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Abstract: Stochastic disturbances often cause undesirable characteristics in real-world system
modeling. As a result, investigations on stochastic disturbances in neural network (NN) modeling
are important. In this study, stochastic disturbances are considered for the formulation of
a new class of NN models; i.e., the discrete-time stochastic quaternion-valued neural networks
(DSQVNNs). In addition, the mean-square asymptotic stability issue in DSQVNNs is studied.
Firstly, we decompose the original DSQVNN model into four real-valued models using the
real-imaginary separation method, in order to avoid difficulties caused by non-commutative
quaternion multiplication. Secondly, some new sufficient conditions for the mean-square asymptotic
stability criterion with respect to the considered DSQVNN model are obtained via the linear matrix
inequality (LMI) approach, based on the Lyapunov functional and stochastic analysis. Finally,
examples are presented to ascertain the usefulness of the obtained theoretical results.

Keywords: stochastic disturbances; quaternion-valued neural networks; real-imaginary separation
method; Lyapunov fractional; linear matrix inequality

1. Introduction

The research on dynamical behavior analysis for NN models has attracted increasing attention
in recent years and their results have been widely used in a variety of science and engineering
disciplines [1–9]. The stability analysis of NN models is fundamental and important in the applications
of NNs, which have received significant attention recently [3–50].

Indeed, most of the NN analyses are dealt with in the continuous-time case. Nevertheless,
in today’s digital world, nearly all signals are digitalized for computer processing needs before and after
transmission. In this regard, instead of continuous-time analysis, it is important to study discrete-time
signals in implementing NN models. As a result, several researchers have studied various dynamical
behaviors of discrete-time NN models. For example, a number of scientific results for various dynamic
behaviors in the discrete-time case for both the real-world neural network (RVNN) as well as for the
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complex-valued neural network (CVNN) models have been published recently [6–13,21–25]. However,
the corresponding research on the quaternion field is still in its infancy.

The characteristics of NN models, including RVNNs and CVNNs, can be analyzed based
on their functional and/or structural properties. Recently, RVNNs have been commonly used
in a number of engineering domains, such as optimization, associative memory, and image and
signal processing [2–12]. However, with respect to 2D affine transformations and XOR problems,
RVNNs perform poorly. In view of this, complex properties are incorporated into RVNNs, leading to
CVNNs [51–53] that can effectively address the 2D affine transformation challenge and XOR problems.
As a result, various CVNN-related models have received substantial research attention in both
mathematical and practical analyses [25–52]. For instance, in [14–17], the problem of global stability,
finite-time stability, and global Lagrange stability for continuous-time CVNNs were investigated
using the Lyapunov stability theory. In [20–25], the investigations on discrete-time CVNNs and their
corresponding sufficient conditions were discussed. Nevertheless, CVNN models are inefficient in
handling higher dimension transformations, including color night vision, color image compression,
and 3D and 4D problems [23–25].

On the other hand, the quaternion-valued signals and quaternion functions are very useful in the
many engineering domains, such as in 3D wind forecasting, polarized signal classification, and color
night vision [54–60]. Undoubtedly, quaternion-based networks perform as good mathematical models to
undertake these applications, due to the quaternion features. In view of this, quaternion-valued neural
networks (QVNNs) have been developed by implementing quaternion algebra into CVNNs, in order
to generalize RVNN and CVNN models with quaternion-valued activation functions, connection
weights, and signal states [27–55]. The main advantage of a QVNN model is its capability of
reducing the computational complexity in higher-dimensional problems. Therefore, the investigation of
QVNN model dynamics is essential and important. Recently, many computational approaches
for various QVNN models and their learning algorithms have been studied; e.g., exponential
input-to-state stability, global Mittag–Leffler stability, synchronization analysis, global µ stability, global
synchronization, and global asymptotic stability [26–32] have been studied for the continuous-time
QVNNs. Very recently, the issue of mean-square exponential input-to-state stability for continuous-time
stochastic memristive QVNNs with time-varying delays has been studied in [50]. Similarly, some other
stability conditions have been defined for QVNN models [29,30,33–36]. In the earlier studies [37–39],
the problems of global asymptotic stability, exponential stability, and exponentially periodicity,
respectively, for discrete-time QVNNs, have been investigated with linear threshold activation functions.

In addition, the stochastic effects are unavoidable in most practical NN models. As a result, it is
important to investigate stochastic NN models comprehensively, since their behaviors are susceptible
by certain stochastic inputs. In practice, a stochastic neural network (SNN) is useful for the modeling
of real-world systems, especially in the presence of external disturbances [41–60]. As a result, several
aspects of SNN models have been analysed extensively in both continuous and discrete-time cases; e.g.,
the problems of passivity [40], robust stability [41], exponential stability [42], robust dissipativity [44],
mean-square exponential input-to-state stability [49], and mean-square exponential input-to-state
stability for QVNNs [50]. Other SNN-related dynamics have also been investigated in [43,45–48].
Nonetheless, studies on the dynamics of discrete-time QVNN (DSQVNN) models are limited. Indeed,
the investigation on DSQVNN models with time delays and their mean-square asymptotic stability
analysis is novel, which constitutes the main contribution of our paper.

Inspired by the above debate, our main aim is to do research into the sufficient conditions of
DSQVNN models pertaining to their mean-square asymptotic stability. The designed DSQVNNs
encompasses discrete-time stochastic CVNN and discrete-time stochastic RVNN as its special cases.
Firstly, we equivalently represent a QVNN with four RVNNs via the real-imaginary separate type
activation function. Secondly, we establish new linear matrix inequality (LMI)-based, sufficient
conditions for the mean-square asymptotic stability of DSQVNNs via suitable Lyapunov functional
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and stochastic concepts. Note that several known results can be viewed as special cases of the results of
our work. Finally, we provide numerical examples to illustrate the usefulness of the proposed results.

This study presents three key contributions. (1) This is the first analysis of the mean-square
asymptotic stability of the considered DSQVNN models. (2) Unlike the traditional stability analysis,
we establish new mean-square asymptotic stability criteria for the considered DSQVNN models,
which is achieved through the Lyapunov functional and real-imaginary separate-type activation
functions. (3) Developed sufficient conditions can be directly solved by the standard Matlab LMI
toolbox. (4) The results of this study are more general and powerful than those in the existing
discrete-time QVNN models in the literature.

In Section 2, we define the proposed problem model formally. We explain the new stability
criterion in Section 3. The numerical examples are given in Section 4. Concluding remarks are given in
the last section.

2. Mathematical Fundamentals and Definition of the Problem

2.1. Notations

We use R,C, and H to indicate the real, complex, and skew quaternion fields, respectively.
The m×m matrices with entries from R,C, and H are denoted as Rm×m,Cm×m, and Hm×m, while the
m-dimension vectors are denoted as Rm,Cm, and Hm, respectively. For any matrix Q and its transpose,
the conjugate transposes are denoted as QT and Q∗, respectively. In addition, a block diagonal
matrix is denoted as diag{}, while the smallest and largest eigenvalues of Q are denoted as λmin(Q)

and λmax(Q), respectively. The Euclidean norm of a vector x and the mathematical expectation of
a stochastic variable x are represented by ‖x‖ and E{x}, respectively. Meanwhile, given integers
a, b with a < b, the discrete interval given by N[a, b] = {a, a + 1, ..., b − 1, b} is denoted by N[a, b],
while the set of all functions φ : N[−ς, 0]→ Hm is denoted by C(N[−ς, 0],Hm), respectively. Moreover,
we assume that (Ω,F,P) be a complete probability space with a filtration {F}t≥0 satisfying the usual
conditions. In a given matrix, a term induced by symmetry is denoted by � in the matrix.

2.2. Quaternion Algebra

Firstly, we address the quaternion and its operating rules. The quaternion is expressed in the form:

x = xR + ixI + jx J + kxK ∈ H,

where the real constants are denoted by xR, xI , x J , xK ∈ R, while the fundamental quaternion units are
denoted by i, j, and k. The following Hamilton rules are satisfied:{

i2 = j2 = k2 = ijk = −1,

ij = −ji = k; jk = −kj = i; ki = −ik = j.
(1)

which implies that quaternion multiplication has the non-commutativity property.
The following expressions define the operations between quaternions x = xR + ixI + jx J + kxK

and y = yR + iyI + jyJ + kyK. Note that the definitions of addition and subtraction of complex numbers
are applicable to those of the quaternions as well.

(i) Addition:

x + y = (xR + yR) + i(xI + yI) + j(x J + yJ) + k(xK + yK).

(ii) Subtraction:

x− y = (xR − yR) + i(xI − yI) + j(x J − yJ) + k(xK − yK).
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The multiplication of x and y, which is in line with the Hamilton multiplication rules (1), is defined
as follows:

(iii) Multiplication:

xy =
(

xRyR − xIyI − x JyJ − xKyK)+ i
(
xRyI + xIyR + x JyK − xKyJ)

+ j
(

xRyJ + x JyR − xIyK + xKyI)+ k
(
xRyK + xKyR + xIyJ − x JyI).

The following expression of |x| represents the module of a quaternion x = xR + ixI + jx J + kxK ∈ H:

|x| =
√

x∗x =
√
(xR)2 + (xI)2 + (x J)2 + (xK)2,

where the conjugate transpose of x is denoted by x∗ = xR − ixI − jx J − kxK. The following expression

represents the norm of x: ‖x‖ =
√

m
∑

p=1
(xR)2 +

m
∑

p=1
(xI)2 +

m
∑

p=1
(x J)2 +

m
∑

p=1
(xK)2.

2.3. Problem Definition

The DSQVNN model with time delays is considered; i.e.,

xp(k + 1) = dpxp(k) +
m

∑
q=1

apqgq(xq(k− ς)) + up, (2)

where p = 1, ..., m, k ∈ N.
The model in (2) can be expressed in an equivalent vector form of

x(k + 1) = Dx(k) + Ag(x(k− ς)) + U, (3)

where the state variable and quaternion-valued neuron activation function are denoted by x(k) =

[x1(k), ..., xm(k)]T ∈ H and g(x(k)) = [g1(x1(k)), ..., gm(xm(k))]T ∈ H, respectively. In addition,
U = [u1, ..., um]T ∈ H the input vector. A self-feedback connection weight matrix with 0 ≤ di < 1
is denoted by D = diag{d1, ..., dm} ∈ Rm. Besides that, a connection weight matrix is denoted by
A = (apq)m×m ∈ Hm×m, while the transmission delay is denoted by a positive scalar of ς.

Given the model in (3), its initial condition is

x(k) = φ(k), k ∈ N[−ς, 0], (4)

where φ(k) = [φ1(k), ..., φm(k)]T ∈ C(N[−ς, 0],Hm).

Definition 1. A vector x∗ = [x∗1 , ..., x∗m]T is said to be an equilibrium point of NN model (3), if it satisfies

x∗ = Dx∗ + Ag(x∗) + U.

Now, consider Ω = {φ | φ ∈ C(N[−ς, 0],Hm)}, which is similar to [20–22]. We can define the
following, given φ ∈ Ω,

|φ| = sup
s∈N[−ς,0]

‖φ(s)‖, (5)
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As such, Ω is a Banach space having uniform convergence in its topology. Suppose the solutions
of the model in (3) are x(k, φ) and x(k, ψ) starting from φ and ψ, respectively, in which any φ, ψ ∈ Ω.
As such, following the model in (3), we have

x(k + 1, φ)− x(k + 1, ψ) = D(x(k, φ)− x(k, ψ)) + A(g(x(k− ς, φ))− g(x(k− ς, ψ))). (6)

Let y(k + 1) = x(k + 1, φ)− x(k + 1, ψ), y(k) = x(k, φ)− x(k, ψ), f (y(k− ς)) = g(x(k− ς, φ))−
g(x(k− ς, ψ))).

As a results, we can express (6) as

y(k + 1) = Dy(k) + A f (y(k− ς)). (7)

A1: For y = yR + iyI + jyJ + kyK ∈ H, yR, yI , yJ , yK ∈ R, we can divide fq(y) into two parts,
real and imaginary, as follows:

fq(y) = f R
q (yR) + i f I

q (y
I) + j f J

q (yJ) + k f K
q (yK), q = 1, ..., m,

where f R
q (·), f I

q (·), f J
q (·), f K

q (·) : R→ R. There exist constants ξR−
q , ξR+

q , ξ I−
q , ξ I+

q , ξ J−
q , ξ J+

q , ξK−
q , ξK+

q ,
such that for any α, β ∈ R and α 6= β,

ξR−
q ≤

f R
q (α)− f R

q (β)

α− β
≤ ξR+

q , ξ I−
q ≤

f I
q (α)− f I

q (β)

α− β
≤ ξ I+

q ,

ξ J−
q ≤

f J
q (α)− f J

q (β)

α− β
≤ ξ J+

q , ξK−
q ≤

f K
q (α)− f K

q (β)

α− β
≤ ξK+

q , q = 1, ..., m,

Denote

ΞR
1 = diag

{
ξR+

1 ξR−
1 , ..., ξR+

m ξR−
m
}

, ΞR
2 = diag

{
ξR+

1 + ξR−
1

2
, ...,

ξR+
m + ξR−

m
2

}
,

ΞI
1 = diag

{
ξ I+

1 ξ I−
1 , ..., ξ I+

m ξ I−
m
}

, ΞI
2 = diag

{
ξ I+

1 + ξ I−
1

2
, ...,

ξ I+
m + ξ I−

m
2

}
,

ΞJ
1 = diag

{
ξ J+

1 ξ J−
1 , ..., ξ J+

m ξ J−
m
}

, ΞJ
2 = diag

{
ξ J+

1 + ξ J−
1

2
, ...,

ξ J+
m + ξ J−

m
2

}
,

ΞK
1 = diag

{
ξK+

1 ξK−
1 , ..., ξK+

m ξK−
m
}

, ΞK
2 = diag

{
ξK+

1 + ξK−
1

2
, ...,

ξK+
m + ξK−

m
2

}
.

In practical application of NN models, stochastic disturbances usually affect their performances.
As such, stochastic disturbances must be included when studying the issue of network stability,
which represent more realistic dynamic behaviors. Therefore, the following DSQVNN model
is formulated:

y(k + 1) = Dy(k) + A f (y(k− ς)) + σ(k, y(k))w(k). (8)

Note that σ : R×Hm → Hm×m is a noise intensity function, while w(k) is a scalar Wiener process
(Brownian motion), which is defined on (Ω,F,P) with E[w(k)] = 0, E[w2(k)] = 1, E{w(u)w(v)} =
0, (u 6= v).
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For further analysis, we divide the NN model in (8) into both real and imaginary parts through
the use of the quaternion multiplication. As such, we have

yR(k + 1) = DyR(k) + AR f R(yR(k− ς))−AI f I(yI(k− ς))−AJ f J(yJ(k− ς))−AK f K(yK(k− ς))

+σR(k, yR(k))w(k),

yI(k + 1) = DyI(k) + AR f I(yI(k− ς)) + AI f R(yR(k− ς)) + AJ f K(yK(k− ς))−AK f J(yJ(k− ς))

+σI(k, yI(k))w(k),

yJ(k + 1) = DyJ(k) + AR f J(yJ(k− ς)) + AJ f R(yR(k− ς)) + AK f I(yI(k− ς))−AI f K(yK(k− ς))

+σJ(k, yJ(k))w(k),

yK(k + 1) = DyK(k) + AR f K(yK(k− ς)) + AK f R(yR(k− ς)) + AI f J(yJ(k− ς))−AJ f I(yI(k− ς))

+σK(k, yK(k))w(k),

(9)

where

σR(k, yR(k)) = Re(σ(k, y(k)), σI(k, yI(k)) = Im(σ(k, y(k)),

σJ(k, yJ(k)) = Im(σ(k, y(k)), σK(k, yK(t)) = Im(σ(k, y(k)).

The following expression denotes the initial condition of the model in (9):

yR(k) = φR(k), yI(k) = φI(k), yJ(k) = φJ(k), yK(k) = φK(k), (10)

for k ∈ N[−ς, 0], where φR(k) = Re(φ(k)), φI(k) = Im(φ(k)), φJ(k) = Im(φ(k)), φK = Im(φ(k)).
We denote AR = (aR

pq)m×m ∈ Rm×m, AI = (aI
pq)m×m ∈ Rm×m, AJ = (aJ

pq)m×m ∈ Rm×m, AK =

(aK
pq)m×m ∈ Rm×m, f R(yR(k − ς)) = [ f R

1 (yR
1 (k − ς)), ..., f R

m(yR
m(k − ς))]T ∈ Rm, f I(yI(k − ς)) =

[ f I
1 (y

I
1(k − ς)), ..., f I

m(yI
m(k − ς))]T ∈ Rm, f J(yJ(k − ς)) = [ f J

1 (y
J
1(k − ς)), ..., f J

m(y
J
m(k − ς))]T ∈ Rm,

f K(yK(k− ς)) = [ f K
1 (yK

1 (k− ς)), ..., f K
m(yK

m(k− ς))]T ∈ Rm, σR(k) = σR(k, yR(k)) : R×Rm → Rm×m,
σI(k) = σI(k, yI(k)) : R × Rm → Rm×m, σJ(k) = σJ(k, yJ(k)) : R × Rm → Rm×m, σK(k) =

σK(k, yK(k)) : R×Rm → Rm×m.
Denote

ȳ(t) = [(yR(k))T , (yI(k))T , (yJ(k))T , (yK(k))T ]T ,

f̄ (ȳ(k− ς)) = [( f R(yR(k− ς)))T , ( f I(yI(k− ς)))T , ( f J(yJ(k− ς)))T , ( f K(yK(k− ς)))T ]T ,

σ̄(k) = [(σR(k))T , (σI(k))T , (σJ(k))T , (σK(k))T ]T ,

D̄ = diag{D, D, D, D}, Ā =


AR −AI −AJ −AK

AI AR −AK AJ

AJ AK AR −AI

AK −AJ AI AR

 .

Therefore, the following expression can be used to represent the model in (9)

ȳ(k + 1) = D̄ȳ(k) + Ā f̄ (ȳ(k− ς)) + σ̄(k)w(k). (11)

Note that the following expression constitutes the initial condition of the model in (11)

ȳ(k) = ϕ(k), k ∈ N[−ς, 0], (12)

where ϕ(k) = [φR(k), φI(k), φJ(k), φK(k)]T , with ‖φR(s)‖ = sup
−ς≤s≤0

|φR(s)|, ‖φI(s)‖ = sup
−ς≤s≤0

|φI(s)|,

‖φJ(s)‖ = sup
−ς≤s≤0

|φJ(s)|, ‖φK(s)‖ = sup
−ς≤s≤0

|φK(s)|.
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A2: The noise intensity function σs(k, ys(k)), (s = R, I, J, K) with σs(k, 0) = 0, it is able to satisfy
the following conditions

(σR(k, yR(k)))TσR(k, yR(k)) ≤ ρ1(yR(k))TyR(k)

(σI(k, yI(k)))TσI(k, yI(k)) ≤ ρ2(yI(k))TyI(k)

(σJ(k, yJ(k)))TσJ(k, yJ(k)) ≤ ρ3(yJ(k))TyJ(k)

(σK(k, yK(k)))TσK(k, yK(k)) ≤ ρ4(yK(k))TyK(k),

where the positive constants are denoted by ρ1, ρ2, ρ3 and ρ4.

Definition 2. For any solution of the NN model in (8), it is asymptotically stable in the mean square sense if
the following expression is true:

lim
k→∞

E{‖y(k)‖2} = 0.

Lemma 1. [43] Given matrix 0 < W = WT ∈ Rm×m, integers τ1 and τ2 satisfying τ1 < τ2, and vector
function y : N[τ1, τ2]→ R, in a way whereby the sums concerned are well-defined, we have

−(τ2 − τ1 + 1)
τ2

∑
u=τ1

yT(u)Wy(u) ≤ −
τ2

∑
u=τ1

yT(u)W
τ2

∑
u=τ1

yT(u).

3. Main Results

Given the NN model in (11), we derive the new sufficient conditions to ensure its mean-square
asymptotic stability.

Theorem 1. The activation function can be separated into both real and imaginary parts based on assumption
(A1). Given the existence of matrices 0 < Pa, (a = 1, 2, 3, 4), 0 < Qb, (b = 1, 2, 3, 4), 0 < Rc, (c = 1, 2, 3, 4),
diagonal matrices 0 < Ld, (d = 1, 2, 3, 4), and scalars 0 < λ∗e , (e = 1, 2, 3, 4) the NN model in (11) is
asymptotically stable in the mean square sense, subject to satisfying the following LMI:

P1 < λ∗1 , (13)

P2 < λ∗2 , (14)

P3 < λ∗3 , (15)

P4 < λ∗4 , (16)

Θ1 =



ΘR
11 0 DTP1AR + L1Υ2 −DTP1AI −DTP1AJ −DTP1AK 0

� −Q1 0 0 0 0 0

� � ΘR
33 −(AR)TP1AI −(AR)TP1AJ −(AR)TP1AK 0

� � � ΘR
44 (AI)TP1AJ (AI)TP1AK 0

� � � � ΘR
55 (AJ)TP1AK 0

� � � � � ΘR
66 0

� � � � � � −R1


< 0, (17)
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Θ2 =



ΘI
11 0 DTP2AI DTP2AR + L2Γ2 −DTP2AK DTP2AJ 0

� −Q2 0 0 0 0 0

� � ΘI
33 (AI)TP2AR −(AI)TP2AK (AI)TP2AJ 0

� � � ΘI
44 −(AR)TP2AK (AR)TP2AJ 0

� � � � ΘI
55 −(AK)TP2AJ 0

� � � � � ΘI
66 0

� � � � � � −R2


< 0, (18)

Θ2 =



ΘI
11 0 DTP2AI DTP2AR + L2Γ2 −DTP2AK DTP2AJ 0

� −Q2 0 0 0 0 0

� � ΘI
33 (AI)TP2AR −(AI)TP2AK (AI)TP2AJ 0

� � � ΘI
44 −(AR)TP2AK (AR)TP2AJ 0

� � � � ΘI
55 −(AK)TP2AJ 0

� � � � � ΘI
66 0

� � � � � � −R2


< 0, (19)

Θ3 =



ΘJ
11 0 DTP3AJ DTP3AK DTP3AR + L3Λ2 −DTP3AI 0

� −Q3 0 0 0 0 0

� � ΘJ
33 (AJ)TP3AK (AJ)TP3AR −(AJ)TP3AI 0

� � � ΘJ
44 (AK)TP3AR −(AK)TP3AI 0

� � � � ΘJ
55 −(AR)TP3AI 0

� � � � � ΘJ
66 0

� � � � � � −R3


< 0, (20)

Θ4 =



ΘK
11 0 DTP4AK −DTP4AJ DTP4AI DTP4AR + L4Π2 0

� −Q4 0 0 0 0 0

� � ΘK
33 −(AK)TP4AJ (AK)TP4AI (AK)TP4AR 0

� � � ΘK
44 −(AJ)TP4AI −(AJ)TP4AR 0

� � � � ΘK
55 (AI)TP4AR 0

� � � � � ΘK
66 0

� � � � � � −R4


< 0. (21)

where ΘR
11 = DTP1D− P1 + Q1 + R1 − L1Υ1 + λ∗1ρ1, ΘR

33 = (AR)TP1AR − 1
4 L1, ΘR

44 = (AI)TP1AI −
1
4 L2, ΘR

55 = (AJ)TP1AJ − 1
4 L3, ΘR

66 = (AK)TP1AK − 1
4 L4, ΘI

11 = DTP2D − P2 + Q2 + R2 −
L2Γ1 + λ∗2ρ2, ΘI

33 = (AI)TP2AI − 1
4 L1, ΘI

44 = (AR)TP2AR − 1
4 L2, ΘI

55 = (AK)TP2AK − 1
4 L3,

ΘI
66 = (AJ)TP2AJ − 1

4 L4, ΘJ
11 = DTP3D − P3 + Q3 + R3 − L3Λ1 + λ∗3ρ3, ΘJ

33 = (AJ)TP3AJ − 1
4 L1,

ΘJ
44 = (AK)TP3AK − 1

4 L2, ΘJ
55 = (AR)TP3AR − 1

4 L3, ΘJ
66 = (AI)TP3AI − 1

4 L4, ΘK
11 = DTP4D− P4 +

Q4 +R4−L4Π1 + λ∗4ρ4, ΘK
33 = (AK)TP4AK− 1

4 L1, ΘK
44 = (AJ)TP4AJ − 1

4 L2, ΘK
55 = (AI)TP4AI − 1

4 L3,
ΘK

66 = (AR)TP4AR − 1
4 L4.

The detailed proof of Theorem (1) can be referred to in Appendix A.

Remark 1. When stochastic disturbances are excluded, we can reduce the NN model in (11) to become

ȳ(k + 1) = D̄ȳ(k) + Ā f̄ (ȳ(k− ς)). (22)

The proof of Theorem (1) can be applied to yield Corollary (1).
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Corollary 1. The activation function can separated into both real and imaginary parts based on assumption
(A1). Given the existence of matrices 0 < Pa, (a = 1, 2, 3, 4), 0 < Qb, (b = 1, 2, 3, 4), 0 < Rc, (c = 1, 2, 3, 4)
and diagonal matrices 0 < Ld, (d = 1, 2, 3, 4), the NN model in (22) is globally asymptotically stable, subject
to satisfying the following LMI:

Θ̃1 =



Θ̃R
11 0 DTP1AR + L1Υ2 −DTP1AI −DTP1AJ −DTP1AK 0

� −Q1 0 0 0 0 0

� � Θ̃R
33 −(AR)TP1AI −(AR)TP1AJ −(AR)TP1AK 0

� � � Θ̃R
44 (AI)TP1AJ (AI)TP1AK 0

� � � � Θ̃R
55 (AJ)TP1AK 0

� � � � � Θ̃R
66 0

� � � � � � −R1


< 0, (23)

Θ̃2 =



Θ̃I
11 0 DTP2AI DTP2AR + L2Γ2 −DTP2AK DTP2AJ 0

� −Q2 0 0 0 0 0

� � Θ̃I
33 (AI)TP2AR −(AI)TP2AK (AI)TP2AJ 0

� � � Θ̃I
44 −(AR)TP2AK (AR)TP2AJ 0

� � � � Θ̃I
55 −(AK)TP2AJ 0

� � � � � Θ̃I
66 0

� � � � � � −R2


< 0, (24)

Θ̃3 =



Θ̃J
11 0 DTP3AJ DTP3AK DTP3AR + L3Λ2 −DTP3AI 0

� −Q3 0 0 0 0 0

� � Θ̃J
33 (AJ)TP3AK (AJ)TP3AR −(AJ)TP3AI 0

� � � Θ̃J
44 (AK)TP3AR −(AK)TP3AI 0

� � � � Θ̃J
55 −(AR)TP3AI 0

� � � � � Θ̃J
66 0

� � � � � � −R3


< 0, (25)

Θ̃4 =



Θ̃K
11 0 DTP4AK −DTP4AJ DTP4AI DTP4AR + L4Π2 0

� −Q4 0 0 0 0 0

� � Θ̃K
33 −(AK)TP4AJ (AK)TP4AI (AK)TP4AR 0

� � � Θ̃K
44 −(AJ)TP4AI −(AJ)TP4AR 0

� � � � Θ̃K
55 (AI)TP4AR 0

� � � � � Θ̃K
66 0

� � � � � � −R4


< 0, (26)

where Θ̃R
11 = DTP1D − P1 + Q1 + R1 − L1Υ1, Θ̃R

33 = (AR)TP1AR − 1
4 L1, Θ̃R

44 = (AI)TP1AI − 1
4 L2,

Θ̃R
55 = (AJ)TP1AJ − 1

4 L3, Θ̃R
66 = (AK)TP1AK − 1

4 L4, Θ̃I
11 = DTP2D− P2 + Q2 + R2 − L2Γ1, Θ̃I

33 =

(AI)TP2AI − 1
4 L1, Θ̃I

44 = (AR)TP2AR − 1
4 L2, Θ̃I

55 = (AK)TP2AK − 1
4 L3, Θ̃I

66 = (AJ)TP2AJ − 1
4 L4,

Θ̃J
11 = DTP3D − P3 + Q3 + R3 − L3Λ1, Θ̃J

33 = (AJ)TP3AJ − 1
4 L1, Θ̃J

44 = (AK)TP3AK − 1
4 L2,

Θ̃J
55 = (AR)TP3AR − 1

4 L3, Θ̃J
66 = (AI)TP3AI − 1

4 L4, Θ̃K
11 = DTP4D− P4 + Q4 + R4 − L4Π1, Θ̃K

33 =

(AK)TP4AK − 1
4 L1, Θ̃K

44 = (AJ)TP4AJ − 1
4 L2, Θ̃K

55 = (AI)TP4AI − 1
4 L3, Θ̃K

66 = (AR)TP4AR − 1
4 L4.

Remark 2. The QVNN models are generalizations of CVNN models. Based on Theorem (1), we can analyze
the the mean-square asymptotic stability criterion with respect to the CVNN model in (27).
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By complex number properties y(k) = yR(k) + iyI(k), the NN model in (8) becomes{
yR(k + 1) = DyR(k) + AR f R(yR(k− ς))−AI f I(yI(k− ς)) + σR(k, yR(k))w(k),

yI(k + 1) = DyR(k) + AI f R(yR(k− ς)) + AR f I(yI(k− ς)) + σI(k, yI(k))w(k),
(27)

where

σR(k, yR(k)) = Re(σ(k, y(k)), σI(k, yI(k)) = Im(σ(k, y(k)).

Consider

ŷ(k) = [(yR(k))T , (yI(k))T ]T , f̂ (ŷ(k− ς)) = [( f R(yR(k− ς)))T , ( f I(yI(k− ς)))T ]T ,

σ̂(k) = [(σR(k, yR(k)))T , (σI(k, yI(k)))T ]T , D̂ = diag{D, D}, Â =

[
AR −AI

AI AR

]
.

the model in (27) becomes

ŷ(k + 1) = D̂ŷ(k) + Â f̂ (ŷ(k− ς)) + σ̂(k)w(k). (28)

The following expression constitute the initial condition of the model in (28)

ŷ(k) = ϕ̂(k), k ∈ N[−ς, 0], (29)

where ϕ̂(k) = [φR(k), φI(k)]T , with ‖φR(s)‖ = sup
−ς≤s≤0

|φR(s)|, ‖φI(s)‖ = sup
−ς≤s≤0

|φI(s)|.

A3: For y = yR + iyI ∈ C, yR, yI ∈ R, we can divide fq(y) into two parts, real and imaginary,
as follows:

fq(y) = f R
q (yR) + i f I

q (y
I), q = 1, ..., m,

where f R
q (·), f I

q (·) : R → R. There exist constants ξR−
q , ξR+

q , ξ I−
q , ξ I+

q , such that for any α, β ∈ R
and α 6= β,

ξR−
q ≤

f R
q (α)− f R

q (β)

α− β
≤ ξR+

q , ξ I−
q ≤

f I
q (α)− f I

q (β)

α− β
≤ ξ I+

q , q = 1, ..., m,

Denote

ΞR
1 = diag

{
ξR+

1 ξR−
1 , ..., ξR+

m ξR−
m
}

, ΞR
2 = diag

{
ξR+

1 + ξR−
1

2
, ...,

ξR+
m + ξR−

m
2

}
,

ΞI
1 = diag

{
ξ I+

1 ξ I−
1 , ..., ξ I+

m ξ I−
m
}

, ΞI
2 = diag

{
ξ I+

1 + ξ I−
1

2
, ...,

ξ I+
m + ξ I−

m
2

}
.

A4: The noise intensity function σs(k, ys(k)) : R×Rm → Rm×m, (s = R, I) has the properties of
(i) Borel measurable; (ii) locally Lipschitz continuous, and it satisfies the following expressions:

σR(k, yR(k))TσR(k, yR(k)) ≤ ρ1(yR(k))TyR(k)

σI(k, yI(k))TσI(k, yI(k)) ≤ ρ2(yI(k))TyI(k),

where ρ1, ρ2 are known positive constants.
The proof of (1) can be applied to yield Corollary (2).
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Corollary 2. The activation function can be separated into both real and imaginary parts based on assumption
(A3). Given the existence of matrices 0 < P1, 0 < P2, 0 < Q1, 0 < Q2, 0 < R1, 0 < R2, diagonal matrices
0 < L1, 0 < L2, and scalars 0 < λ∗1 , 0 < λ∗2 , the NN model in (28) is said to be asymptotically stable in the
mean square sense, subject to satisfying the following LMI:

P1 < λ∗1 , (30)

P2 < λ∗2 , (31)

Θ̂1 =


Θ̂R

11 0 DTP1AR + L1Υ2 −DTP1AI 0
� −Q1 0 0 0
� � (AR)TP1AR − 1

2 L1 −(AR)TP1AI 0
� � � (AI)TP1AI − 1

2 L2 0
� � � � −R1

 < 0, (32)

Θ̂2 =


Θ̂I

11 0 DTP2AI DTP2AR + L2Γ2 0
� −Q2 0 0 0
� � (AI)TP2AI − 1

2 L1 (AI)TP2AR 0
� � � (AR)TP2AR − 1

2 L2 0
� � � � −R2

 < 0.. (33)

where Θ̂R
11 = DTP1D− P1 + Q1 + R1 − L1Υ1 + λ∗1ρ1, Θ̂I

11 = DTP2D− P2 + Q2 + R2 − L2Γ1 + λ∗2ρ2.
When stochastic disturbances are excluded, we can reduce the NN model in (28) to become

ŷ(k + 1) = D̂ŷ(k) + Â f̂ (ŷ(k− ς)). (34)

The proof of Theorem (1) can be applied to yield Corollary (3).

Corollary 3. The activation function can be separated into both real and imaginary parts based on assumption
(A3). Given the existence of matrices 0 < P1, 0 < P2, 0 < Q1, 0 < Q2, 0 < R1, 0 < R2 and diagonal
matrices 0 < L1, 0 < L2, the NN model in (34) is said to be globally asymptotically stable, subject to satisfying
the following LMI:

Θ̌1 =


Θ̌R

11 0 DTP1AR + L1Υ2 −DTP1AI 0
� −Q1 0 0 0
� � (AR)TP1AR − 1

2 L1 −(AR)TP1AI 0
� � � (AI)TP1AI − 1

2 L2 0
� � � � −R1

 < 0, (35)

Θ̌2 =


Θ̌I

11 0 DTP2AI DTP2AR + L2Γ2 0
� −Q2 0 0 0
� � (AI)TP2AI − 1

2 L1 (AI)TP2AR 0
� � � (AR)TP2AR − 1

2 L2 0
� � � � −R2

 < 0. (36)

where Θ̌R
11 = DTP1D− P1 + Q1 + R1 − L1Υ1, Θ̌I

11DTP2D− P2 + Q2 + R2 − L2Γ1.
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Remark 3. In the literature of QVNN models, the way to choose a suitable quaternion-valued activation
function is still an open question. Several activation functions have recently been used to study QVNN models;
e.g., non-monotonic piecewise nonlinear activation functions [30], linear threshold activation functions [37–39],
and real-imaginary separate type activation functions [28,32,34]. Under the assumption that the activation
functions can be divided into real and imaginary parts, our current results provide some criteria to ascertain
the asymptotic stability in the mean-square sense pertaining to the considered DSQVNN models along
with time-delays.

Remark 4. In [37], the authors used the semi-discretization technique to obtain discrete-time analogues of
continuous-time QVNNs with linear threshold neurons and study their global asymptotical stability without
considering time delays. Compared with the previous work [37] by separating the real part and imaginary
part of the DSQVNNs with time delays and constructing suitable Lyapunov–Krasovskii functional candidates,
we obtain the sufficient conditions for the mean-square asymptotic stability of the DSQVNNs in the form of
LMIs. The LMI conditions in this paper are more concise than those obtained in [37–39] and much easier to
be checked.

Remark 5. Different dynamics of DCVNN models without stochastic disturbances have been examined in
previous studies [20–22]. In this study, we not only focus on the mean-square asymptotic stability criteria with
respect to a class of discrete-time SNN models by using the same method proposed in [20–22] but also extend our
results to the quaternion domain. As such, the approach proposed in this paper is more general and powerful.

4. Illustrative Examples

This section presents two numerical examples to show the usefulness of the proposed method.

Example 1. The following parameters pertaining to the NN model in (8) are considered:

D =

[
0.4 0
0 0.4

]
, A =

[
0.6 + 0.6i + 0.8j + 0.5k 0.6− 0.5i− 0.2j + 0.3k
0.3− 0.8i + 0.7j− 0.9k 0.6 + 0.5i− 0.4j + 0.5k

]
.

By separating the activation function into real and imaginary parts, we can find AR, AI , AJ ,
and AK. Choose the noise intensity functions as σR(k, yR(k)) = 0.1yR(k), σI(k, yI(k)) = 0.1yI(k),
σJ(k, yJ(k)) = 0.1yJ(k), σK(k, yK(k)) = 0.1yK(k), it can be verified that A2 is satisfied with ρ1 = ρ2 =

ρ3 = ρ4 = 0.02. Given a time delay of ς = 3, and the activation functions can be taken as:

f (y) =

[
f R
1 (yR

1 ) + i f I
1 (y

I
1) + j f J

1 (y
J
1) + k f K

1 (yK
1 )

f R
2 (yR

2 ) + i f I
2 (y

I
2) + j f J

2 (y
J
2) + k f K

2 (yK
2 )

]
,

with

f (y) =

[
tanh(−0.2yR

1 ) + i tanh(−0.2yI
1) + j tanh(−0.2yJ

1) + k tanh(−0.2yK
1 )

tanh(−0.2yR
2 ) + i tanh(−0.2yI

2) + j tanh(−0.2yJ
2) + k tanh(−0.2yK

2 )

]
.

It can verified that A1 is satisfied with ξR−
1 = ξ I−

1 = ξ J−
1 = ξK−

1 = −0.1, ξR+
1 = ξ I+

1 = ξ J+
1 =

ξK+
1 = 0.1, ξR−

2 = ξ I−
2 = ξ J−

2 = ξK−
2 = −0.2, ξR+

2 = ξ I+
2 = ξ J+

2 = ξK+
2 = 0.2,

Υ1 =Γ1 = Λ1 = Π1 =

[
−0.01 0

0 −0.04

]
,

Υ2 =Γ2 = Λ2 = Π2 =

[
0 0
0 0

]
.
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By utilizing the Matlab LMI Control toolbox, we can find the feasible solutions pertaining to the
LMIs in (13)–(21), along with tmin = −0.0029,

P1 =

[
22.6513 −3.1179
−3.1179 17.5716

]
, P2 =

[
21.8646 −2.5384
−2.5384 18.8211

]
,

P3 =

[
21.9936 −3.6224
−3.6224 17.4522

]
, P4 =

[
29.4072 4.1946
4.1946 25.6153

]
,

Q1 =

[
2.8827 −0.7738
−0.7738 0.8726

]
, Q2 =

[
3.2022 −0.6812
−0.6812 0.8757

]
,

Q3 =

[
3.1731 −1.0086
−1.0086 0.8367

]
, Q4 =

[
4.9497 1.4935
1.4935 2.1155

]
,

R1 =

[
0.3374 −0.0907
−0.0907 0.1017

]
, R2 =

[
0.3759 −0.0802
−0.0802 0.1019

]
,

R3 =

[
0.3733 −0.1187
−0.1187 0.0984

]
, R4 =

[
0.5976 0.1838
0.1838 0.2488

]
,

L1 =

[
576.0842 0

0 189.3451

]
, L2 =

[
512.2517 0

0 201.6109

]
,

L3 =

[
569.6213 0

0 190.9944

]
, L4 =

[
559.1807 0

0 246.4368

]
,

and λ∗1 = 40.8585, λ∗2 = 42.3830, λ∗3 = 37.7980, λ∗4 = 59.6031. It can verified easily that
conditions (13)–(16) satisfied with λmax(P1) = 24.1329 < λ∗1 = 40.8585, λmax(P2) = 23.3024 <

λ∗2 = 42.3830, λmax(P3) = 23.9981 < λ∗3 = 37.7980, λmax(P4) = 32.1145 < λ∗4 = 59.6031.
In view of Theorem (1), it is easy to conclude that the NN model in (8) with the above

given parameters is mean-square asymptotically stable based on the Lyapunov stability theory.
The state trajectories yR

1 (k), yI
1(k), yJ

1(k), yK
1 (k), yR

2 (k), yI
2(k), yJ

2(k), yK
2 (k) of the NN model in (8) with

stochastic disturbances are depicted in Figures 1 and 2, respectively. Figures 3 and 4 show the
state trajectories yR

1 (k), yI
1(k), yJ

1(k), yK
1 (k), yR

2 (k), yI
2(k), yJ

2(k), yK
2 (k) of the NN model in (8) without

stochastic disturbances.
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Figure 1. Results of time responses for the states yR
1 (k), yI

1(k), yJ
1(k), yK

1 (k) of the NN model (8) with
σ(k, y(k)) = 0.1y(k) in Example 1.
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Figure 2. Results of the time responses for the states yR
2 (k), yI

2(k), yJ
2(k), yK

2 (k) of the NN model in (8)
with σ(k, y(k)) = 0.1y(k) in Example 1.
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Figure 3. Results of the time responses for the states yR
1 (k), yI

1(k), yJ
1(k), yK

1 (k) of the NN model in (8)
with σ(k, y(k)) = 0 in Example 1.
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Figure 4. Results of the time responses for the states yR
2 (k), yI

2(k), yJ
2(k), yK

2 (k) of the NN model in (8)
with σ(k, y(k)) = 0 in Example 1.
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Example 2. The following parameters pertaining to the NN model in (27) are considered:

D =

[
0.2 0
0 0.2

]
, A =

[
0.5 + 0.8i 0.6− 0.4i
0.7 + 0.5i 0.3 + 0.2i

]
.

By separating the activation function into both real and imaginary parts, we obtain AR and AI .
The noise intensity functions are considered as σR(k, yR(k)) = 0.1yR(k), σI(k, yI(k)) = 0.1yI(k); we can
verify that A4 is satisfied with ρ1 = ρ2 = 0.02. Take the time-delay ς = 3, and subject to the following
activation functions

f (y) =

[
f R
1 (yR

1 ) + i f I
1 (y

I
1)

f R
2 (yR

2 ) + i f I
2 (y

I
2)

]
,

with

f (y) =

[
tanh(−0.2yR

1 ) + i tanh(−0.2yI
1)

tanh(−0.2yR
2 ) + i tanh(−0.2yI

2)

]
.

It can verified that A3 is satisfied with ξR−
1 = ξ I−

1 = −0.1, ξR+
1 = ξ I+

1 = 0.1, ξR−
2 = ξ I−

2 = −0.2,
ξR+

2 = ξ I+
2 = 0.2,

Υ1 = Γ1 =

[
−0.01 0

0 −0.04

]
, Υ2 = Γ2 =

[
0 0
0 0

]
.

We can find that the conditions (30)–(33) are true by using the LMI control toolbox in MATLAB.
According to Corollary (2), we can conclude that the NN model in (27) with the aforementioned
parameters is asymptotically stable in the mean square sense based on the Lyapunov stability theory.
The state trajectories yR

1 (k), yI
1(k), yR

2 (k), yI
2(k) of the NN model in (27) with stochastic disturbances

are depicted in Figures 5 and 6, respectively. Figures 7 and 8 show the state trajectories yR
1 (k), yI

1(k),
yR

2 (k), yI
2(k) of the NN model in (27) without stochastic disturbances.
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Figure 5. Results of the time responses for the states yR
1 (k), yI

1(k) of the NN model in (27) with
σR(k, yR(k)) = 0.1yR(k), σI(k, yI(k)) = 0.1yI(k) in Example 2.
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Figure 6. Results of the time responses for the states yR
2 (k), yI

2(k) of the NN model in (27) with
σR(k, yR(k)) = 0.1yR(k), σI(k, yI(k)) = 0.1yI(k) in Example 2.
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Figure 7. Results of the time responses for the states yR
1 (k), yI

1(k) of the NN model in (27) with
σR(k, yR(k)) = σI(k, yI(k)) = 0 in Example 2.
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Figure 8. Results of the time responses for the states yR
2 (k), yI

2(k) of the NN model in (27) with
σR(k, yR(k)) = σI(k, yI(k)) = 0 in Example 2.
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5. Conclusions

In this study, we have investigated the mean-square asymptotic stability criteria for the considered
DSQVNN models. The designed DSQVNN models encompass discrete-time stochastic CVNN and
discrete-time stochastic RVNN as the special cases. By exploiting the real-imaginary separation
method, we have derived four equivalent RVNNs from the original QVNN model. By formulating
appropriate Lyapunov functional candidates with more system information, and by employing
stochastic concepts, we have established the LMI-based new sufficient conditions for the mean-square
asymptotic stability of the DSQVNN models. It is worth noting that previously known results can be
treated as special cases in our results. The effectiveness of our investigation has been demonstrated
through numerical examples.

For future work, a variety of stochastic QVNN models will be examined. Specifically, the BAM
(bidirectional associative memory)-type and Cohen–Grossberg-type of QVNN model under the
discrete-time case will be investigated in our next study.
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Appendix A

Proof of Theorem (1). Given the NN model in (11), the following Lyapunov functional candidate
is considered

V(k) =
3

∑
`=1

[
VR

` (k) +VI
`(k) +V

J
`(k) +VK

` (k)
]
, (A1)

where

VR
1 (k) = (yR(k))TP1yR(k),

VI
1(k) = (yI(k))TP2yI(k),

V
J
1(k) = (yJ(k))TP3yJ(k),

VK
1 (k) = (yK(k))TP4yK(k),

VR
2 (k) =

k−1

∑
u=k−ς

(yR(u))TQ1yR(u),

VI
2(k) =

k−1

∑
u=k−ς

(yI(u))TQ2yI(u),

V
J
2(k) =

k−1

∑
u=k−ς

(yJ(u))TQ3yJ(u),

VK
2 (k) =

k−1

∑
u=k−ς

(yK(u))TQ4yK(u),

VR
3 (k) = ς

−1

∑
u=−ς

k−1

∑
v=k+u

(yR(v))TR1yR(v),

VI
3(k) = ς

−1

∑
u=−ς

k−1

∑
v=k+u

(yI(v))TR2yI(v),
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V
J
3(k) = ς

−1

∑
u=−ς

k−1

∑
v=k+u

(yJ(v))TR3yJ(v),

VK
3 (k) = ς

−1

∑
u=−ς

k−1

∑
v=k+u

(yK(v))TR4yK(v).

The following expression can be obtained when we compute the difference of V(k) with respect
to the the NN model in (11), and take the mathematical expectation:

E{4V(k)} =
3

∑
`=1

[
E{4VR

` (k)}+E{4VI
`(k)}+E{4VJ

`(k)}+E{4VK
` (k)}

]
, (A2)

where

E{4VR
1 (k)} = E{VR

1 (k + 1)−VR
1 (k)}

= E{[DyR(k) + AR f R(yR(k− ς))−AI f I(yI(k− ς))−AJ f J(yJ(k− ς))

−AK f K(yK(k− ς))]TP1[DyR(k) + AR f R(yR(k− ς))−AI f I(yI(k− ς))

−AJ f J(yJ(k− ς))−AK f K(yK(k− ς))] + (σR(k, yR(k)))TP1σR(k, yR(k))

− (yR(k))TP1yR(k)}

= E{(yR(k))T(DTP1D)yR(k) + 2(yR(k))T(DTP1AR) f R(yR(k− ς))

− 2(yR(k))T(DTP1AI) f I(yI(k− ς))− 2(yR(k))T(DTP1AJ) f J(yJ(k− ς))

− 2(yR(k))T(DTP1AK) f K(yK(k− ς)) + ( f R(yR(k− ς)))T((AR)TP1AR)

× f R(yR(k− ς))− 2( f R(yR(k− ς)))T((AR)TP1AI) f I(yI(k− ς))

− 2( f R(yR(k− ς)))T((AR)TP1AJ) f J(yJ(k− ς))− 2( f R(yR(k− ς)))T

× ((AR)TP1AK) f K(yK(k− ς)) + ( f I(yI(k− ς)))T((AI)TP1AI) f I(yI(k− ς))

+ 2( f I(yI(k− ς)))T((AI)TP1AJ) f J(yJ(k− ς)) + 2( f I(yI(k− ς)))T((AI)TP1AK)

× f K(yK(k− ς)) + ( f J(yJ(k− ς)))T((AJ)TP1AJ) f J(yJ(k− ς)) + 2( f J(yJ(k− ς)))T

× ((AJ)TP1AK) f K(yK(k− ς)) + ( f K(yK(k− ς)))T((AK)TP1AK) f K(yK(k− ς))

+ (σR(k, yR(k)))TP1σR(k, yR(k))− (yR(k))T(P1)yR(k)}, (A3)

Ê{4VI
1(k)} = E{VI

1(k + 1)−VI
1(k)}

= E{[DyI(k) + AR f I(yI(k− ς)) + AI f R(yR(k− ς)) + AJ f K(yK(k− ς))

−AK f J(yJ(k− ς))]TP2[DyI(k) + AR f I(yI(k− ς)) + AI f R(yR(k− ς))

+ AJ f K(yK(k− ς))−AK f J(yJ(k− ς))] + (σI(k, yI(k)))TP2σI(k, yI(k))

− (yI(k))TP2yI(k)}

= E{(yI(k))T(DTP2D)yI(k) + 2(yI(k))T(DTP2AR) f I(yI(k− ς))

+ 2(yI(k))T(DTP2AI) f R(yR(k− ς)) + 2(yI(k))T(DTP2AJ) f K(yK(k− ς))

− 2(yI(k))T(DTP2AK) f J(yJ(k− ς)) + ( f I(yI(k− ς)))T((AR)TP2AR)

× f I(yI(k− ς)) + 2( f I(yI(k− ς)))T((AR)TP2AI) f R(yR(k− ς))

+ 2( f I(yI(k− ς)))T((AR)TP2AJ) f K(yK(k− ς))− 2( f I(yI(k− ς)))T

× ((AR)TP2AK) f J(yJ(k− ς)) + ( f R(yR(k− ς)))T((AI)TP2AI) f R(yR(k− ς))

+ 2( f R(yR(k− ς)))T((AI)TP2AJ) f K(yK(k− ς))− 2( f R(yR(k− ς)))T

× ((AI)TP2AK) f J(yJ(k− ς)) + ( f K(yK(k− ς)))T((AJ)TP2AJ) f K(yK(k− ς))

− 2( f K(yK(k− ς)))T((AJ)TP2AK) f J(yJ(k− ς)) + ( f J(yJ(k− ς)))T

× ((AK)TP2AK) f J(yJ(k− ς)) + (σI(k, yI(k)))TP2σI(k, yI(k))

− (yI(k))T(P2)yI(k)}, (A4)
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E{4V
J
1(k)} = E{VJ

1(k + 1)−V
J
1(k)}

= E{[DyJ(k) + AR f J(yJ(k− ς)) + AJ f R(yR(k− ς)) + AK f I(yI(k− ς))

−AI f K(yK(k− ς))]TP3[DyJ(k) + AR f J(yJ(k− ς)) + AJ f R(yR(k− ς))

+ AK f I(yI(k− ς))−AI f K(yK(k− ς))] + (σJ(k, yJ(k)))TP3σJ(k, yJ(k))

− (yJ(k)TP3yJ(k)}

= E{(yJ(k))T(DTP3D)yJ(k) + 2(yJ(k))T(DTP3AR) f J(yJ(k− ς))

+ 2(yJ(k))T(DTP3AJ) f R(yR(k− ς)) + 2(yJ(k))T(DTP3AK) f I(yI(k− ς))

− 2(yJ(k))T(DTP3AI) f K(yK(k− ς)) + ( f J(yJ(k− ς)))T((AR)TP3AR)

× f J(yJ(k− ς)) + 2( f J(yJ(k− ς)))T((AR)TP3AJ) f R(yR(k− ς)) + 2( f J(yJ(k− ς)))T

× ((AR)TP3AK) f I(yI(k− ς))− 2( f J(yJ(k− ς)))T((AR)TP3AI) f K(yK(k− ς))

+ ( f R(yR(k− ς)))T((AJ)TP3AJ) f R(yR(k− ς)) + 2( f R(yR(k− ς)))T((AJ)TP3AK)

× f I(yI(k− ς))− 2( f R(yR(k− ς)))T((AJ)TP3AI) f K(yK(k− ς)) + ( f I(yI(k− ς)))T

× ((AK)TP3AK) f I(yI(k− ς))− 2( f I(yI(k− ς)))T((AK)TP3AI) f K(yK(k− ς))

+ ( f K(yK(k− ς)))T((AI)TP3AI) f K(yK(k− ς)) + (σJ(k, yJ(k)))TP3σJ(k, yJ(k))

− (yJ(k))T(P3)yJ(k)}, (A5)

E{4VK
1 (k)} = E{VK

1 (k + 1)−VK
1 (k)}

= E{[DyK(k) + AR f K(yK(k− ς)) + AK f R(yR(k− ς)) + AI f J(yJ(k− ς))

−AJ f I(yI(k− ς))]TP4[DyK(k) + AR f K(yK(k− ς)) + AK f R(yR(k− ς))

+ AI f J(yJ(k− ς))−AJ f I(yI(k− ς))] + (σK(k, yK(k)))TP4σK(k, yK(k))

− (yK(k))TP4yK(k)}

= E{(yK(k))T(DTP4D)yK(k) + 2(yK(k))T(DTP4AR) f K(yK(k− ς))

+ 2(yK(k))T(DTP4AK) f R(yR(k− ς)) + 2(yK(k))T(DTP4AI) f J(yJ(k− ς))

− 2(yK(k))T(DTP4AJ) f I(yI(k− ς)) + ( f K(yK(k− ς)))T((AR)TP4AR)

× f K(yK(k− ς)) + 2( f K(yK(k− ς)))T((AR)TP4AK) f R(yR(k− ς))

+ 2( f K(yK(k− ς)))T((AR)TP4AI) f J(yJ(k− ς))− 2( f K(yK(k− ς)))T

× ((AR)TP4AJ) f I(yI(k− ς)) + ( f R(yR(k− ς)))T((AK)TP4AK) f R(yR(k− ς))

+ 2( f R(yR(k− ς)))T((AK)TP4AI) f J(yJ(k− ς))− 2( f R(yR(k− ς)))T((AK)TP4AJ)

× f I(yI(k− ς)) + ( f J(yJ(k− ς)))T((AI)TP4AI) f J(yJ(k− ς))− 2( f J(yJ(k− ς)))T

× ((AI)TP4AJ) f I(yI(k− ς)) + ( f I(yI(k− ς)))T((AJ)TP4AJ) f I(yI(k− ς))

+ (σK(k, yK(k)))TP4σK(k, yK(k))− (yK(k))T(P)yK(k)}. (A6)

Similarly, the following can be obtained:

E{4VR
2 (k)} = E{VR

2 (k + 1)−VR
2 (k)}

= (yR(k))TQ1yR(k)− (yR(k− ς))TQ1yR(k− ς), (A7)

E{4VI
2(k)} = E{VI

2(k + 1)−VI
2(k)}

= (yI(k))TQ2yI(k)− (yI(k− ς))TQ2yI(k− ς), (A8)
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E{4V
J
2(k)} = E{VJ

2(k + 1)−V
J
2(k)}

= (yJ(k))TQ3yJ(k)− (yJ(k− ς))TQ3yJ(k− ς), (A9)

E{4VK
2 (k)} = E{VK

2 (k + 1)−VK
2 (k)}

= (yR(k))TQ4yR(k)− (yR(k− ς))TQ4yR(k− ς), (A10)

E{4VR
3 (k)} = E{VR

3 (k + 1)−VR
3 (k)}

= E
{

ς
−1

∑
u=−ς

k

∑
v=k+u+1

(yR(v))TR1yR(v)− ς
−1

∑
u=−ς

k−1

∑
v=k+u

(yR(v))TR1yR(v)
}

= ς2(yR(k))TR1yR(k)− ς
k−1

∑
u=k−ς

(yR(u))TR1yR(u), (A11)

E{4VI
3(k)} = E{VI

3(k + 1)−VI
3(k)}

= E
{

ς
−1

∑
u=−ς

k

∑
v=k+u+1

(yI(v))TR2yI(v)− ς
−1

∑
u=−ς

k−1

∑
v=k+u

(yI(v))TR2yI(v)
}

= ς2(yI(k))TR2yI(k)− ς
k−1

∑
u=k−ς

(yI(u))TR2yI(u), (A12)

E{4V
J
3(k)} = E{VJ

3(k + 1)−V
J
3(k)}

= E
{

ς
−1

∑
u=−ς

k

∑
v=k+u+1

(yJ(v))TR3yJ(v)− ς
−1

∑
u=−ς

k−1

∑
v=k+u

(yJ(v))TR3yJ(v)
}

= ς2(yJ(k))TR3yJ(k)− ς
k−1

∑
u=k−ς

(yJ(u))TR3yJ(u), (A13)

E{4VK
3 (k)} = E{VK

3 (k + 1)−VK
3 (k)}

= E
{

ς
−1

∑
u=−ς

k

∑
v=k+u+1

(yK(v))TR4yK(v)− ς
−1

∑
u=−ς

k−1

∑
v=k+u

(yK(v))TR4yK(v)
}

= ς2(yK(k))TR4yK(k)− ς
k−1

∑
u=k−ς

(yK(u))TR4yK(u), (A14)

By using Lemma (1), we have

−ς
k−1

∑
u=k−ς

(yK(u))TR1yK(u) ≤ −
k−1

∑
u=k−ς

(yK(u))TR1

k−1

∑
u=k−ς

yK(u), (A15)

−ς
k−1

∑
u=k−ς

(yK(u))TR2yK(u) ≤ −
k−1

∑
u=k−ς

(yK(u))TR2

k−1

∑
u=k−ς

yK(u), (A16)

−ς
k−1

∑
u=k−ς

(yK(u))TR3yK(u) ≤ −
k−1

∑
u=k−ς

(yK(u))TR3

k−1

∑
u=k−ς

yK(u), (A17)

−ς
k−1

∑
u=k−ς

(yK(u))TR4yK(u) ≤ −
k−1

∑
u=k−ς

(yK(u))TR4

k−1

∑
u=k−ς

yK(u). (A18)
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From A2 and conditions (13)–(16), we have

(σR(k, yR(k)))TP1σR(k, yR(k)) ≤ λ1max(P1)(σ
R(k, yR(k)))TσR(k, yR(k))

≤ λ∗1
(
ρ1(yR(k))TyR(k)

)
, (A19)

(σI(k, yI(k)))TP3σI(k, yI(k)) ≤ λ2max(P2)(σ
I(k, yI(k)))TσI(k, yI(k))

≤ λ∗2
(
ρ2(yI(k))TyI(k)

)
, (A20)

(σJ(k, yJ(k)))TP3σJ(k, yJ(k)) ≤ λ3max(P3)(σ
J(k, yJ(k)))TσJ(k, yJ(k))

≤ λ∗3
(
ρ3(yJ(k))TyJ(k)

)
, (A21)

(σK(k, yK(k)))TP4σK(k, yK(k)) ≤ λ4max(P4)(σ
K(k, yK(k)))TσK(k, yK(k))

≤ λ∗4
(
ρ4(yK(k))TyK(k)

)
. (A22)

From A1, we have

( f R
q (yR

q (k))− ξR+
q yR

q (k))( f R
q (yR

q (k))− ξR−
q yR

q (k)) ≤ 0,

( f I
q (y

I
q(k))− ξ I+

q yI
q(k))( f I

q (y
I
q(k))− ξ I−

q yI
q(k)) ≤ 0,

( f J
q (y

J
q(k))− ξ J+

q yJ
q(k))( f J

q (y
J
q(k))− ξ J−

q yJ
q(k)) ≤ 0,

( f K
q (yK

q (k))− ξK+
q yK

q (k))( f K
q (yK

q (k))− ξK−
q yK

q (k)) ≤ 0, ∀q = 1, ..., m,

which is equivalent to[
yR(k− ς)

f R(yR(k− ς))

]T
 ξR+

q ξR−
q eqeT

q − ξR+
q +ξR−

q
2 eqeT

q

− ξR+
q +ξR−

q
2 eqeT

q eqeT
q

 [ yR(k− ς)

f R(yR(k− ς))

]
≤ 0, (A23)

[
yI(k− ς)

f I(yI(k− ς))

]T
 ξ I+

q ξ I−
q eqeT

q − ξ I+
q +ξ I−

q
2 eqeT

q

− ξ I+
q +ξ I−

q
2 eqeT

q eqeT
q

 [ yI(k− ς)

f I(yI(k− ς))

]
≤ 0, (A24)

[
yJ(k− ς)

f J(yJ(k− ς))

]T
 ξ J+

q ξ J−
q eqeT

q − ξ
J+
q +ξ

J−
q

2 eqeT
q

− ξ
J+
q +ξ

J−
q

2 eqeT
q eqeT

q

 [ yJ(k− ς)

f J(yJ(k− ς))

]
≤ 0, (A25)

[
yK(k− ς)

f K(yK(k− ς))

]T
 ξK+

q ξK−
q eqeT

q − ξK+
q +ξK−

q
2 eqeT

q

− ξK+
q +ξK−

q
2 eqeT

q eqeT
q

 [ yK(k− ς)

f K(yK(k− ς))

]
≤ 0, (A26)

for all q = 1, ..., m, while the unit column vector having one element on its q-th row and zeros
elsewhere is denoted by eq.

Subject to the existence of L1 = diag{lR
1 , ..., lR

m}, we can conclude from (A23) that

n

∑
q=1

lR
q

[
yR(k− ς)

f R(yR(k− ς))

]T
 ξR+

q ξR−
q eqeT

q
ξR+

q +ξR−
q

2 eqeT
q

− ξR+
q +ξR−

q
2 eqeT

q eqeT
q

 [ yR(k− ς)

f R(yR(k− ς))

]
≤ 0, (A27)

that is [
yR(k− ς)

f R(yR(k− ς))

]T [
Υ1L1 −ΥR

2 L1

−Υ2L1 L1

] [
yR(k− ς)

f R(yR(k− ς))

]
≤ 0, (A28)
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In a similar way to (A24)–(A26) for which there exist L2 = diag{l I
1, ..., l I

m}, L3 = diag{l J
1, ..., l J

m},
L4 = diag{lK

1 , ..., lK
m}, we have[

yI(k− ς)

f I(yI(k− ς))

]T [
Γ1L2 −Γ2L2

−Γ2L2 L2

] [
yI(k− ς)

f I(yI(k− ς))

]
≤ 0, (A29)

[
yJ(k− ς)

f J(yJ(k− ς))

]T [
Λ1L3 −Λ2L3

−Λ2L3 L3

] [
yJ(k− ς)

f J(yJ(k− ς))

]
≤ 0, (A30)

[
yK(k− ς)

f K(yK(k− ς))

]T [
Π1L4 −Π2L4

−Π2L4 L4

] [
yK(k− ς)

f K(yK(k− ς))

]
≤ 0, (A31)

where Υ1 = diag
{

ξR+
1 ξR−

1 , ..., ξR+
m ξR−

m
}

, Υ2 = diag
{

ξR+
1 +ξR−

1
2 , ..., ξR+

m +ξR−
m

2

}
,

Γ1 = diag
{

ξ I+
1 ξ I−

1 , ..., ξ I+
m ξ I−

m
}

, Γ2 = diag
{

ξ I+
1 +ξ I−

1
2 , ..., ξ+m+ξ I−

m
2

}
,

Λ1 = diag
{

ξ J+
1 ξ J−

1 , ..., ξ J+
m ξ J−

m
}

, Λ2 = diag
{

ξ
J+
1 +ξ

J−
1

2 , ..., ξ
J+
m +ξ

J−
m

2

}
,

Π1 = diag
{

ξK+
1 ξK−

1 , ..., ξK+
m ξK−

m
}

, Π2 = diag
{

ξK+
1 +ξK−

1
2 , ..., ξK+

m +ξK−
m

2

}
By simple computation, it follows from (A3)–(A31) that

E{4V(k)} ≤ ζT
1 (k)Θ1ζ1(k) + ζT

2 (k)Θ2ζ2(k) + ζT
3 (k)Θ3ζ3(k) + ζT

4 (k)Θ4ζ4(k) < 0, (A32)

where

ζ1(k) = [(yR(k))T , (yR(k− ς))T , ( f R(yR(k− ς)))T , ( f I(yI(k− ς)))T , ( f J(yJ(k− ς)))T ,

( f K(yK(k− ς)))T ,
( k−1

∑
u=k−ς

(yR(u))
)T

]T ,

ζ2(k) = [(yI(k))T , (yI(k− ς))T , ( f R(yR(k− ς)))T , ( f I(yI(k− ς)))T , ( f J(yJ(k− ς)))T ,

( f K(yK(k− ς)))T ,
( k−1

∑
u=k−ς

(yI(u))
)T

]T ,

ζ3(k) = [(yJ(k))T , (yJ(k− ς))T , ( f R(yR(k− ς)))T , ( f I(yI(k− ς)))T , ( f J(yJ(k− ς)))T ,

( f K(yK(k− ς)))T ,
( k−1

∑
u=k−ς

(yJ(u))
)T

]T ,

ζ4(k) = [(yK(k))T , (yK(k− ς))T , ( f R(yR(k− ς)))T , ( f I(yI(k− ς)))T , ( f J(yJ(k− ς)))T ,

( f K(yK(k− ς)))T ,
( k−1

∑
u=k−ς

(yK(u))
)T

]T ,

and Θ1, Θ2, Θ3, and Θ4 are defined in Theorem (1).

Consider the right-hand side of the inequalities (13)–(21), we have Θ1 < 0, Θ2 < 0, Θ3 < 0,
and Θ4 < 0.

Let α∗ = αmax(Θ1) < 0, β∗ = βmax(Θ2) < 0, γ∗ = γmax(Θ3) < 0, ε∗ = εmax(Θ4) < 0. This fact,
together with (A32), yields

E{4V(k)} ≤ α∗E{‖yR(k)‖2}+ β∗E{‖yI(k)‖2}+ γ∗E{‖yJ(k)‖2}+ ε∗E{‖yK(k)‖2}, (A33)
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for all yR(k), yI(k), yJ(k), yK(k) 6= 0. Put ϑ = max{α∗, β∗, γ∗, ε∗}

E{4V(k)} ≤ ϑE{‖yR(k)‖2 + ‖yI(k)‖2 + ‖yJ(k)‖2 + ‖yK(k)‖2}, (A34)

which is equivalent to

E{4V(k)} ≤ ϑE{‖y(k)‖2}. (A35)

Consider a positive integer of N. We can have the following expression by summing both sides
of (A35) from 0 to N with respect to k

E{V(N)−V(0)} ≤ ϑ
N

∑
k=0

E{‖y(k)‖2}, (A36)

This indicates that

N

∑
k=0

E{‖y(k)‖2} ≤ ϑ−1(E{V(N)} −E{V(0)}),

≤ − ϑ−1E{V(0)}. (A37)

Since the series
+∞
∑

k=0
E{‖y(k)‖2} is concluded to be convergent, we have

lim
k→∞

E{‖y(k)‖2} = 0. (A38)

According to Definition 2 the NN model in (11) is asymptotically stable in the
mean-square sense.
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