− j0(∆− 1)) f (1)n−j0−1.

Moreover, the lower bound is attained if and only if T has the degree sequence z in Lemma 2, and the upper
bound is attained if and only if T has the degree sequence y in Lemma 2.

Theorem 12. If T is a tree with n ≥ 3 vertices and maximum degree ∆, j0 =
⌊ n−2

∆−1
⌋

and f : [1, ∞)→ R+ is a
function such that log f is concave, then

f (∆)j0 f (n− 1− j0(∆− 1)) f (1)n−j0−1 ≤ I I f (T) ≤ f (∆) f (2)n−∆−1 f (1)∆.

Moreover, the lower bound is attained if and only if T has the degree sequence y in Lemma 2, and the upper
bound is attained if and only if T has the degree sequence z in Lemma 2.

Hence, the following results hold.

Theorem 13. If T is a tree with n ≥ 3 vertices and maximum degree ∆, j0 =
⌊ n−2

∆−1
⌋

and α ∈ (−∞, 0)∪ (1, ∞),
then

∆α + 2α(n− ∆− 1) + ∆ ≤ Mα
1 (T) ≤ ∆α j0 + (n− 1− j0(∆− 1))α + n− j0 − 1.

Moreover, the lower bound is attained if and only if T has the degree sequence z in Lemma 2, and the upper
bound is attained if and only if T has the degree sequence y in Lemma 2.

Theorem 14. If T is a tree with n ≥ 3 vertices and maximum degree ∆, j0 =
⌊ n−2

∆−1
⌋

and α ∈ (0, 1), then

∆α j0 + (n− 1− j0(∆− 1))α + n− j0 − 1 ≤ Mα
1 (T) ≤ ∆α + 2α(n− ∆− 1) + ∆.

Moreover, the lower bound is attained if and only if T has the degree sequence y in Lemma 2, and the upper
bound is attained if and only if T has the degree sequence z in Lemma 2.

Theorem 15. If T is a tree with n ≥ 3 vertices and maximum degree ∆, and j0 =
⌊ n−2

∆−1
⌋
, then

∆∆4n−∆−1 ≤ NK∗(T) ≤ ∆j0∆(n− 1− j0(∆− 1))n−1−j0(∆−1).

Moreover, the lower bound is attained if and only if T has the degree sequence z in Lemma 2, and the upper
bound is attained if and only if T has the degree sequence y in Lemma 2.

Theorem 16. If T is a tree with n ≥ 3 vertices and maximum degree ∆, and j0 =
⌊ n−2

∆−1
⌋
, then

∆j0(n− 1− j0(∆− 1)) ≤ NK(T) ≤ ∆2n−∆−1.

Moreover, the lower bound is attained if and only if T has the degree sequence y in Lemma 2, and the upper
bound is attained if and only if T has the degree sequence z in Lemma 2.

Theorem 13 has the following consequence.
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Corollary 3. If T is a tree with n ≥ 3 vertices and maximum degree ∆, and j0 =
⌊ n−2

∆−1
⌋
, then the following

inequalities hold:

∆2 + 4(n− ∆− 1) + ∆ ≤ M1(T) ≤ ∆2 j0 + (n− 1− j0(∆− 1))2 + n− j0 − 1,

∆3 + 8(n− ∆− 1) + ∆ ≤ F(T) ≤ ∆3 j0 + (n− 1− j0(∆− 1))3 + n− j0 − 1,

∆−1 + 2−1(n− ∆− 1) + ∆ ≤ ID(T) ≤ ∆−1 j0 + (n− 1− j0(∆− 1))−1 + n− j0 − 1.

Moreover, each lower bound is attained if and only if T has the degree sequence z in Lemma 2, and each upper
bound is attained if and only if T has the degree sequence y in Lemma 2.

3. Wiener Index and Its Generalizations

The Wiener index of a graph G was defined in [1] as

W(G) = ∑
{u,v}⊆V(G)

d(u, v),

where {u, v} goes over every pair of distinct vertices in G.
In [7], Randić considered a sophisticated version for trees of the Wiener index. Later, this new

index has been called the hyper-Wiener index. The generalization to graphs of this index appeared
in [6] as

WW(G) =
1
2 ∑
{u,v}⊆V(G)

d(u, v) +
1
2 ∑
{u,v}⊆V(G)

d(u, v)2.

For further results on the hyper-Wiener index, see [2–4]. In particular, WW(G) has shown good
correlations with several properties (see, for example, [3] and the references therein).

We are considering the following generalization of the Wiener index.

Wλ(G) = ∑
{u,v}⊆V(G)

d(u, v)λ,

with λ ∈ R. Clearly, if λ = 1, then Wλ is just the Wiener index. Additionally, if λ = −1, it is the
reciprocal Wiener index, and if λ = −2, it is the Harary index. Moreover, the hyper-Wiener index
satisfies that WW = (W1 + W2)/2, and therefore it is a simple combination of W1 and W2. In [8] there
appears a topological index which can be defined as (2W1 + 3W2 + W3)/6—that is, a combination of
W1, W2 and W3. More relations of this type can be found in [5].

The following alternatives for the q-Wiener index (with q > 0 and q 6= 1) appear in [9].

W1(G, q) = ∑
{u,v}⊆V(G)

[d(u, v)]q,

W2(G, q) = ∑
{u,v}⊆V(G)

[d(u, v)]q qL−d(u,v),

W3(G, q) = ∑
{u,v}⊆V(G)

[d(u, v)]q qd(u,v),

where L denotes the diameter of G and

[k]q =
1− qk

1− q
= 1 + q + q2 + · · ·+ qk−1.

Since limq→1[k]q = k, we have

lim
q→1

W1(G, q) = lim
q→1

W2(G, q) = lim
q→1

W3(G, q) = W(G).
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Given any function h : Z+ → R, we define the h-Wiener index of G as

Wh(G) = ∑
{u,v}⊆V(G)

h
(
d(u, v)

)
,

Through this generalized definition, all these indices and many more can be studied simultaneously.

Notice that if Sn is the star graph with n vertices, then

Wh(Sn) = (n− 1) h(1) +
1
2
(n− 1)(n− 2) h(2).

If Pn is the path graph with n vertices, then

Wh(Pn) = ∑
1≤i<j≤n

h(j− i) =
n−1

∑
k=1

(n− k) h(k).

Let us recall the following definitions from [45]. A major vertex of G is a vertex with degree
at least three. A vertex v with degree one is called a terminal vertex of a major vertex w of G if
dG(v, w) < dG(v, u) for any other major vertex u in G. The number of terminal vertices of a major
vertex w is called the terminal degree of w. LetM(G) be the set of major vertices of G with terminal
degree greater than one.

Lemma 3. If T is a tree, thenM(T) = ∅ if and only if T is a path graph.

Proof. The if part is obvious. Suppose T is a tree different from a path graph. Then, T contains a
major vertex v1. If v1 /∈ M(G), then at least two of the components of T \ {v1}must contain a major
vertex. Let v2 be a major vertex in the component C1 ∈ T \ {v1}. Now, if v2 /∈ M(G) then at least
two of the components of T \ {v2} must contain a major vertex, and at one of them, C2 is contained in
C1. Let v3 be a major vertex in C2. Then, v3 6= v1, v2 and the argument can be repeated. For every i
either vi ∈ M(G) or there is a connected component Ci ∈ T \ {vi} with Ci ⊂ Ci−1 and a major vertex
vi+1 ∈ Ci different from {v1, . . . , vi}. Since T is finite, there is some n such that vn ∈ M(G).

Given w ∈ M(G) and a terminal vertex uj of w, let us denote by [uj, w] the shortest path joining
uj and w; note that d(uj, w) is the length of the path [uj, w].

Theorem 17. Let T be a tree with n vertices.
(1) If h is an increasing function, then

(n− 1) h(1) +
1
2
(n− 1)(n− 2) h(2) ≤Wh(T) ≤

n−1

∑
k=1

(n− k) h(k),

the lower bound is attained if and only if T is the star graph and the upper bound is attained if and only if T is
the path graph.

(2) If h is a decreasing function, then

n−1

∑
k=1

(n− k) h(k) ≤Wh(T) ≤ (n− 1) h(1) +
1
2
(n− 1)(n− 2) h(2),

the lower bound is attained if and only if T is the path graph and the upper bound is attained if and only if T is
the star graph.

Proof. Assume that h is an increasing function.
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Since T is a tree with n vertices, there are n − 1 edges, and therefore, n − 1 pairs of adjacent
vertices and (n

2)− (n− 1) = 1
2 (n− 1)(n− 2) pairs of vertices at distance at least 2. Thus, Wh(T) ≥

(n− 1) h(1) + 1
2 (n− 1)(n− 2) h(2). This bound is attained if and only if T does not contain a path of

length 3; that is, if and only if T is the star graph.
Assume that T is a tree with n vertices such that Wh(T) is maximal and suppose that T contains a

vertex with degree at least 3. Then, by Lemma 3, there is a vertex w ∈ M(T) and two terminal vertices
of w, u1, u2 with d(w, u1) = k. Consider new vertices {vi : 1 ≤ i ≤ k} and let

T1 :=
(
T \ [w, u1]

)
∪ u2v1 ∪ v1v2 ∪ · · · ∪ vk−1vk.

Notice that the subgraph [u1, u2] in T and the subgraph [w, vk] in T1 are both paths with the same length.
Hence, the restriction of Wh in these subgraphs is equal and it is urgent to check that Wh(T1) > Wh(T)
(since h is an increasing function), leading to a contradiction. Therefore, the maximum degree of T is
less than 3, and so, T is the path graph.

If h is a decreasing function, then a similar argument gives the result.

Theorem 18. Let G be a graph with n vertices.
(1) If h is an increasing function, then

1
2

n(n− 1)h(1) ≤Wh(G) ≤
n−1

∑
k=1

(n− k) h(k),

the equality is attained in the upper bound if and only if G is the path graph.
(2) If h is a decreasing function, then

n−1

∑
k=1

(n− k) h(k) ≤Wh(G) ≤ 1
2

n(n− 1)h(1),

the equality is attained in the upper bound if and only if G is the complete graph.

Proof. Assume that h is an increasing function.
Since G is a graph with n vertices, there are (n

2) pairs of vertices at distance at least 1. Since h is an
increasing function, we have Wh(T) ≥ (n

2) h(1), and the equality is attained if and only if every pair of
vertices is at distance 1; i.e., G is the complete graph.

Let us prove now the upper bound. If G is a tree, then Theorem 17 gives the inequality. Assume
now that G is not a tree. Thus, there exists an edge uv ∈ E(G) such that the graph G \ uv (defined by
V(G \ uv) = V(G) and E(G \ uv) = E(G) \ {uv}) is connected. Since dG\uv(w1, w2) ≥ dG(w1, w2) for
every w1, w2 ∈ V(G) and dG\uv(u, v) > 1 = dG(u, v), we conclude Wh(G \ uv) > Wh(G). By applying
this argument a finite number of times, we obtain a tree T with Wh(T) > Wh(G), and so Theorem 17
gives the result.

If h is a decreasing function, then a similar argument gives the result.

Given any 2 ≤ ∆ ≤ n− 1, let T∆
n be the tree with n vertices obtained from the star graph S∆+1

and the path graph Pn−∆, where a vertex with degree 1 in each graph is identified. Note that T2
n = Pn

and Tn−1
n = Sn.

In T∆
n there are ∆− 1 vertices, y1, . . . , y∆−1, with degree 1 adjacent to the vertex with degree ∆,

and for these vertices, the distance between any pair is 2. Then, there are (∆−1
2 ) pairs at distance 2.

T∆
n \ {y1, . . . , y∆−1} is a path with n − ∆ + 1 vertices. Finally, for each yi, there is one vertex in

T∆
n \ {y1, . . . , y∆−1} at distance k for every 1 ≤ k ≤ n− ∆ + 1. Thus,
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Wh(T∆
n ) =

(
∆− 1

2

)
h(2) + (∆− 1)

n−∆+1

∑
k=1

h(k) + Wh(Pn−∆+1)

=
1
2
(∆− 1)(∆− 2)h(2) + (∆− 1)

n−∆+1

∑
k=1

h(k) +
n−∆

∑
k=1

(n− ∆ + 1− k) h(k)

=
1
2
(∆− 1)(∆− 2)h(2) +

n−∆+1

∑
k=1

(n− k) h(k).

Theorem 19. Let T is a tree with n vertices and maximum degree ∆ ≥ 2.
(1) If h is an increasing function, then

Wh(T) ≤
1
2
(∆− 1)(∆− 2)h(2) +

n−∆+1

∑
k=1

(n− k) h(k),

and the equality is attained if and only if T = T∆
n .

(2) If h is a decreasing function, then

Wh(T) ≥
1
2
(∆− 1)(∆− 2)h(2) +

n−∆+1

∑
k=1

(n− k) h(k),

and the equality is attained if and only if T = T∆
n .

Proof. Assume that h is an increasing function.
If ∆ = 2 or ∆ = n− 1, then T is the path graph or the star graph, respectively, and the inequality

is, in fact, an equality. Hence, we can assume that 2 < ∆ < n− 1.
Let us consider a maximal T for Wh. Since ∆ > 2, Lemma 3 gives k = |M(T)| ≥ 1. If k ≥ 2,

the same argument from the proof of the upper bound in Theorem 17 shows that there exists a tree T′

such that Wh(T′) > Wh(T). Thus, |M(T)| = 1, and so, if w is the vertex withM(T) = {w}, then T is
the union of ∆ paths [w, w1], . . . , [w, w∆]. Since ∆ < n− 1, there exists wi with d(wi, w) > 1. Seeking
for a contradiction assume that d(wj, w) > 1 for some j 6= i (1 ≤ j ≤ ∆) with d(w, wj) ≤ d(w, wi)

(relabeling if necessary). Let z be a new vertex and consider the graph T′ obtained from T ∪ {wiz}
by removing the edge incident to wj. Hence, T′ is also a tree with n vertices and maximum degree ∆,
and Wh(T′) > Wh(T). Thus, d(wj, w) = 1 for every j 6= i, and so, T = T∆

n .
If h is a decreasing function, then a similar argument gives the result.

Theorem 20. Let G be a graph with n vertices and maximum degree ∆ ≥ 2.
(1) If h is an increasing function, then

Wh(G) ≤ 1
2
(∆− 1)(∆− 2)h(2) +

n−∆+1

∑
k=1

(n− k) h(k),

and the equality is attained if and only if G = T∆
n .

(2) If h is a decreasing function, then

Wh(G) ≥ 1
2
(∆− 1)(∆− 2)h(2) +

n−∆+1

∑
k=1

(n− k) h(k),

and the equality is attained if and only if G = T∆
n .

Proof. Assume that h is an increasing function.
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If G is a tree, then Theorem 19 gives the inequality. Assume now that G is not a tree. Fix a vertex
w ∈ V(G) with degree ∆. Thus, there exists an edge uv ∈ E(G) such that w /∈ {u, v} and G \ uv is
connected. Note that the graph G \ uv has n vertices and maximum degree ∆, since the degree of w in
G \ uv is ∆. Since dG\uv(w1, w2) ≥ dG(w1, w2) for every w1, w2 ∈ V(G) and dG\uv(u, v) > 1 = dG(u, v),
we conclude Wh(G \ uv) > Wh(G). By applying this argument a finite number of times, we obtain a
tree T with n vertices, maximum degree ∆ and Wh(T) > Wh(G). Thus, Theorem 19 gives the result.

If h is a decreasing function, then a similar argument gives the result.

4. Conclusions

A typical problem in the study of topological indices is finding good bounds for some indices,
when some parameters of the graph are known. In this paper we use a unified approach in order to
prove new inequalities when the graph is a tree for a wide family of topological indices. Additionally,
we characterize those trees which are extremal for them.

First of all we obtain, by using Schur-convexity, the extremal trees with n vertices for a large
family of topological indices (see Theorems 1–4); these results are applied for the first variable
Zagreb, the Narumi–Katayama and the modified Narumi–Katayama indices in Theorems 5–8.
The Schur-convexity also allows us to find the extremal trees with n vertices and maximum degree
∆ for the previous family of topological indices (see Theorems 9–12); these results are applied for
the first variable Zagreb, the Narumi–Katayama and the modified Narumi–Katayama indices in
Theorems 13–16.

Additionally, we obtain similar results on extremal trees with n vertices for a large class
of topological indices, including the Wiener index and many generalizations of this index (see
Theorems 17 and 18); Theorems 19 and 20 provide similar results for trees with n vertices and
maximum degree ∆.

Finally, we want to remark on a new direction for future research. We are studying how to extend
these results for indices defined by

∑
uv∈E(G)

F(du, dv),

for an appropriate function F. These indices include, for instance, the case of the second variable
Zagreb index.
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13. Li, X.; Shi, Y. A survey on the Randić index. MATCH Commun. Math. Comput. Chem. 2008, 59, 127–156.
14. Rodríguez-Velázquez, J.A.; Sigarreta, J.M. On the Randić index and condicional parameters of a graph.
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16. Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals. Total π–electron energy of alternant

hydrocarbons. Chem. Phys. Lett. 1972, 17, 535–538. [CrossRef]
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