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Abstract: In this paper, we investigate a nonlocal modification of general relativity (GR) with action
S = 1

16πG
∫
[R− 2Λ + (R− 4Λ)F (2) (R− 4Λ)]

√−g d4x, where F (2) = ∑+∞
n=1 fn2

n is an analytic
function of the d’Alembertian 2. We found a few exact cosmological solutions of the corresponding
equations of motion. There are two solutions which are valid only if Λ 6= 0, k = 0, and they
have no analogs in Einstein’s gravity with cosmological constant Λ. One of these two solutions is
a(t) = A

√
t e

Λ
4 t2

, that mimics properties similar to an interference between the radiation and the dark
energy. Another solution is a nonsingular bounce one a(t) = A eΛt2

. For these two solutions,
some cosmological aspects are discussed. We also found explicit form of the nonlocal operator F (2),
which satisfies obtained necessary conditions.

Keywords: nonlocal gravity; cosmological solutions; radiation; dark energy

1. Introduction

General relativity [1], or in other words Einstein theory of gravity, is recognized as one of
the best physical theories—with beautiful theoretical properties and significant phenomenological
achievements. General relativity (GR) very well describes dynamics of the Solar System. It predicted
several important phenomena that were confirmed: deflection of light by the Sun, gravitational light
redshift, gravitational waves, gravitational lensing, and black holes.

Despite its extraordinary success, GR should not be viewed as a final theory of gravity.
For example, from the standard cosmological model, which assumes applicability of GR to the universe
as a whole, follows that the universe is approximately made of 68% of dark energy (DE), 27% of dark
matter (DM), and only 5% of visible (standard) matter. However, DE and DM are not yet experimentally
detected, and validity of GR at very large cosmic scales is not confirmed. Even in the case of discovering
DM and DE, there is still a sense to look for modifications of GR that may mimic the same or similar
effects as those of DE and DM. In addition, cosmological solutions of GR, under rather general
properties of the matter, contain singularity at the cosmic time t = 0. In addition to these mentioned
astrophysical and cosmological problems, there are also some problems that are pure theoretical and
come from quantum gravity and string theory. Note also that there is no known reliable theoretical
principle that might show the right direction for valuable extension of GR. As a result of all these
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shortages, there are many approaches towards possible generalization of Einstein’s theory of gravity
(for a review, see [2–6]).

One of the current ways towards modification of GR is nonlocal modified gravity, see e.g., [7–24].
All nonlocal gravity models contain the d’Alembert-Beltrami operator 2, that is involved mainly
in two ways: (1) in the form 2−n and (2) as an analytic function F(2) = ∑+∞

n=0 fn2
n. Models with

2−n operator are introduced to investigate the late cosmic time acceleration without its matter origin.
Some of such models are given by the action

S =
1

16πG

∫ √
−g (R + L) d4x, (1)

where L = R f (2−1R) (see, e.g., [4,8,24]), and L = − 1
6 m2R2−2R (see [9] and references therein).

An interesting and promising class of nonlocal gravity models, that have been recently considered,
is given by

S =
1

16πG

∫
M

√
−g [R− 2Λ + P(R)F (2) Q(R)] d4x, (2)

whereM is a pseudo-Riemannian manifold of signature (1, 3) with metric (gµν), Λ is the cosmological
constant, P(R) and Q(R) are some differentiable functions of the Ricci scalar R, andF (2) = ∑+∞

n=1 fn2
n.

Motivation to use this analytic nonlocal operator comes from ordinary and p-adic string theory
(see [25] and references therein) and observation that some analytic nonlocal operators may improve
renormalizability in some quantum gravity models, see [26–28]. To have better insight into effects,
preliminary investigation of these models is usually without matter.

Note again that Equation (2) contains a class of simple nonlocal extensions of GR, but still in rather
general form. Usually researchers start by a particular expression for P(R) and Q(R) as differentiable
functions of R, while F (2) is treated as an analytic function of operator 2, whose concrete form is not
given at the beginning. For given P(R) and Q(R), the next step is derivation of equations of motion
for metric tensor gµν. To consider (2) as nonlocal gravity model of interest for cosmology, equations of
motion should have some useful cosmological solutions. Existence of such (usually exact) cosmological
solutions requires some restrictions on the function F (2) = ∑+∞

n=1 fn2
n, i.e., on its coefficients fn,

e.g., see [10–14]. Then with these, and perhaps some additional, restrictions there is a possibility to
construct the corresponding concrete function F (2). Since we do not know a priori function F (2),
this approach is a reasonable way to get it.

Concerning Equation (2), the most attention has been paid to the simple case when P(R) =

Q(R) = R, e.g., see [10,11,17,18,20,29–36]. This investigation started in [10,11] by successful attempt
to find nonsingular bouncing solution of the Big Bang singularity problem in standard cosmology.
To find appropriate solution of equations of motion, the ansatz 2R = rR + s was used, where r
and s are parameters that connect the solution and function F (2). If also in this case cosmological
constant Λ = 0 then it is some kind of nonlocal generalization of the Starobinsky R2 inflation model,
whose various properties are studied in [19,20].

Another very intriguing example of the nonlocal gravity in Equation (2) has P(R) = Q(R) =√
R− 2Λ [37]. One of its exact cosmological solutions is a(t) = At

2
3 e

Λ
14 t2

, Λ 6= 0, k = 0. This solution
mimics properties similar to an interplay of the dark matter and the dark energy. Moreover, computed
cosmological parameters are in a good agreement with astronomical observations. It is worth noting
that at the first glance appearance of

√
R− 2Λ in this model may look strange. However, it can be

regarded as a natural nonlocal generalization of the standard local Lagrangian R− 2Λ. Namely, one can
introduce nonlocality as follows: R− 2Λ =

√
R− 2Λ

√
R− 2Λ →

√
R− 2Λ [1 +F (2)]

√
R− 2Λ.

Nonlocal gravity model which we investigate in this paper has P(R) = Q(R) = R− 4Λ, and the
action is given explicitly below in Equation (3). As we will see, one of the exact cosmological solutions
is a(t) = A

√
te

Λ
4 t2

, Λ 6= 0, k = 0, which mimics an interplay between radiation and the dark energy.
Nonlocal term (R− 4Λ)F (2) (R− 4Λ) in this model arose in the process of generalization of the above
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mentioned model with nonlocality R F (2) R. The starting expression was (R− R0) F (2) (R− R0),
where R0 is a constant that may lead to some interesting background solutions.

Section 2 contains derivation of the equations of motion. Section 3 is devoted to the exact
cosmological solutions. Some concluding remarks are in Section 4.

2. New Nonlocal Gravity Model

The action of our nonlocal gravity model is

S =
1

16πG

∫
[R− 2Λ + (R− 4Λ)F (2) (R− 4Λ)]

√
−g d4x, (3)

where F (2) =
∞

∑
n=1

fn 2
n and 2 = ∇µ∇µ = 1√−g ∂µ (

√−g gµν ∂ν) is the corresponding

d’Alembert-Beltrami operator. In construction of Equation (3) we started from action

S =
1

16πG

∫
[R− 2Λ + (R− R0)F (2) (R− R0)]

√
−g d4x (4)

and found that for R0 = 4Λ the corresponding equations of motion, Equations (13) and (14), give two
interesting background solutions presented in Sections 3.1 and 3.2.

2.1. Equations of Motion

The equations of motion for nonlocal gravity action in Equation (2) are derived in [38] and have
the following form:

Ĝµν = Gµν + Λgµν −
1
2

gµνP(R)F (2) Q(R) +
(

Rµν − Kµν

)
W +

1
2

Ωµν = 0, (5)

where Ĝµν is nonlocal version of Einstein’s tensor, and

Kµν = ∇µ∇ν − gµν2, (6)

W = P′(R)F (2) Q(R) + Q′(R)F (2) P(R), (7)

Ωµν =
∞

∑
n=1

fn

n−1

∑
`=0

Sµν

(
2`P(R), 2n−1−` Q(R)

)
, (8)

Sµν(A, B) = gµν∇α A∇αB + gµν A2B− 2∇µ A∇νB, (9)

where P′(R) and Q′(R) are derivatives of P(R) and Q(R) with respect to R, respectively.
From computation in detail, it follows

OµĜµν = 0 . (10)

Equation (3) is a particular case of Equation (2) and the corresponding equations of motion for
model in Equation (3) easily follow from Equation (5), i.e., equations of motion are

Ĝµν = Gµν + Λgµν −
1
2

gµνUF (2)U + 2(Rµν −∇µ∇ν + gµν2)F (2)U

+
1
2

+∞

∑
n=1

fn

n−1

∑
`=0

(
gµν(gαβ∂α2

`U∂β2
n−1−`U +2`U2n−`U)

− 2∂µ2
`U∂ν2

n−1−`U
)
= 0, (11)

where Gµν = Rµν − 1
2 Rgµν is the Einstein tensor, and U = R− 4Λ.



Symmetry 2020, 12, 917 4 of 10

In the sequel of this paper, we are mainly interested in finding and investigating some exact
cosmological solutions of Equation (11). Since the universe is homogeneous and isotropic at large
scales, it has the Friedmann–Lemaître–Robertson–Walker (FLRW) metric

ds2 = −dt2 + a2(t)
(

dr2

1− kr2 + r2dθ2 + r2 sin2 θdφ2
)

, (c = 1), k = 0,±1, (12)

where a(t) is the cosmic scale factor. As a consequence of symmetries of the FLRW metric,
Equation (11) can be reduced to two independent differential equations and we take trace and
00-component, respectively:

4Λ− R− 2UF (2)U + 2(R + 32)F (2)U

+
+∞

∑
n=1

fn

n−1

∑
`=0

(
∂α2

` U∂α2n−1−` U + 22` U2n−` U
)
= 0, (13)

G00 −Λ +
1
2

UF (2)U + 2(R00 − ∂0∂0 −2)F (2)U

− 1
2

+∞

∑
n=1

fn

n−1

∑
`=0

(
∂α2

` U∂α2n−1−` U +2` U2n−` U

+ 2∂02
` U∂02

n−1−` U
)
= 0, (14)

where

R00 = −3
ä
a

, G00 = 3
ȧ2 + k

a2 . (15)

Equation (11) can be rewritten in the form

Ĝµν = Gµν + Λgµν − 8πGT̂µν = 0 , (16)

where T̂µν can be regarded as a nonlocal gravity analog of the energy-momentum tensor in Einstein’s
gravity. The corresponding Friedmann equations to Equation (16) are

ä
a
= −4πG

3
(ρ̄ + 3p̄) +

Λ
3

,
ȧ2 + k

a2 =
8πG

3
ρ̄ +

Λ
3

, (17)

where ρ̄ and p̄ play a role of the energy density and pressure of the dark side of the universe,
respectively. The related equation of state is

p̄(t) = w̄(t) ρ̄(t). (18)

2.2. Ghost-Free Condition

The spectrum can be found and a possibility to avoid ghost degrees of freedom can be studied
by considering the second variation of the action. This task was accomplished in different settings.
In paper [15], it was done for an action which contains our action in Equation (3) as one of the terms.
In paper [32] analogous analysis was performed for generic functions P(R) and Q(R). The generic
idea is that certain combinations containing the operator function F (2) form kinetic operators for
scalar and tensor propagating degrees of freedom. Consequently such combinations must be equal to
an exponent of an entire function. The latter has no zeros on the whole complex plane and as such
does not result in poles in propagators yielding no new degrees of freedom. Detailed expressions and
all the restrictions can be found in the above mentioned references.
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3. Cosmological Solutions

Our intention is to obtain some exact cosmological solutions of the equations of motion in
Equations (13) and (14) in the form a(t) = Atmeγ t2

, where m and γ are some constants. At the
beginning we take U = R− R0 and k = 0 in the equations of motion. Thus we have three parameters
m, γ, R0 that have to be determined. We found that for R0 = 4 Λ there are two pairs of solutions for
m and γ: (1) m = 1

2 , γ = Λ
4 and (2) m = 0, γ = Λ. These background solutions are presented below.

Recall that scalar curvature for the FLRW metric in Equation (12) is

R(t) = 6
( ä

a
+
( ȧ

a
)2

+
k
a2

)
. (19)

The d’Alembert-Beltrami operator 2 acts as 2R = − ∂2

∂t2 R − 3H ∂
∂t R, where H = ȧ

a is the
Hubble parameter.

Note that the Minkowski space (a(t) = const., R = Λ = k = 0) is a solution of equations of
motion (13) and (14).

In what follows, we will present and briefly discuss some exact cosmological solutions mainly
with Λ 6= 0.

3.1. Cosmological Solution a(t) = A
√

t e
Λ
4 t2

, k = 0

For this solution we have

ȧ(t) = a(t)
1
2

(
t−1 + Λt

)
, ä(t) = a(t)

1
4

(
Λ2t2 + 4Λ− t−2

)
, (20)

and scalar curvature in Equation (19) becomes

R(t) = 3Λ(Λt2 + 3). (21)

The Hubble parameter is

H(t) =
1
2
(
t−1 + Λt

)
, (22)

and its first part ( 1
2t ) is the same as for the radiation dominance in Einstein’s gravity, while the second

term ( Λt
2 ) can be related to the dark energy generated by cosmological constant Λ. It is evident that

this dark radiation is dominated at the small cosmic times and can be ignored compared to Λ term at
large times. At the present cosmic time t0 = 13.801× 109 year and Λ = 0.98× 10−35 s−2, both terms in
Equation (22) are of the same order of magnitude and H(t0) = 100.2 km/s/Mpc. This value for the
Hubble parameter is larger than current Planck mission result H0 = (67.40± 0.50) km/s/Mpc [39].
Hence this cosmological solution may be of interest for the early universe with radiation dominance
and for far-future accelerated expansion.

There is useful equality

2
(

R− 4Λ
)
= −3Λ

(
R− 4Λ

)
(23)

which leads to

F (2)
(

R− 4Λ
)
= F

(
− 3Λ

) (
R− 4Λ

)
. (24)

R00 and G00 are:

R00 =
3
4
(
t−2 − 4Λ−Λ2t2) , G00 =

3
4
(
t−1 + Λt

)2. (25)
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Using equality 2(R− 4Λ) = −3Λ(R− 4Λ), the trace Equation (13) becomes

4Λ− R− 10Λ(R− 4Λ)F (−3Λ) +
(
− 6Λ(R− 4Λ)2 − Ṙ2)F ′(−3Λ) = 0. (26)

The 00 component of EOM in Equation (14) becomes

G00 −Λ + (R− 4Λ)F (−3Λ)(2R00 +
1
2

R + 4Λ)− 2F (−3Λ)R̈

+
1
2
(
3Λ(R− 4Λ)2 − Ṙ2)F ′(−3Λ) = 0. (27)

Substituting scalar curvature R into the trace Equation (26) we obtain

4Λ− 3Λ(3 + Λt2)− 10Λ2(5 + 3Λt2)F (−3Λ)

+
(
− 6Λ3(9Λ2t4 + 30Λt2 + 25)− 36Λ4t2)F ′(−3Λ) = 0. (28)

Similarly, the 00 component of EOM in Equation (27) becomes

3(1 + Λt2)2

4t2 −Λ + Λ(5 + 3Λt2)
( 3

2t2 +
5
2

Λ
)
F (−3Λ)

− 12Λ2F (−3Λ) +
1
2
(
3Λ3(9Λ2t4 + 30Λt2 + 25)− 36Λ4t2)F ′(−3Λ) = 0. (29)

Finally, the solution of equations of motion in Equations (13) and (14) requires constraints

F
(
− 3Λ

)
= − 1

10Λ
, F ′

(
− 3Λ

)
= 0 , Λ 6= 0, (30)

which are satisfied by nonlocal operator

F (2) = 2

30Λ2 exp
( 2

3Λ
+ 1
)

. (31)

From Equation (17) follows

ρ̄(t) =
3t−2 + 3Λ2t2 + 2Λ

32πG
, p̄(t) =

t−2 − 3Λ2t2 − 6Λ
32πG

. (32)

One can easily conclude that

w̄ =
t−2 − 3Λ2t2 − 6Λ

3t−2 + 3Λ2t2 + 2Λ
→
{
−1, t→ ∞
1
3 , t→ 0.

(33)

From Equation (33), we see that parameter w̄ behaves: (i) like 1/3 at early times as for the case of
radiation and (ii) like −1 as in the usual prediction for the late times acceleration with cosmological
constant Λ.

3.2. Cosmological Solution a(t) = A eΛt2
, k = 0

For this solution we have

ȧ(t) = a(t) 2Λt, ä(t) = a(t) 2Λ
(
2Λt2 + 1

)
, (34)

R(t) = 12Λ
(
4Λt2 + 1

)
, H(t) = 2Λt, (35)

R00 = −6Λ
(
1 + 2Λt2), G00 = 12Λ2t2. (36)

There are useful equalities:

2(R− 4Λ) = −12Λ(R− 4Λ), F (2)(R− 4Λ) = F (−12Λ)(R− 4Λ). (37)
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Using the equalities in Equation (37), the trace Equation (13) becomes

4Λ− R− 64Λ(R− 4Λ)F (−12Λ) +
(
− 24Λ(R− 4Λ)2 − Ṙ2)F ′(−12Λ) = 0. (38)

The 00 component of EOM in Equation (14) is as follows:

G00 −Λ + (R− 4Λ)F (−12Λ)(2R00 +
1
2

R + 22Λ)− 2F (−12Λ)R̈

+
1
2
(
12Λ(R− 4Λ)2 − Ṙ2)F ′(−12Λ) = 0. (39)

Substituting scalar curvature R in Equation (35) into the trace Equation (38) we obtain

4Λ− 12Λ(1 + 4Λt2)− 512Λ2(1 + 6Λt2)F (−12Λ)

+
(
− 1536Λ3(36Λ2t4 + 12Λt2 + 1)− 9216Λ4t2)F ′(−12Λ) = 0. (40)

Similarly, the 00 component of EOM in Equation (39) becomes

12Λ2t2 −Λ + 8Λ(1 + 6Λt2)
(
2(−12Λ2t2 − 6Λ) + 6Λ(1 + 4Λt2) + 22Λ

)
F (−12Λ)

− 2F (−12Λ)96Λ2 +
1
2
(
768Λ3(36Λ2t4 + 12Λt2 + 1)− 9216Λ4t2)F ′(−12Λ) = 0. (41)

To be satisfied, equations of motion in Equations (13) and (14) imply conditions

F
(
− 12Λ

)
= − 1

64Λ
, F ′

(
− 12Λ

)
= 0 , Λ 6= 0, (42)

that can be realized by

F (2) = 2

768Λ2 exp
( 2

12Λ
+ 1
)

. (43)

According to Equation (17) follows

ρ̄(t) =
Λ
(
12Λt2 − 1

)
8πG

, p̄(t) = −
3Λ
(
4Λt2 + 1

)
8πG

. (44)

The corresponding w̄ parameter is

w̄ =
−12Λt2 − 3
12Λt2 − 1

→
{
−1, t→ ∞

3, t→ 0.
(45)

3.3. Other Vacuum Solutions: R(t) = const

The above two cosmological solutions have scalar curvature R(t) dependent on time t. There are
also vacuum solutions with R = 4Λ that are the same as for Einstein’s equations of motion. Since 2(R−
4Λ) = 0, it is evident that such solutions satisfy equations of motion in Equations (13) and (14) without
conditions on function F (2).

In addition to the already mentioned Minkowski space, there is another solution with R(t) = 0:
Milne solution: a(t) = t, k = −1, Λ = 0, (c = 1).
From our analysis follows that there are no other exact power law solutions of the form a(t) = Atα

except this Milne one.
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4. Concluding Remarks

In this article, we have presented some exact cosmological solutions of nonlocal gravity model
without matter given by Equation (3). Two of these solutions are valid only if Λ 6= 0. The solutions
a(t) = A

√
te

Λ
4 t2

and a(t) = AeΛt2
are not contained in Einstein’s gravity with cosmological constant

Λ. The solution a(t) = A
√

te
Λ
4 t2

mimics interference between expansion with radiation a(t) = A
√

t
and a dark energy a(t) = Ae

Λ
4 t2

.
The solution a(t) = AeΛt2

is a nonsingular bounce one and an even function of cosmic time.
An exact cosmological solution of the type a(t) = AeαΛt2

, where α is a number, appears also at
least in the following two models of Equation (2): (1) P(R) = Q(R) = R [17] (see also [18]), and (2)
P(R) = Q(R) =

√
R− 2Λ [37]. It would be interesting to investigate other possible models with this

kind of solution.
With respect to the cosmological solutions a(t) = A

√
te

Λ
4 t2

and a(t) = AeΛt2
, the nonlocal

analytic operator F (2) is presented by Equations (31) and (43), respectively. Operator F (2) that takes
into account both solutions should have the form F (2) = a u

Λ exp(bu3 + cu2 + du), where a, b, c, d,
are some definite constants and u = 2/Λ is dimensionless operator. We do not introduce an additional
parameter like mass M.

According to our solutions a(t) = A
√

te
Λ
4 t2

and a(t) = At
2
3 e

Λ
14 t2

[37], it follows that effects of
the dark radiation (

√
t), the dark matter (t

2
3 ) and the dark energy (eαΛt2

) at the cosmic scale can be
generated by suitable nonlocal gravity models. These findings should play useful role in further
research concerning the universe evolution.
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