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Abstract: A method for the computation of the nth roots of a general complex-valued r × r
non-singular matrix A is presented. The proposed procedure is based on the Dunford–Taylor
integral (also ascribed to Riesz–Fantappiè) and relies, only, on the knowledge of the invariants of the
matrix, so circumventing the computation of the relevant eigenvalues. Several worked examples are
illustrated to validate the developed algorithm in the case of higher order matrices.
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1. Introduction

Complex-valued matrices are a natural extension of complex numbers, and matrix operations are
well known to the reader [1] likely with the only exception of roots’ computation.

The normal situation for a complex number is that the nth root always has n determinations.
The equivalent situation for an r× r matrix A is that the nth root of A should have nr determinations.
The problem arises in the case of matrices of a special type, for which the computation of roots is
ill-posed in the sense of J.Hadamard, as they admit no roots or, conversely, an infinite number of those.

In general, the problem of computing the nth roots of general complex-valued matrices has not
received the necessary attention so far. In relation to the simple case of 2× 2 matrices, a few articles
appeared in Mathematics Magazine [2–4] and in Linear Algebra and its Applications [5,6].

The Newton–Raphson method was applied by N.J. Higham in [7] for computing the square roots
of general matrices, whereas I.A. al-Tamimi [8] and S.S. Rao et al. [9] used the Cayley–Hamilton
theorem for computing roots of general 2 × 2 non-singular matrices. A necessary and sufficient
condition for the existence of the nth root of a singular complex matrix A was given by P.J. Psarrakos
in [10].

Two alternative techniques for the computation of the nth roots of a non-singular complex-valued
matrix has been recently proposed.

The first method was presented in [11] and is based on the Cayley–Hamilton theorem in
combination with the representation of non-singular matrix powers in terms of Chebyshev polynomials
of the second kind [12,13]. In this way, it is possible to express the roots of non-singular 2× 2 or 3× 3
complex-valued matrices by making use of pseudo-Chebyshev functions [14,15]. Unfortunately,
the extension of this technique to higher order matrices can be hardly achieved, owing to the
complicated inductive procedure that is necessary for this purpose.
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A second method, which is referred to as the FKN (Fk,n functions)procedure, was described in [16].
This technique can be applied to non-singular r× r (r ≥ 2, r ∈ N) complex-valued matrices, though it
is not valid for general matrices, such as nilpotent matrices. The Fk,n functions can be expressed by
generalized Lucas polynomials of the second kind [17–20].

Since the considered problem cannot be solved in its generality when dealing with rootless
matrices [4], nilpotent matrices (i.e., Jordan blocks), or matrices with infinite roots [21], the present
study is devoted to the illustration of a “canonical” method for computing the roots of general matrices
in the regular case, so excluding the aforementioned exceptions. In particular, we will show that the
FKN expansion can be avoided when representing the nth roots of a non-singular matrix A. As a
matter of fact, the problem can be solved in an effective way by making use of the Dunford–Taylor
integral, which traces back to previous works by F. Riesz and L. Fantappié, as well as a known formula
for the resolvent of a matrix reported in [22].

It is shown that the evaluation of the roots of a given non-singular matrixA can be performed only
on the basis of the knowledge of the matrix invariants, which are the coefficients of the characteristic
equation (or equivalently, the elementary symmetric functions of the eigenvalues), and the relevant
spectral radius R, which can be estimated using Gershgorin’s theorem. In this way, a numerical
quadrature rule can be adopted to compute a contour integral extended to a circle centered at the
origin and having a radius larger than R. We also stress that, by using the proposed methodology,
one can easily evaluate all the determinations of the root of a given matrix.

The paper is organized as follows. First, we recall the formula for the resolvent of a matrix
and then apply this formula in combination with the Dunford–Taylor integral to derive an explicit
representation of a matrix root. Several worked examples are prepared and presented in the paper
to prove the effectiveness of the procedure for arbitrary higher order non-singular complex-valued
matrices. To this end, the computer program Mathematica c© is used.

2. The Dunford–Taylor Integral

The Dunford–Taylor integral [23] is an analogue of the Cauchy integral formula in function
theory. It can be applied to holomorphic functions of a given operator. In the finite-dimensional case,
an operator is nothing but a matrix A.

Theorem 1. Suppose that f (λ) is a holomorphic function in a domain ∆ of the complex plane containing all
the eigenvalues λh of A, and let γ ⊂ ∆ be a closed smooth curve with positive direction that encloses all the λh
in its interior. Then, the matrix function f (A) can be defined by the Dunford–Taylor integral:

f (A) = 1
2 π i

∮
γ

f (λ) (λI −A)−1dλ , (1)

where (λI −A)−1 denotes the resolvent of A.

As an example, given the natural number n, the nth power of A can be evaluated as:

An =
1

2 π i

∮
γ

λn (λI −A)−1dλ . (2)

It is worth noting that an alternative technique has been presented in the scientific literature
to compute matrix powers through the Cayley–Hamilton theorem and the so-called Fk,n functions,
which are solutions of linear recursions [12,13]. This method is purely algebraic and does not make
use of quadrature rules, which are necessary to avoid Cauchy’s residue theorem.

It is useful to mention that, if A is non-singular, both the Equation (2) and the results reported
in [12,13] are still valid for negative values of the exponent n, since the FKN functions can be defined
for n < 0 as well [24].
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For holomorphic functions of general matrices, the evaluation of the Dunford–Taylor integral is
more convenient than the application of Cauchy’s residue theorem from a computational standpoint.
In fact, such an approach relies, only, on the knowledge of the entries of the considered matrix and the
relevant invariants, whereas the knowledge of the eigenvalues is necessary where Cauchy’s residue
theorem is applied.

3. Recalling the Resolvent of a Matrix

The resolvent of an operator is an important tool for using methods of complex analysis in the
theory of operators on Banach spaces. The holomorphic functional calculus gives a formal justification
of the procedure used. The spectral properties of the operator are determined by the analytical structure
of the functional.

In this study, we consider the finite-dimensional case, so that the general operator under
consideration can be represented as a r× r (r ∈ N) complex-valued matrix A.

We denote as: 

u1 = tr A = a11 + a22 + . . . + arr

u2 =
1,r

∑
i<j

∣∣∣∣∣ aii aij
aji ajj

∣∣∣∣∣
u3 =

1,r

∑
i<j<k

∣∣∣∣∣∣∣
aii aij aik
aji ajj ajk
aki akj akk

∣∣∣∣∣∣∣
· · ·

ur = det A

(3)

the invariants of A, i.e., the coefficients of the characteristic polynomial:

P (λ) = λr − u1λr−1 + · · ·+ (−1)r−1ur−1λ + (−1)rur , (4)

which are invariants under similarity transformations. Let:

λ1, λ2, . . . , λr (5)

be the roots of P (λ), i.e., the eigenvalues of A.
In [22] (pp. 93–95), the following representation of the resolvent (λI −A)−1 in terms of the

invariants of A was proven:

(λI −A)−1 =
1

P (λ)

r−1

∑
k=0

r−k−1

∑
h=0

(−1)h uh λr−k−h−1Ak . (6)

By using (5) and (6), we can easily derive the representation formula for matrix functions reported
in [18].

Theorem 2. Let f (λ) be a holomorphic function in a domain ∆ of the complex plane containing the spectrum
of A, and denote by γ ⊂ ∆ a simple contour enclosing all the zeros of P (λ). Then, the Dunford–Taylor integral
is written as:

f (A) = 1
2 π i

r

∑
k=1

[∮
γ

f (λ) ∑k−1
h=0(−1)huh λk−h−1

P (λ)
dλ

]
Ar−k . (7)
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It should be noted that, if ∆ does not contain the origin, a simple choice of γ is a circle centered at
the origin and having a radius larger than the spectral radius of A, which can be determined using
Gershgorin’s theorem.

Let us consider now the function f (λ) = λ1/n, where n is a fixed integer number. As this function
is always holomorphic in the open set ∆ = (C− {0}), i.e., in the whole plane excluding the origin,
the preceding theorem can be re-formulated as follows:

Theorem 3. If A is a non-singular complex-valued matrix and γ ⊂ ∆ is a simple contour enclosing all the
zeros of P (λ), then the nth roots of A can be represented as:

A1/n =
r

∑
k=1

ξkAr−k , (8)

with the general coefficient ξk given by:

ξk =
1

2 π i

∮
γ

λ1/n ∑k−1
h=0(−1)huh λk−h−1

P (λ)
dλ . (9)

Recalling Cauchy’s residue theorem [25] and denoting the integrand in (9) as Φ = Φ (λ),
the contour integral can be evaluated as:

∮
γ

λ1/n ∑k−1
h=0(−1)huh λk−h−1

P (λ)
dλ = 2 π i

r

∑
`=1

ResΦ(λ`) . (10)

Assuming, for simplicity, that the eigenvalues are all simple and, therefore:

P (λ) = (λ− λ1)(λ− λ2) · · · (λ− λr) .

we find:

ResΦ(λ`) = lim
λ→λ`

(λ− λ`)
λ1/n ∑k−1

h=0(−1)huh λk−h−1

P (λ)
=

=
λ1/n
` ∑k−1

h=0(−1)huh λk−h−1
`

(λ` − λ1) · · · (λ` − λ`−1)(λ` − λ`+1) · · · (λ` − λr)
,

(11)

where we have put, by definition, (λ− λ0) = (λ− λr+1) := 1.
Finally, upon combining (10) and (11), it is trivial to verify that (9) becomes:

ξk =
r

∑
`=1

ResΦ(λ`) =
r

∑
`=1

λ1/n
` ∑k−1

h=0(−1)huh λk−h−1
`

(λ` − λ1) · · · (λ` − λ`−1)(λ` − λ`+1) · · · (λ` − λr)
. (12)

A similar result can be found in the case of multiple roots of the characteristic polynomial by
using the following more general equation, which holds true for a pole of order m at the point λ`:

ResΦ(λ`) =
1

(m− 1)!
lim

λ→λ`

dm−1

dλm−1 [(λ− λ`)
m f (λ)] . (13)

Remark 1. Note that the knowledge of the eigenvalues is not necessary unless the integral in (7) is computed
by means of Cauchy’s residue theorem. In general, only the knowledge of the matrix invariants is sufficient to
evaluate the considered contour integral by choosing, as γ, a circle centered at the origin with a radius larger
than the spectral radius of A. Examples of computations using Cauchy’s residue theorem were given in [16].
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Remark 2. Note that, upon selecting the different determinations of the root function of degree n in the formal
expression of A1/n, it is possible to evaluate the various roots of A through Equation (8).

Based on Theorem 3, the proposed algorithm for the evaluation of the nth roots of a matrix A
can be described through the flowchart illustrated in Figure 1. It is straightforward to verify that the
computational complexity of the relevant numerical procedure is O

(
r4) in the worst case.

Figure 1. Flowchart of the algorithm for the evaluation of the nth roots of a given matrix A.

4. Examples

4.1. Square Root of a 6× 6 Non-Singular Matrix

Consider the matrix:

A =



1 −2 0 1 3 3
0 2 0 0 −3 −2
8 4 −1 −2 6 7
4 1 −1 1 2 5
−3 0 0 1 −4 −3

2 1 0 −1 2 1


(14)

The relevant invariants are:

u1 = 0 , u2 = −4 , u3 = 0 , u4 = −1 , u5 = 0 , u6 = 4 (15)
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whereas the corresponding eigenvalues are found to be:

λ1 = − 2 , λ2 = 2 , λ3 = − 1 , λ4 = i , λ5 = − i , λ6 = 1 . (16)

Putting:
A1/2 = Re

{
A1/2

}
+ i Im

{
A1/2

}
, (17)

we find:

Re
{
A1/2

}
=



1
60

(
71
√

2− 10
)

1
60

(
−30− 13

√
2
)

1
6

(√
2− 1

)
1
3 −

1
5
√

2
1

60

(
20 + 57

√
2
)

1
2 + 4

√
2

5
1

60

(
35− 34

√
2
)

7
4 + 1

15
√

2
− 7

12

(√
2− 1

)
9

5
√

2
− 7

6
1
60

(
−70− 33

√
2
)

1
20

(
11
√

2− 35
)

1
60

(
55 + 37

√
2
)

1
60

(
165− 101

√
2
)

1
60

(
55− 7

√
2
)

11
30

(
3
√

2− 5
)

1
30

(
93
√

2− 55
)

1
20

(
57
√

2− 55
)

5
12 + 4

√
2

5
5
4 −

2
√

2
5

1
60

(
25− 39

√
2
)

13
5
√

2
− 5

6
3

2
√

2
− 5

6
1

20

(
43
√

2− 25
)

1
12

(
1− 9

√
2
)

1
4

(
1 +
√

2
)

1
60

(
5− 21

√
2
)

2
√

2
5 −

1
6 − 1

6 −
9

5
√

2
1
4

(
−1−

√
2
)

1
6

1
2 −

1√
2

1
30

(
5 + 3

√
2
)

1
5
√

2
− 1

3
9

5
√

2
− 1

3
1√
2
− 1

2


(18)

Im
{
A1/2

}
=



1
12

(
5
√

2− 4
)

1
12

(
3
√

2− 4
)

1
15

(
5− 2

√
2
)
− 2
√

2
15

13
30
√

2
1√
2
− 1

1
12

(
5
√

2− 1
)

1
12

(
3
√

2− 1
)

1
60

(
5− 8

√
2
)
− 2
√

2
15

13
30
√

2
1√
2
− 1

4
1

12

(
19− 50

√
2
)

19
12 −

5√
2

4
√

2
3 −

19
12

4
√

2
3 − 13

3
√

2
19
4 − 5

√
2

1
12

(
−3− 5

√
2
)

1
4

(
−1−

√
2
)

1
4 + 2

√
2

15
2
√

2
15 − 13

30
√

2
− 3

4 −
1√
2

5
√

2
3 −

3
4

√
2− 3

4
3
4 −

8
√

2
15 − 8

√
2

15
13
√

2
15 2

√
2− 9

4

1− 5
√

2
3 1−

√
2 8

√
2

15 − 1 8
√

2
15 − 13

√
2

15 3− 2
√

2


(19)

It is not difficult to verify that: (
A1/2

)2
−A = O6 ,

with O6 denoting the zero matrix of order six.

4.2. Cubic Root of a 5× 5 Non-Singular Matrix

Consider the matrix:

A =


−8693722 4346843 −4346851 4346851 −9

3335561 −1667774 1667777 −1667776 2
38080793 −19040315 19040350 −19040347 39
17357336 −8678630 8678646 −8678645 19
18089316 −9044623 9044638 −9044636 16

 (20)

The relevant invariants are:

u1 = 225 , u2 = 15055 , u3 = 335655 , u4 = 2048824 , u5 = 1728000 (21)

whereas the corresponding eigenvalues are found to be:

λ1 = 125 , λ2 = 64 , λ3 = 27 , λ4 = 8 , λ5 = 1 . (22)

We find:

A1/3 =



− 550639692034711
5080863606

92292354791999
1693621202 − 276892879819117

5080863606
19894689325307

362918829 − 30446809252
2540431803

35442617545992
846810601 − 53470087177853

2540431803
53475165103408

2540431803 − 7685586295792
362918829

4154804876
846810601

1206517116655057
2540431803 − 202223214891122

846810601
86672336394136

362918829 − 610286406219277
2540431803

134332737209
2540431803

2198065365953581
10161727212 − 1105223638927307

10161727212
1105286905814213

10161727212 − 277945100292131
2540431803

121949841985
5080863606

328104046034725
1451675316 − 1154921972562721

10161727212
384994878724441

3387242404 − 96822304734112
846810601

133570410865
5080863606


(23)
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It is not difficult to verify that: (
A1/3

)3
−A = O5 ,

with O5 denoting the zero matrix of order five.

4.3. Another Cubic Root of a 5× 5 Non-Singular Matrix

Consider the matrix:

A =


62 −49 41 −41 −9
−15 14 −11 12 2
−243 203 −168 171 39
−122 99 −83 84 19
−106 88 −73 75 16

 (24)

The relevant invariants are:

u1 = 8 , u2 = 0 , u3 = 0 , u4 = −1 , u5 = − 8 (25)

whereas the corresponding eigenvalues are found to be:

λ1 = 8 , λ2 = −1 , λ3 = i , λ4 = − i , λ5 = 1 . (26)

Putting:
A1/3 = Re

{
A1/3

}
+ i Im

{
A1/3

}
, (27)

we find:

Re
{
A1/3

}
=



1
780

(
4762 + 963

√
3
)

1
910

(
756
√

3− 14071
)

57796−6741
√

3
5460

1
546

(
3591
√

3− 11623
)

12799
2730 −

267
√

3
65

1
390

(
−449− 96

√
3
)

1
455

(
2157 + 133

√
3
)

672
√

3−7907
2730

1
273

(
1760− 483

√
3
)

83
√

3
65 −

2453
1365

− 19
780

(
787 + 213

√
3
)

1
910

(
59014− 2569

√
3
)

28329
√

3−238009
5460

50041
546 −

368
√

3
13

48951
√

3−56656
2730

−15733−3852
√

3
1560

56739−2569
√

3
1820

26964
√

3−235279
10920

12169
273 −

697
√

3
52

46221
√

3−52561
5460

−13157−3468
√

3
1560

1
260

(
7263− 313

√
3
)

3468
√

3−29873
1560

3091
78 −

631
√

3
52

1
780

(
5997
√

3− 6497
)


(28)

Im
{
A1/3

}
=



− 47
12
√

3
0 − 47

12
√

3
− 47

6
√

3
47

3
√

3
7

6
√

3
0 7

6
√

3
7

3
√

3
− 14

3
√

3
103
6
√

3
0 103

6
√

3
103
3
√

3
− 206

3
√

3
197

24
√

3
0 197

24
√

3
197

12
√

3
− 197

6
√

3
169

24
√

3
0 169

24
√

3
169

12
√

3
− 169

6
√

3


(29)

It is not difficult to verify that: (
A1/3

)3
−A = O5 ,

with O5 denoting, as usual, the zero matrix of order five.

4.4. Fifth Root of a 4× 4 Non-Singular Matrix

Consider the matrix:

A =


−4 291 285 −294
−1 65 63 −65

1 −127 −126 129
1 −98 −97 99

 (30)

The relevant invariants are:

u1 = 34 , u2 = 63 , u3 = −34 , u4 = −64 (31)
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whereas the corresponding eigenvalues are found to be:

λ1 = 32 , λ2 = 2 , λ3 = − 1 , λ5 = 1 . (32)

Putting:
A1/5 = Re

{
A1/5

}
+ i Im

{
A1/5

}
, (33)

we find:

Re
{
A1/5

}
=


− 50379

13640 + 43
5 24/5 +

3
√

5
88

492579
13640 −

129 5√2
5 − 3

√
5

88
305757
13640 −

129
5 24/5 +

3
√

5
88

3
(
−104089+58652 5√2+155

√
5
)

13640

− 7871
6820 + 16 5√2

15 +
√

5
132

198293
20460 −

32 5√2
5 −

√
5

132
108739
20460 −

16 5√2
5 +

√
5

132 − 110909
20460 + 16 5√2

5 +
√

5
132

79107−87296 5√2+4495
√

5
40920 − 695987

40920 + 64 5√2
5 − 29

√
5

264 − 409381
40920 + 32 5√2

5 + 29
√

5
264

428291
40920 −

32 5√2
5 + 29

√
5

264
5839−7502 5√2+775

√
5

6820 − 65899
6820 + 33 5√2

5 − 5
√

5
44 − 46697

6820 + 33
5 24/5 +

5
√

5
44

49487
6820 −

33
5 24/5 +

5
√

5
44


(34)

Im
{
A1/5

}
=



3
22

√
5
8 −

√
5

8 − 3
22

√
5
8 −

√
5

8
3

22

√
5
8 −

√
5

8
3

22

√
5
8 −

√
5

8

1
33

√
5
8 −

√
5

8 − 1
33

√
5
8 −

√
5

8
1

33

√
5
8 −

√
5

8
1

33

√
5
8 −

√
5

8

29
66

√
5
8 −

√
5

8 − 29
66

√
5
8 −

√
5

8
29
66

√
5
8 −

√
5

8
29
66

√
5
8 −

√
5

8

5
11

√
5
8 −

√
5

8 − 5
11

√
5
8 −

√
5

8
5

11

√
5
8 −

√
5

8
5

11

√
5
8 −

√
5

8


(35)

It is not difficult to verify that: (
A1/5

)5
−A = O4 ,

with O4 denoting the zero matrix of order four.

4.5. Square Root of a 3× 3 Non-Singular Matrix

Consider the complex-valued matrix:

A =

 1 0 0
5 i −2− i
3 0 −1

 (36)

The relevant invariants are:

u1 = i , u2 = −1 , u3 = −i (37)

whereas the corresponding eigenvalues are found to be:

λ1 = − 1 , λ2 = i , λ3 = 1 . (38)

By taking the various determinations of the square root function, we find:

A1/2 =

 1 0 0( 3
4 −

i
4
) (√

2 + 2− 2i
)

1+i√
2

(
−1− i

2
) (√

2− 1− i
)

3
2 −

3i
2 0 i

 (39)

A1/2 =

 −1 0 0( 3
4 −

i
4
) (√

2− 2− 4i
)

1+i√
2

(
−1− i

2
) (√

2− 1− i
)

− 3
2 −

3i
2 0 i

 (40)

A1/2 =

 1 0 0(
− 3

4 + i
4
) (√

2− 2 + 2i
)
− 1+i√

2

(
1 + i

2
) (√

2 + 1 + i
)

3
2 −

3i
2 0 i

 (41)



Symmetry 2020, 12, 966 9 of 10

A1/2 =

 −1 0 0(
− 3

4 + i
4
) (√

2 + 2 + 4i
)
− 1+i√

2

(
1 + i

2
) (√

2 + 1 + i
)

− 3
2 −

3i
2 0 i

 (42)

A1/2 =

 1 0 0( 3
4 −

i
4
) (√

2 + 2 + 4i
)

1+i√
2

(
−1− i

2
) (√

2 + 1 + i
)

3
2 + 3i

2 0 −i

 (43)

A1/2 =

 −1 0 0
1
2
(
−2 + 4i +

√
4− 3i

) 1+i√
2

(
−1− i

2
) (√

2 + 1 + i
)

− 3
2 + 3i

2 0 −i

 (44)

A1/2 =

 1 0 0(
− 3

4 + i
4
) (√

2− 2− 4i
)
− 1+i√

2

(
1 + i

2
) (√

2− 1− i
)

3
2 + 3i

2 0 −i

 (45)

A1/2 =

 −1 0 0

−1 + 2i− 1
2

√
4− 3i − 1+i√

2

(
1 + i

2
) (√

2− 1− i
)

− 3
2 + 3i

2 0 −i

 (46)

For each one of the nr = 8 roots, it is not difficult to verify that:(
A1/2

)2
−A = O3 ,

with O3 denoting the zero matrix of order three.

5. Conclusions

A general method for computing the nth roots of complex-valued matrices was detailed.
The proposed procedure was based on the application of the Dunford–Taylor integral in combination
with a suitable representation formula of the matrix resolvent. In this way, it was possible to overcome
the limitations of the techniques already available in the scientific literature, in terms of the matrix
order, as well as of the root degree.

The presented approach provided an effective means for evaluating all the determinations of
the root of a given matrix with a reduced computational complexity and burden since it relied, only,
on the knowledge of the matrix invariants, so circumventing the need for computing the relevant
eigenvalues, while the spectral radius could be estimated using Gershgorin’s theorem. Several
worked examples were provided to prove the correctness of the procedure for higher order real- and
complex-valued matrices.
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