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Abstract: In this work, we introduce an efficient scheme for the numerical solution of some Boundary
and Initial Value Problems (BVPs-IVPs). By using an operational matrix, which was obtained from
the first kind of Chebyshev polynomials, we construct the algebraic equivalent representation of
the problem. We will show that this representation of BVPs and IVPs can be represented by a
sparse matrix with sufficient precision. Sparse matrices that store data containing a large number of
zero-valued elements have several advantages, such as saving a significant amount of memory and
speeding up the processing of that data. In addition, we provide the convergence analysis and the
error estimation of the suggested scheme. Finally, some numerical results are utilized to demonstrate
the validity and applicability of the proposed technique, and also the presented algorithm is applied
to solve an engineering problem which is used in a beam on elastic foundation.

Keywords: boundary and initial value problems; chebyshev-spectral method; elastic foundation;
numerical treatment

MSC: 35A24; 80M22

1. Introduction

Initial value problems, boundary value problems, and other related problems have many
applications in physics, chemistry, and different research areas (see, e.g., in [1–11] and the references
given therein). Most higher order of these types of equations and problems do not have exact analytical
solutions, thus approximation techniques must be applied.

In this work, we shall discuss the following BVPs.

n

∑
i=0

aiDiu(x) = R(x), x ∈ [−1, 1], (1)
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with

βk0u(−1) +
n−1

∑
j=1

βkju(j)(1) = lk, (k = 0, 1, 2, . . . , n− 1), (2)

and also the following IVPs,
n

∑
i=0

aiDiu(x) = R(x), x ∈ [0, 1], (3)

with
n−1

∑
j=0

βkju(j)(0) = lk, (k = 0, 1, 2, . . . , n− 1), (4)

where ai, βkj ∈ R are constants, (i = 0, 1, ..., n), (j, k = 0, 1, ..., n− 1), and R(x) and u(x) are given and
unknown functions, respectively.

Among numerical approaches, spectral methods are very successful and powerful tools for
the numerical solution of differential and integral equations involving derivatives of integer and
non-integer order. Effective properties that have encouraged many experts in numerical analysis
to use spectral methods for different kinds of mathematical problems are spectral accuracy and the
ease of applying these methods. One of the most important advantages of these methods is their
high accuracy, the so-called convergence of “infinite order”. Therefore, when the exact solution is
infinitely differentiable, the numerical approximation converges faster than M−n, where M is the order
of approximation and n > 0 is constant [12,13].

Pseudospectral, Galerkin, and Tau methods are several kinds of spectral methods which can be
obtained from a weighted residual method [12]. The Tau method, which can be explained as a special case
of spectral methods, was invented by Lanczos [14]. It has become increasingly popular with applications in
many disciplines such as porous media, viscoelasticity, electrochemistry, and other problems where high
accuracy is desired. Further detailed information of this procedure can be found in [15–17].

In the literature, there are several approaches to obtain numerical methods to solve boundary value
problems and other related problems such as Chebyshev-type, Runge–Kutta type, Wavelet–Galerkin
method, and Shannon approximation [5,6,18–23]. Wolf [24] has been concerned with the numerical
solution of non-singular integral and integro-differential equations by iteration with Chebyshev series.
In [25], a Chebyshev series were used for nonlinear differential equations. Various works, such as
the works in [26,27], introduced and discussed a Chebyshev technique for solving nonlinear optimal
control problems. Mezzadri et al. [28] have been concerned with nonlinear programming methods for
the solution of optimal control problems via a Chebyshev technique.

The proposed approach in this work is referred to as operational in the sense that it makes it
possible to transform a given differential equation into an algebraic equation. An efficient algorithm
of the Tau approximation based on Chebyshev polynomials is presented to numerically solve the
boundary and initial value problems. One of the main advantages of this methodology is that the
matrices generated of BVPs and IVPs are sparse. The proposed procedure can be very attractive to
users who are concerned with memory conservation, much less computational cost and much more
computational speed (see Remark 2). Furthermore, the simplicity of the scheme and low algorithm
run time are among its other advantages. Ultimately, to demonstrate the validity and applicability of
the method, an engineering problem of the fourth-order ODE which is arising in elastic foundation
is solved.

The organization of this paper is as follows. In Section 2, we present the basic properties of
Chebyshev polynomials. Converting boundary value problem (1) and initial value problem (3) to a
matrix form based on the new proposed algorithm is shown and the convergence analysis for the first
kind of Chebyshev expansion is given in Section 3. The last part of this work is concerned with four
numerical examples to illustrate the method.
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2. Some Preliminaries

Now, we remind some basic properties and essentials of Chebyshev polynomials, which are
applied further in this work [1].

Definition 1. The first kind of Chebyshev polynomials of order n is described as

Tn(x) = cos[ncos−1x], x ∈ [−1, 1], n = 0, 1, 2, . . . . (5)

Furthermore, due to (5), we can write

Tn(cos θ) = cos(nθ), θ ∈ [0, π], n = 0, 1, 2, . . . .

Theorem 1. The Chebyshev polynomials Tn(x) satisfy the following relation,

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, . . . . (6)

Remark 1. Using simple computation the following relations with derivatives of Chebyshev polynomials can
be obtained,



T0(x) = T
′
1(x),

T1(x) = 1
4 T
′
2(x),

Tn(x) = [
T
′
n+1(x)

2(n+1) −
T
′
n−1(x)

2(n−1) ], n ≥ 2.

(7)

Proposition 1. Chebyshev polynomials are orthogonal functions:

∫ 1

−1
Tn(x)Tm(x)(1− x2)−1/2dx =

π

2
cnδnm, (8)

where (1− x2)−1/2 is weighting function and

cn =

{
2 n = 0,
1 n > 0,

and δnm =

{
0 n 6= m,
1 n = m.

(9)

The Chebyshev polynomials Tn(x) are defined on the interval [−1, 1]. In order to use these
polynomials on the interval x ∈ [a, b], we introduce x = b−a

2 t + b+a
2 .

3. Outline of the Method for Boundary and Initial Value Problems

Here, Chebyshev–Tau method is expressed to solve boundary value problem (1) and initial
value problem (3). The first part is concerned with the matrix structure produced by proposed
method, the convergence, and the error analysis for the mentioned polynomials. The second part
will be discussed with the numerical solvability of the system of algebraic equations arising in the
presented method.

3.1. Operational Matrix of Derivative

Let functions u(x) and Du(x) be expanded by the Chebyshev polynomials in [−1, 1] as

u(x) =
∞

∑
n=0

νnTn(x) = TxVT , (10)
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Du(x) =
∞

∑
n=0

ω1,nTn(x) = TxWT
1 , (11)

where V = (ν0, ν1, ν2, . . .), W1 = (ω1,0, ω1,1, ω1,2, . . .) and Tx = (T0(x), T1(x), T2(x), . . .) . Moreover,
for any integrable function u(x) on [−1, 1], we define νn as follows,

νn =< u(x), Tn(x) >=
2

πcn

∫ 1

−1
u(x)Tn(x)ω(x)dx.

Taking the derivative of (10), we have

Du(x) =
∞

∑
n=1

νnT
′
n(x). (12)

Due to (11) and (12), we obtain

∞

∑
n=1

νnT
′
n(x) = ω1,0T0(x) + ω1,1T1(x) +

∞

∑
n=2

ω1,nTn(x),

by using Equation (7), we can rewrite the last equation as follows,

⇒ ν1T
′
1(x) + ν2T

′
2(x) + ν3T

′
3(x) + . . . = ω1,0T

′
1(x) +

ω1,1

4
T
′
2(x) +

∞

∑
n=2

ω1,n

2
[
T
′
n+1(x)
n + 1

−
T
′
n−1(x)
n− 1

],

then we conclude that 

ν1 = 1
2 [2ω1,0 −ω1,2 ],

ν2 = 1
4 [ω1,1 −ω1,3 ],

ν3 = 1
6 [ω1,2 −ω1,4 ],

...

νN−2 = 1
2(N−2) [ω1,N−3 −ω1,N−1 ],

...

(13)

or equivalently 
ω1,0 = ν1 + 3ν3 + 5ν5 + . . . + τ0,N−1

2 νN−1 +
τ0,N

2 νN + . . . ,

ω1,i = ∑∞
n=i+1 νnτi,n, i ≥ 1,

(14)

where

τi,n =


0, i + n even,

2n, o.w.
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Let us introduce matrix E as a coefficient of matrix V, then from (14) we have WT
1 = EVT .

The upper triangular matrix E, via easy calculations, is as follows,

E =


0 1 0 3 0 5 0 7 · · ·
0 0 4 0 8 0 12 0 · · ·
0 0 0 6 0 10 0 14 · · ·
...

...
...

...
...

...
...

...
...

 .

Theorem 2. Let Dku(x) = ∑∞
n=0 ωk,nTn(x) = TxWT

k be a Chebyshev polynomial with

Wk = [ωk,0, ωk,1, ωk,2, · · · ], Tx = [T0(x), T1(x), T2(x), · · · ], V = [ν0, ν1, ν2, . . .],

then for any k ∈ N, we obtain
Dku(x) = TxEkVT .

Proof. As we pointed out previously, Equation (14) can be written to the following matrix structure,

W1 = (EVT)T = VET . (15)

Furthermore, due to Equation (11), we have

Du(x) = TxEVT .

From Equation (7), we can write

T
′
n(x) =

1
2
[
T
′′
n+1(x)
n + 1

−
T
′′
n−1(x)
n− 1

].

Given the assumption, it follows that

D2u(x) =
∞

∑
n=0

ω2,nTn(x) = TxWT
2 . (16)

Using the process of obtaining Equation (15), we conclude

WT
2 = EWT

1 . (17)

Due to (15) and the last equation, we get WT
2 = E2VT . Therefore, by repeating this scheme,

it follows that WT
k = EkVT , and we can write

Dku(x) = TxEkVT .

The following theorem is concerned with the convergence and the error analysis for the
Chebyshev expansion.

Theorem 3. Suppose u(x) is a function that satisfies
∫ 1
−1 |u

(2)(x)|2dx < ∞ and |u(2)(x)| ≤ K for some
constant K. Then, we have

u(x) can be expanded as ∑∞
n=0 νnTn(x) and the series converges to u(x) uniformly, in other words

u(x) =
∞

∑
n=0

νnTn(x),
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where νn =< u(x), Tn(x) >.
Moreover, for an error estimation the following inequality holds,

e ≤
(

2K2π
∞

∑
n=N+1

1
(n− 1)4

)1
2

,

where e =
∫ 1
−1 |u(x)−∑N

n=0 νnTn(x)|2ω(x)dx.

Proof. By showing the absolute convergence of the series ∑∞
n=0 |νn|, it can be concluded that the series

∑∞
n=0 νnTn(x) converges to u(x) uniformly. According to definition of νn we have

νn =< u(x), Tn(x) >=
2

πcn

∫ 1

−1
u(x)Tn(x)ω(x)dx,

substituting ω(x) = (1− x2)−1/2 and x = cos θ yields

νn =
2

πcn

∫ π

0
u(cos θ)Tn(cos θ)(1− cos θ2)−1/2 sin θdθ

=
2

πcn

∫ π

0
u(cos θ) cos nθdθ.

Using the integration, we have:

νn =
2

πcnn

∫ π

0
u
′
(cos θ) sin nθ sin θdθ

=
1

πcnn

∫ π

0
u
′
(cos θ)[cos(n− 1)θ − cos(n + 1)θ]dθ

=
1

πcnn

[∫ π

0
u
′
(cos θ) cos(n− 1)θdθ −

∫ π

0
u
′
(cos θ) cos(n + 1)θdθ

]
,

with integration again, νn can be obtained as

νn =
1

πcnn

[
1

n− 1

∫ π

0
u
′′
(cos θ) sin(n− 1)θ sin θdθ − 1

n + 1

∫ π

0
u
′′
(cos θ) sin(n + 1)θ sin θdθ

]
,

thus for n > 1, (for n = 0, cn = 1), we have

|νn| ≤
1

πn

∫ π

0
|u′′(cos θ)|

[
1

n− 1
− 1

n + 1

]
.

Furthermore, due to assumption and by simple computation, we can obtain

|νn| ≤
2K

[n2 − 1]
≤ 2K

[n− 1]2
.

Finally, the last inequality shows that the series ∑∞
n=0 |νn| ia absolutely convergent. Let us set

e =
∫ 1

−1
|u(x)−

N

∑
n=0

νnTn(x)|2ω(x)dx

=
∫ 1

−1
|

∞

∑
n=0

νnTn(x)−
N

∑
n=0

νnTn(x)|2ω(x)dx
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=
∫ 1

−1
|

∞

∑
n=N+1

νnTn(x)|2ω(x)dx,

due to orthogonality of Tn(x) and value of |νn|, we have:

e ≤
∞

∑
n=N+1

|νn|2
π

2
≤ 2K2π

∞

∑
n=N+1

1
[n− 1]4

.

3.2. Description of the Proposed Method for BVPs and IVPs

The main object of this section is applying the obtained consequence for constructing the Tau
approximate solution with Chebyshev polynomials of the boundary value problem (1).

We suppose that

uN(x) =
N

∑
n=0

νnTn(x) = TN,xVT
N , (18)

DnuN(x) = TN,xEn
NVT

N , (19)

R(x) =
N

∑
n=0

bnTn(x) = TN,xbT
N , (20)

where VN = (ν0, ν1, . . . , νN), TN,x = (T0(x), T1(x), . . . , TN(x)) , bN = (b0, b1, . . . , bN) and EN is a finite
form of E.

Using the above relations, (1) can be written as

anTN,xEn
NVT

N + an−1TN,xEn−1
N VT

N + . . . + a1TN,xENVT
N + a0TN,xVT

N = TN,xbT
N ,

According to the linear independence of Chebyshev polynomials, we have

(anEn
N + an−1En−1

N + . . . + a1EN + a0IN+1)VT
N = bT

N . (21)

Let us set
X = anEn

N + an−1En−1
N + . . . + a1EN + a0IN+1, (22)

similarly, for the Equation (2) we set

βk0

N

∑
n=0

νnTn(−1) +
n−1

∑
j=1

βkj

N

∑
n=0

νnT(i)
n (1) = lk, (k = 0, 1, 2, . . . , n− 1). (23)

Due to (22) and (23), the desired matrix can be written as

 Xn

B


 ν0

...
νN

 =



b0
...

bN−n

l0
...

ln−1


, (24)
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where Xn is obtained by eliminating the last n row of matrix X and

B =


β00 β01 . . . β0,n−1

β10 β11 . . . β1,n−1
...

...
...

...
βn−1,0 βn−1,1 . . . βn−1,n−1




T0(−1) T1(−1) . . . TN (−1)
0 T

′
1(1) . . . T

′
N
(1)

...
...

...
...

0 0 . . . T(n−1)
N (1)

 . (25)

By solving a sparse system of above algebraic equation, we can obtained unknown vi,
(i = 0, 1, . . . , N) and finally, uN(x), the desired approximation, can be computed from the following
relation,

uN(x) = TN,xVT
N .

The following Algorithm 1 summarizes our proposed method.

Algorithm 1: The construction of proposed method for the boundary value problems (BVPs)
Step 1. Input:

N, n, cN−i , ai, lj, (i = 0, . . . , n, j = 0, . . . , n− 1);
R(x);

Step 2. Compute: bk =
2ck
π

∫ 1
−1 R(x)Tk(x)(1− x2)−

1
2 dx;

for k = 0, . . . , N − n.
Step 3. Compute the matrix EN from matrix E.
Step 4. Compute:

4.1. Ei
N from step 3, (i=2, . . . , n).

4.2. Xn based on X from (22).
Step 5. Set:

B =


β00 β01 . . . β0,n−1

β10 β11 . . . β1,n−1
...

...
...

...
βn−1,0 βn−1,1 . . . βn−1,n−1




T0(−1) T1(−1) . . . TN (−1)
0 T

′
1(1) . . . T

′
N
(1)

...
...

...
...

0 . . . . . . T(n−1)
N (1)

 .

Step 6. Obtain the solution VN from the system of (24) and set:
uN(x) = TN,xVT

N .

Construction of the Proposed Method for IVPs

Here, we consider the initial value problems (3) as

n

∑
i=0

aiDiu(x) = R(x), x ∈ [0, 1],

with
n−1

∑
j=0

βkju(j)(0) = lk, (k = 0, 1, 2, . . . , n− 1).

It is clear that the given scheme for BVPs (1) and Algorithm 1, with small changes, can be easily
applied to these problems, thus we refrain from going into details. Only Step 5 in Algorithm 1 will be
changed, and we have
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B =


β00 β01 . . . β0,n−1

β10 β11 . . . β1,n−1
...

...
...

...
βn−1,0 βn−1,1 . . . βn−1,n−1




T0(0) T1(0) . . . TN (0)
0 T

′
1(0) . . . T

′
N
(0)

...
...

...
...

0 . . . . . . T(n−1)
N (0)

 , (26)

therefore, we can obtain VN from the system of (24) and finally the desired solution can be achieved
from uN(x) = TN,xVT

N .

Remark 2. As a consequence of the described method, a significant advantage for increasing the computation
speed is to the sparsity of matrices EN , E2

N ,...,En
N . If we consider matrix EN with an odd dimension, then the

number of non-zero matrix elements is
N(N + 2)

4
. Moreover, the number of non-zero matrix elements for

matrix EN with an even dimension is [
N + 1

2
]2. Furthermore, the number of non-zero matrix elements for

matrix E2
N with an even and odd dimension are

N2 − 1
4

and
N2

4
, respectively and so it goes. Figures 1–3

indicate that as the derivative order rise, the sparsity of matrices and computational speed also increase.

Figure 1. The sparsity structure of EN for even value of N.

Figure 2. The sparsity structure of E2
N for even value of N.
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Figure 3. The sparsity structure of E3
N for even value of N.

4. Numerical Results

In this section, the numerical results of four test problems are reported. We solve the examples
using proposed Tau approximation method based on Chebyshev basis functions. In the tables
presented here, the maximal differences between exact and approximation solution has been shown by
“Maximal Errors”. We compare our obtained results with in the some existing numerical methods.
The numerical results of the given method have been shown in Figures 4–7.

Figure 4. The Tau approximation of order 3 and N = 7 for Example 1 using Chebyshev basis.

Figure 5. The Tau approximation of order 1 and N = 5 for Example 2 using Chebyshev basis.
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Figure 6. The Tau approximation of order 4 and N = 4 for Example 3 using Chebyshev basis.

Figure 7. The Tau approximation of order 5 and N = 9 for Example 4 using Chebyshev basis.

Example 1. Consider the third-order boundary value problem

u
′′′
(x)− 6u

′′
(x) + 11u

′
(x)− 6u(x) = sin x, (27)

with the conditions
u(−1) =

1
e1 +

1
e2 +

1
e3 − 0.1 cos(−1),

u
′
(1) = e1 + 2e2 + 3e3 + 0.1 sin(1),

u
′′
(1) = e1 + 4e2 + 9e3 + 0.1 cos(1),

and the exact solution of Example 1 is u(x) = ex + e2x + e3x − 0.1 cos x.

We take N = 7, for computational details of the described technique in Section 3. By applying mentioned
algorithm, the following matrices will be obtained.

E7 =



0 1 0 3 0 5 0 7
0 0 4 0 8 0 12 0
0 0 0 6 0 10 0 14
0 0 0 0 8 0 12 0
0 0 0 0 0 10 0 14
0 0 0 0 0 0 12 0
0 0 0 0 0 0 0 14


, E2

7 =



0 0 4 0 32 0 108 0
0 0 0 24 0 120 0 336
0 0 0 0 48 0 192 0
0 0 0 0 0 80 0 280
0 0 0 0 0 0 120 0
0 0 0 0 0 0 0 168
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,
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E3
7 =



0 0 0 24 0 360 0 2016
0 0 0 0 192 0 1728 0
0 0 0 6 0 480 0 3360
0 0 0 0 0 0 960 0
0 0 0 0 0 0 0 1680
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

The left and right hand-side of (24) are, respectively,

 X3

B

 =



−6 11 −24 57 −192 415 −648 2093
0 −6 44 −144 280 −720 1860 −2016
0 0 −6 66 −288 590 −1152 3514
0 0 0 −6 88 −480 1092 −1680
0 0 0 0 −6 110 −720 1834
0 0 4 24 80 200 420 784
0 1 4 9 16 25 36 49
1 −1 1 −1 1 −1 1 −1


,

and 

b0

b1

b2

b3

b4

l0
l1
l2


=



0
0.880101

0
−0.0391267

0
213.098
77.8372
0.498972


.

By solving the linear system (24), we obtain vector V7 as follows,

V7 = [8.40476, 12.2529, 6.15946, 2.41236, 0.744749, 0.187294, 0.0555411, 0.0130075].

By putting these values in Equation (18), an approximate solution will be obtained. The numerical results
are given in Table 1.

Table 1. Results of Example 1, using presented method.

N
Maximal Errors

Presented Method

7 9.12× 10−2

8 5.74× 10−3

10 1.22× 10−4

12 1.58× 10−6

15 1.49× 10−9

Example 2. Consider the first-order initial value problem:

0.25u
′
(x) + u(x) = 1. (28)
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The exact solution of this problem under the initial condition u(0) = 0 is given by

u(x) = 1− e−4x. (29)

This problem was also solved in [4,21] by a method based on Legendre and Chebyshev polynomials. The best
reported maximum error is O(10−4). Table 2 shows that we can attain good numerical results compare to the
numerical results in [4,21] for n ≥ 10.

Table 2. Results of Example 2, using presented method.

N Maximal Errors

Presented Method Method in [3] Method in [9]

6 1.17× 10−2 1.45× 10−2 2.7× 10−2

8 9.09× 10−3 2.1× 10−3 3.8× 10−3

11 4.48× 10−5 2.03× 10−4 4.11× 10−4

15 1.66× 10−8 − −
18 4.93× 10−12 − −

Example 3. Consider an engineering problem of the fourth-order initial value problem which is arising in
elastic foundation [20] as follows,

u(4)(x) + u(x) = 1, 0 < x < 1, (30)

u(0) = 0, u
′
(0) = 0, u

′′
(0) = 0, u

′′′
(0) = 0,

with the exact solution u(x) = 1− 1
2 e
−x√

2 (1 + e
√

2x) cos( x√
2
).

Example 4. Consider the following fifth-order boundary value problem,

u(5)(x)− 3u(4)(x)− 16u
′
(x) + 48u(x) = 48, (31)

with
u(−1) = e−2 + e2 + e−3 + cos 2− sin 2 + 1,

u
′
(1) = 2e2 − 2e−2 + 3e3 + 2 cos 2− 2 sin 2,

u
′′
(1) = 4e2 + 4e−2 + 9e3 − 4 cos 2− 4 sin 2,

u
′′′
(1) = 8e2 − 8e−2 + 27e3 − 8 cos 2 + 8 sin 2,

u(4)(1) = 16e2 + 16e−2 + 81e3 + 16 cos 2 + 16 sin 2.

and the exact solution u(x) = e2x + e−2x + e3x + cos 2x + sin 2x + 1.
To obtain the approximate solution of Examples 3 and 4, we apply the proposed Tau method. The obtained

numerical results in Table 3, show that the desired accuracy is obtained.

Table 3. Results of Examples 3 and 4, using presented method.

N Maximal Errors

Exp. 3 Exp. 4

11 1.54× 10−9 2.63× 10−3

13 5.85× 10−14 4.11× 10−5

15 3.64× 10−15 5.15× 10−7

17 1.27× 10−16 5.01× 10−9
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5. Conclusions

In this paper, an efficient and accurate numerical algorithm has been applied to solve boundary
and initial value problems by using the Chebyshev–Tau method. Due to the wide application of
boundary value problems in many different fields, an engineering problem which is arising in
elastic foundation is chosen as test example. By utilizing proposed method, the sparsity of the
obtained derivative operational matrix makes us able to solve the linear system with much less
computational cost and much more computational speed. The reported results indicated that the
proposed scheme can obtain appropriate approximate solutions in comparing with the exact solution.
Moreover, by increasing the order of Chebyshev polynomial, a better approximation was achieved.
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