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Abstract: A vital role in the dynamics of physical systems is played by symmetries. In fact,
these studies require the solution for systems of equations on abstract spaces including on the
finite-dimensional Euclidean, Hilbert, or Banach spaces. Methods of iterative nature are commonly
used to determinate the solution. In this article, such methods of higher convergence order are
studied. In particular, we develop a two-step iterative method to solve large scale systems that
does not require finding an inverse operator. Instead of the operator’s inverting, it uses a two-step
Schultz approximation. The convergence is investigated using Lipschitz condition on the first-order
derivatives. The cubic order of convergence is established and the results of the numerical experiment
are given to determine the real benefits of the proposed method.

Keywords: nonlinear equation; iterative method; approximation of inverse operator; local convergence;
order of convergence; Lipschitz condition
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1. Introduction

In this article, F denotes an operator acting on a Banach space X with values inside a Banach
space Y and D ⊆ X is convex. To find the approximate solution p of

F(x) = 0 (1)

we often utilize the method [1–5]

xk+1 = xk − F′(xk)
−1F(xk), k ≥ 0, (2)

due to Newton or its differential or difference modifications. Iterative methods are used since p can be
found in closed form only in special cases. That is the first benefit of using iterative methods. However,
at each iteration, it is necessary to find one or more inverse operators. This is one setback for using
Newton-type methods [1–5]. Since it is not always easy to do, we bypass this obstacle by finding
approximations for inversion using only multiplications of linear operators. This is one major benefit.
There is the novelty of our paper, since we contribute in this direction.

Methods with approximation of inverse operator are based on different ideas. Some ideas intend
to construct approximations to the solution of a nonlinear Equation (1), and others to construct
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approximations to the inverse operator. There are two approaches to approximate an inverse
operator: successive approximation (SA) and parallel (synchronous and asynchronous) approximations.
In methods with the successive approximation, the calculations in separate branches are performed
alternately. In methods with the parallel approximation requiring the computation of an inverse of
a linear operator, the computations in separate branches of the method are performed in parallel.
Such methods are effective for numerically solving Equation (1) in the parallel processor system with
common memory [6–8].

Many authors have investigated methods with SA of inverse operator. For example, the local
convergence of modifications of Newton and Steffensen methods are studied in [9]. In [10–12],
the authors studied the semilocal convergence (SLC) for Ulm method [9]

Ak+1 = Ak + (E− AkF′(xk))Ak,
xk+1 = xk − Ak+1F(xk), k ≥ 0

(3)

and its difference analog
Ak+1 = Ak + (E− AkF(xk−1, xk))Ak,
xk+1 = xk − Ak+1F(xk), k ≥ 0.

(4)

Here, E is the identity operator in X and F(u, v) stands for the first-order divided difference
for operator F(x) [13]. Moreover, x0 and A0 are initial approximations for a solution x∗ and an
inverse operator A∗ = [F′(x∗)]−1, respectively. Furthermore, the closer x0 and A0 are to p, A∗ the
better Equation (4) performs. However, there are no preconditioners. An investigation of the
accelerated Newton method and a two-parametric secant-type method with SA of the inverse operator
is performed in [14,15] (see also [16–18]). It is worth noting that Ulm type methods provide the
same order of convergence as Newton’s or Steffensen’s but without using inverses which are very
expensive to compute in general. In certain cases, even the ratio of convergence may be smaller (see the
numerical section).

A method with synchronous inverse approximation

Ak+1 = Ak + (E− AkF′(xk))Ak,
xk+1 = xk − AkF(xk), k ≥ 0

(5)

and a method with the asynchronous approximation were considered by A. Rooze [6,7]. Some
modifications of a method by Gauss–Newton with SA of the inverse operator to solve a nonlinear least
squares problems were proposed by Iakymchuk, Shakhno [8].

In 1983, the authors built third-, fifth-, and sixth-order methods with approximation of inverse
operator for solving operator equations [19]. In particular, the third-order method has the form

yk = xk − AkF(xk),
xk+1 = yk − AkF(yk),
Bk = Ak(2E− F(xk+1, uk+1)Ak),
Ak+1 = Bk(2E− F(xk+1, uk+1)Bk), k ≥ 0,

(6)

where uk+1 = xk+1 − βk+1F(xk+1), βk+1 is a real parameter.
To increase the order of convergence, efficiency and applicability of the aforementioned Ulm-type

method, by replacing the divided differences by Fréchet derivatives in Equation (6), we develop
the method

yk = xk − AkF(xk),
xk+1 = yk − AkF(yk),
Bk = Ak(2E− F′(xk+1)Ak),
Ak+1 = Bk(2E− F′(xk+1)Bk), k ≥ 0.

(7)
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This method is a two-step modification of Newton method [2,20]:

yk = xk − F′(xk)
−1F(xk),

xk+1 = yk − F′(xk)
−1F(yk), k ≥ 0.

(8)

It is easy to see that the method in Equation (7) coincides with the third-order iterative process

yk = xk − BkF(xk),
xk+1 = yk − BkF(yk),
Bk+1 = Bk + Bk(2E− F′(xk+1)Bk)(E− F′(xk+1)Bk), k ≥ 0,

(9)

which was proposed by Esquerro, Hernández [21]. They only investigated the semilocal convergence
(SLC) of the method in Equation (9). Obviously, the methods in Equations (7) and (9) can be considered
as methods SA for inverse operator.

We examine conditions for local convergence (LC) of the method in Equation (7) including its
convergence order. We note that LC results are very important, since they demonstrate the degree of
difficulty in selecting starters x0 that guarantee convergence to p.

Another novelty of the developed method in Equation (7) lies in the fact that the inverse at each
step is not calculated compared to other methods; the method is suitable to solve large scale systems;
and it has better rate and convergence order than other methods using related information (see also
benefits reported in Section 3. Indeed, there are significant developments in the study of Ulm-type
methods. Moreover, these ideas can be used to expand the applicability of other methods along the
same lines.

Section 2 contains the LC study of method in Equation (7). Large scale systems are solved in
Section 3, where X and Y are specialized to be finite-dimensional Euclidean spaces. The study of
solving large scale systems is of extreme importance, since most problems from diverse disciplines
reduce to solving such systems [1–22].

2. LC study for the Method in Equation (7)

The following theorem establishes the conditions under which the iterative process in Equation (7)
is convergent.

Theorem 1. Assume that:

(1) Operator A∗ = [F′(p)]−1 exists;
‖A∗‖ ≤ B (10)

and
‖F′(p)‖ ≤ C, (11)

where p is the solution of Equation (1).
(2) In ball U = {x ∈ D : ‖x− p‖ ≤ R0}, the following estimate is satisfied

‖F′′(x)‖ ≤ L, (12)

where R0 = max{r0, a1r2
0, a2r3

0}, r0 = max{‖x0 − p‖, ‖A0 − A∗‖},

a1 = C +
3
2

BL +
3
2

Lr0;

a2 = (C +
3
2

BLa1r0 +
3
2

La1r2
0)a1.

(3) Initial approximations x0, A0 are such that

qr0 < 1, (13)
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where q = (max{a2, a3})
1
2 , a3 = Cγ2r0 + La2(C + γr2

0)
2, γ = C + L(B + r0)

2a2r0.

Then, sequences {xk}, {Ak}, k ≥ 0, generated by Equation (7), converge to p, A∗, respectively, and

rk = max{‖Ak − A∗‖, ‖xk − p‖} ≤ (qr0)
3k−1r0, k ≥ 0. (14)

Proof. The proof is performed by mathematical induction.
It follows from

‖x0 − p‖ ≤ r0 = (qr0)
30−1r0,

that x0 ∈ U, and the estimate in Equation (14) is true for k = 0. Suppose that xk ∈ U and the estimate
in Equation (14) is satisfied for k ≥ 0. It follows that rk ≤ r0, since qr0 < 1 is provided by Equation (13).
Taking into account Equation (10) and the definition r0, we get

‖Ak‖ ≤ ‖A∗‖+ ‖Ak − A∗‖ ≤ B + r0. (15)

We obtain from the first equality of Equation (7) and the Taylor’s formula

p− yk = p− xk + Ak(F(xk)− F(p)) = p− xk + AkF′(xk)(xk − p)

−Ak

∫ 1

0
F′′(xk + t(p− xk))(p− xk)

2(1− t)dt

= −Ak

∫ 1

0
F′′(xk + t(p− xk))(p− xk)

2(1− t)dt

+(E− AkF′(xk))(p− xk). (16)

By the condition in Equation (11) and the estimate in Equation (15), we have since

E− AkF′(xk) = (A∗ − Ak)F′(p) + Ak(F′(p)− F′(xk)),

that

‖E− AkF′(xk)‖ ≤ ‖F′(p)‖‖A∗ − Ak‖+ ‖Ak‖‖F′(p)− F′(xk)‖
≤ C‖A∗ − Ak‖+ (B + r0)L‖p− xk‖
≤ rk(C + L(B + r0)) = ark, (17)

where a = C + L(B + r0).
It follows from Equations (16) and (17) that

‖p− yk‖ ≤ ‖Ak‖‖
∫ 1

0
F′′(xk + t(p− xk))(p− xk)

2(1− t)dt‖

+‖E− AkF′(xk)‖‖p− xk‖

≤ (B + r0)
L
2
‖p− xk‖2 + (C + L(B + r0))rk‖p− xk‖

≤ (B + r0)
L
2

r2
k + (C + L(B + r0))r2

k = (C +
3
2

BL +
3
2

Lr0)r2
k ,

thus
‖p− yk‖ ≤ a1r2

k . (18)

In addition, ‖p− yk‖ ≤ a1r2
0 ≤ R0, and whence it follows yk ∈ U.
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We obtain from the second equality of Equation (7) and the Taylor’s formula

xk+1 − p = yk − p− Ak(F(yk)− F(p))

= Ak

∫ 1

0
F′′(yk + t(p− yk))(p− yk)

2(1− t)dt

+(E− AkF′(yk))(yk − p). (19)

Hence, we have, given the conditions in Equations (10)–(12) and the estimates in Equations (15), (17),
and (18),

‖xk+1 − p‖ ≤ (B + ‖A∗ − Ak‖)
L
2
‖p− yk‖2

+
(
C‖A∗ − Ak‖+ (B + ‖A∗ − Ak‖)L‖p− yk‖

)
‖p− yk‖

≤ C‖A∗ − Ak‖‖p− yk‖+
3
2

BL‖p− yk‖2 +
3
2

L‖p− yk‖2‖A∗ − Ak‖

≤ ‖p− yk‖(Crk +
3
2

BL‖p− yk‖+
3
2

Lrk‖p− yk‖)

≤ (C +
3
2

BLa1r0 +
3
2

La1r2
0)a1r3

k = a2r3
k . (20)

Thus, xk+1 ∈ U, since ‖xk+1 − p‖ ≤ a2r3
0 ≤ R0.

On the other hand, based on the third formula of Equation (7)

A∗ − Bk = (A∗ − Ak)F′(p)(A∗ − Ak)− Ak(F′(p)− F′(xk+1))Ak.

Hence, we have, given Equations (11) and (20),

‖A∗ − Bk‖ ≤ ‖F′(p)‖‖A∗ − Ak‖2 + ‖Ak‖2‖F′(p)− F′(xk+1)‖
≤ Cr2

k + ‖Ak‖2L‖xk+1 − p‖
≤ (C + L(B + r0)

2a2r0)r2
k = γr2

k . (21)

In accordance with the fourth equality of Equation (7),

A∗ − Ak+1 = −Bk(F′(p)− F′(xk+1))Bk + (A∗ − Bk)F′(p)(A∗ − Bk).

From this relationships, based on the conditions in Equations (11) and (12) and estimates in
Equations (20) and (21), we get in turn

‖A∗ − Ak+1‖ ≤ ‖F′(p)‖‖A∗ − Bk‖2 + ‖Bk‖2‖F′(p)− F′(xk+1)‖
≤ Cγ2r4

k + ‖Bk‖2L‖xk+1 − p‖
≤ (Cγ2r0 + La2(C + γr2

0)
2)r3

k = a3r3
k . (22)

Given induction assumptions we obtain, based on the estimates in Equations (20) and (22),

rk+1 = max{‖xk+1 − p‖, ‖Ak+1 − A∗‖} = max{a2, a3}r3
k

= q2r3
k = q2((qr0)

3k−1r0)
3 = (qr0)

3k+1−1r0.

That is, Equation (14) is fulfilled for an iteration k + 1. The induction is complete.
Moreover, it follows from the estimate in Equation (14) for k→ ∞ the convergence of sequences

{xk} and {Ak}.

Next, a uniqueness result follows.



Symmetry 2020, 12, 978 6 of 9

Proposition 1. Suppose: Equation (1) has a solution p ∈ D0, where D0 ⊆ D is convex and

‖A∗(F′(p)− F′(x))‖ ≤ L0‖p− x‖ for x ∈ D0 and L0 > 0. (23)

Set U0 = {x ∈ D : ‖x− p‖ < 1
L0
} and S = D0 ∩U0.

Then, p uniquely solves (1) on S.

Proof. Consider for v ∈ S with F(v) = 0, operator T =
∫ 1

0
F′(v + a(p− v))da. Using Equation (23),

we obtain

‖A∗(T − F′(p))‖ ≤ L0

∫ 1

0
‖v + a(p− v)− p‖da

≤ L0

∫ 1

0
(1− a)‖v− p‖da ≤ L0

2
‖v− p‖ < 1, (24)

thus T is invertible. Hence, p = v follows from

T(p− v) = F(p)− F(v) = 0.

The method in Equation (7) has a higher convergence rate than the Newton and Steffensen method.
Moreover, in contrast, it does not require an inverse operator. Furthermore, the convergence order of
method in Equation (7) is larger than for methods with the successive approximation in Equations (3)
and (4).

3. Numerical Experiments

We used large scale test problems from Luksan [22] for the numerical study of the methods.
Calculations were performed in Octave 5.1.0. Stopping iterative processes occurred under the condition

‖xk+1 − xk‖ ≤ 10−10.

The initial approximations were calculated by the rules x0 = w̄, y0 = x0 + 10−4. We compared
methods by the number of iterations required to obtain an approximate solution. Table 1 shows the
results for m = 100.

Example 1. Trigonometric-exponential function.

hi = 3w3
i + 2wi+1 − 5 + sin (wi − wi+1) sin (wi + wi+1) , i = 1,

hi = 3w3
i + 2wi+1 − 5 + sin (wi − wi+1) sin (wi + wi+1) +

+4wi − wi−1 exp (wi−1 − wi)− 3, 1 < i < m,

hi = 4wi − wi−1 exp (wi−1 − wi)− 3, i = m,

w̄i = 2s, s ∈ IR, i = 1, m.

Example 2. Consider tridiagonal function due to Broyden.

hi = wi(0.5wi − 3) + 2wi+1 − 1, i = 1,

hi = wi(0.5wi − 3) + wi−1 + 2wi+1 − 1, 1 < i < m,

hi = wi(0.5wi − 3) + wi−1 − 1, i = m,

w̄i = −s, s ∈ IR, i = 1, m.
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Example 3. Counter current reactor problem.

α = 1/2,

hi = α− (1− α)wi+2 − wi(1 + 4wi+1), i = 1,

hi = −(2− α)wi+2 − wi(1 + 4wi−1), i = 2,

hi = αwi−2 − (1− α)wi+2 − wi(1 + 4wi+1), mod (i, 2) = 0, 2 < i < m− 1,

hi = αwi−2 − (2− α)wi+2 − wi(1 + 4wi−1), mod (i, 2) = 1, 2 < i < m− 1,

hi = αwi−2 − wi(1 + 4wi+1), i = m− 1,

hi = αwi−2 − (2− α)− wi(1 + 4wi−1), i = m,

w̄i = 1000s, s ∈ IR, i = 1, m.

Table 1. The number of iterations for different values of s.

Method
Example 1 Example 2 Example 3

0.4 1 5 1 5 100 0.01 0.1 1

Equation (2) 5 7 11 5 7 11 15 18 21
Equation (3) 7 8 15 7 9 15 22 27 33
Equation (7) 4 5 9 4 5 9 13 15 18
Equation (8) 4 5 8 4 5 8 11 13 16

The comparison by the number of iterations was performed to confirm the theoretical results
about the higher convergence order of the studied method in Equation (7) than for the Ulm method in
Equation (3). Obtained results also show that the methods with the approximation of inverse operator
are somewhat inferior to the corresponding methods with the calculation of the inverse operator.
However, the benefit of these methods is that they can be used when finding the inverse operator is
impossible or difficult.

The graphs show the values of error ‖xk − p‖ at each iteration (see Figure 1). These are results
for s = 5 for Example 1, s = 100 for Example 2, and s = 0.1 for Example 3. We draw graphs using a
logarithmic scale for both of the axes.

Figure 1. The error at each iteration.
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We see from the results on graphs that the errors of the methods with the approximation of inverse
operator in Equations (3) and (7) decrease more slowly than for the basic methods in Equations (2)
and (8), respectively. Moreover, obtained numerical results confirm that the methods in Equations (7)
and (8) have a higher convergence rate than those in Equations (2) and (3).

4. Conclusions

The LC of method in Equation (7) with approximation of inverse operator for solving large
scaled systems of equations is studied. The cubic order and radius of convergence of this method
are determined. Numerical results are presented which demonstrate the computational benefits of
the method.
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