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Abstract: This paper aims to propose a new reckoning method for solving the split equality fixed point
problem of demicontractive operators in Hilbert spaces, and to establish a theorem with regard to the
strong convergence of this new scheme. As an application, we also consider quasi-pseudo-contractive
operators and obtain a result on the solution to the split equality fixed point problem in the framework
of Hilbert spaces. A numerical example is also provided.
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1. Introduction

Consider three Hilbert spaces, H1, H2, and H3, and two nonempty, closed, and convex
sets C ⊂ H1 and Q ⊂ H2. In addition, consider a bounded linear mapping A : H1 → H2,
and S : H1 → H1, T : H2 → H2 be mappings.

The split feasibility problem (SFP) appeared first in 1994, in a work of Censor and Elfving [1];
it refers to determining an element in the set

Γ = {x ∈ C : Ax ∈ Q} 6= ∅.

Subsequently, signal processing and the reconstruction of images have benefited by the development
of iterative methods for solving the SFP; see [2–4].

The split common fixed point problem (SCFP) appeared in a paper of Censor and Segal [5];
it refers to determining a point x satisfying

x ∈ F(S) so that Ax ∈ F(T), (1)

where the mappings S and T are nonlinear, and A is as above. Here, F(S) and F(T) are formed by
all the fixed points of S and T, respectively. It can be observed that the SFP can be obtained by an
adequate choice, namely considering orthogonal projections as operators S and T. In the recent years,
the reconstruction of images or the radio-therapy have used, as a beneficial tool, the SCFP (1) [6–14].
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In [5], in order to study the SCFP (1), the next reckoning algorithm was designed by Censor
and Segal. For x1 ∈ H1, define

xn+1 = S(xn − γA∗(I − T)Axn), n ∈ N,

where S and T are directed mappings, I is the identity operator on H2 and γ ∈ (0, 2/‖A‖2).
They also obtained a result concerning the weak convergence with regard to the SCFP (1).
Meanwhile, their statement was further developed to mappings endowed with properties such
as quasi-nonexpansiveness [7,15] or demicontractility [8], with the same weakly convergence of {xn}
to an element satisfying the SCFP (1).

Recently, Moudafi [16] has addressed the split equality fixed point problem (SEFP on short):

Determine x ∈ F(S), and y ∈ F(T) for which Ax = By, (2)

where A : H1 → H3 and B : H2 → H3 are characterized by boundedness and linearity, S and T are
characterized by firmly quasi-nonexpansiveness. (2)-type problems allow a symmetric and partial
relation with respect to both variables. The goal is the cover of a wide number of situations, such as
applications in game theory, decomposition methods for differential equations or radio-therapy. In the
case when B = I andH2 = H3, the SEFP (2) reduces to the SCFP (1).

In order to solve the SEFP (2), a simultaneous numerical method was proposed by Moudafi and
Al-Shemas [17]: {

xn+1 = S(xn − γnA∗(Axn −Byn)),
yn+1 = T(yn + γnB∗(Axn −Byn)), n ∈ N,

where the operators S and T are endowed with the firmly quasi-nonexpansiveness property, and
γk ∈ (ε, 2

λA+λB
− ε), and λA, λB symbolize the spectral radii of A∗A and B∗B, respectively.

In the above work, the step sizes relate to the norm ‖A‖ or the norm ‖B‖, which are generally not
easily computable in practice. To overcome this difficulty, variable step sizes which ultimately have
no relation with the norm are considered (see, e.g., [11,18–21]). Regarding their step sizes, Wang and
Xu [21] dealt with

τn =
ρn

‖xn − Sxn +A∗(I − T)Axn‖
, (3)

where ρn ≥ 0, n ∈ N, and

∞

∑
n=0

ρn = ∞ and
∞

∑
n=0

ρ2
n < ∞, (4)

and they proposed the following numerical formula to find a solution to the SCFP (1):

xn+1 = xn − τn(xn − Sxn +A∗(I − T)Axn), n ∈ N.

By imposing suitable hypotheses, they stated a weak convergence result. Obviously, the step sizes
chosen here are not based on the norm ‖A‖.

In 2018, Cui et al. [22] widened the result in [21] from nonexpansiveness to demicontractive
continuous operators under assumptions (3) and (4). Furthermore, they have used their result in
order to propose a solution to the SEFP with the following variable step size:

τn =
ρn

(‖xn − Sxn +A∗(Axn −Byn)‖2 + ‖yn − Tyn + B∗(Byn −Axn)‖2)
1
2

. (5)
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On the other hand, inspired by the work of Attouch [23], Moudafi [16] proposed a viscosity
approximation method for nonexpansive mappings to obtain strong results in Hilbert spaces.
This viscosity approximation method has been an object of study for many authors e.g., see [24–27].

In this paper, we consider a new reckoning scheme to determine a solution to the SEFP of
operators featuring the demicontractility, by using viscosity approximation methods in Hilbert spaces.
A result with respect to the strong convergence of this scheme is stated and proved. As an application,
we consider quasi pseudo-contractive operators and apply our result to solve the associated
SEFP problem.

2. Preliminaries

Along this work, we need a Hilbert space H with the scalar product 〈·, ·〉, and norm ‖ · ‖.
R designates the set of all real numbers. The strong (weak) convergence of a sequence from H to a
point inH, is designated by→ (⇀). Along the paper C ⊂ H is a nonempty, closed, convex set, T is an
operator defined on C intoH, and F(T) is the set of the fixed points of T.

In order to prove our main results, we recollect the following definitions.

Definition 1. A selfmapping T onH is called

(i) contractive if there can be found σ ∈ (0, 1) with the property

‖Ta− Tb‖ ≤ σ‖a− b‖, for all a, b ∈ H;

(ii) nonexpansive if
‖Ta− Tb‖ ≤ ‖a− b‖, for all a, b ∈ H;

(iii) quasi-nonexpansive if
‖Ta− c‖ ≤ ‖a− c‖, for all (a, c) ∈ H× F(T);

(iv) directed (firmly quasi-nonexpansive) if

‖Ta− c‖2 ≤ ‖a− c‖2 − ‖a− Ta‖2, for all (a, c) ∈ H× F(T);

(v) σ-demicontractive if there can be found a constant σ ∈ (−∞, 1) such that

‖Ta− c‖2 ≤ ‖a− c‖2 + σ‖a− Ta‖2, for all (a, c) ∈ H× F(T),

which is the same as

〈a− Ta, a− c〉 ≥ 1− σ

2
‖a− Ta‖2, for all (a, c) ∈ H× F(T); (6)

(vi) quasi-pseudo-contractive if

‖Ta− c‖2 ≤ ‖a− c‖2 + ‖a− Ta‖2, for all (a, c) ∈ H× F(T).

It can be observed that the class of operators endowed with demicontractility contains other
classes, for example those of quasi-nonexpansive mappings or directed mappings.

Remark 1. Every σ-demicontractive operator (σ ≤ 0) is characterized by quasi-nonexpansiveness. In addition,
every directed mapping is (−1)-demicontractive.

Example 1 ([28]; see Example 2.5). TakeH = l2 and T : l2 → l2, Tx = −kx, x ∈ l2, k > 1. Then, F(T) =
{0} and T is an operator endowed with the demicontractility property, but not with the quasi-nonexpansiveness.
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The orthogonal projection PC fromH onto C,

PCu := argminv∈C{‖u− v‖}, u ∈ H,

provides an example of a mapping endowed with firmly nonexpansiveness. It is known (please
see [29]) that PCu is characterized by the inequality

〈u− PCu, v− PCu〉 ≤ 0, v ∈ C.

Recollect that I − T is characterized by demiclosedness at 0 if for any {yn} ⊂ H and y∗ ∈ H,

yn ⇀ y∗

(I − T)yn → 0

}
⇒ y∗ = Ty∗.

If C ⊂ H is a nonempty, closed, and convex set, and T : C → H is nonexpansive, according
to [30], the operator I − T is demiclosed on C. Nevertheless, the same is not true if T features
quasi-nonexpansiveness instead of nonexpansiveness as the following example shows.

Example 2 ([28]; see Example 2.11). The operator

T : [0, 1]→ [0, 1], T x =

{
x
5 , x ∈ [0, 1

2 ],
x sin πx, x ∈ ( 1

2 , 1].

features the quasi-nonexpansiveness, but I − T is not characterized by the demiclosedness at 0.

T : H → H is called semi-compact if, for any bounded sequence {xn} ⊂ H with ‖xn − Txn‖ → 0,
there can be found {xni} ⊂ {xn} such that xni → x ∈ H.

In the following, we recollect some lemmas needed in our main results. The first one provides
conditions on which a sequence with adequate properties converges to zero.

Lemma 1. [31] Presume that an > 0, n ∈ N, such that

an+1 ≤ (1− γn)an + γn∆n + εn, n ≥ 0,

where {γn}⊂(0, 1) and {∆n} ⊂ R for which

(i) ∑∞
n=0 γn = ∞;

(ii) εn ≥ 0(n ≥ 0) and ∑∞
n=0 εn < ∞;

(iii) lim supn→∞ ∆n ≤ 0 or Σ∞
n=1γn|∆n| < ∞.

Then limn→∞ an = 0.

The next lemma recalls properties of a mapping which satisfies demicontractive properties.

Lemma 2 ([32]; see Proposition 2.1). Presume that T : C → C is a µ-demicontractive operator. Then, F(T)
is characterized by closedness and convexity.

Eventually, we also use the demiclosedness property of nonexpansive mappings.

Lemma 3 ([33]). If V : H → H is a nonexpansive operator, then I −V is characterized by demiclosedness at 0.

3. Main Results

Unless otherwise specified, in the sequel, we presume thatH1,H2, andH3 are real Hilbert spaces.
Here, S : H1 → H1 and T : H2 → H2 are demicontractive operators of constants β, µ ∈ (0, 1),
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respectively. Let f1 : H1 → H1 and f2 : H2 → H2 be two contractive operators with constants
α1, α2 ∈ (0, 1√

2
), respectively. Consider two operators A : H1 → H3 and B : H2 → H3 characterized

by boundedness and linearity, with their adjoints A∗ and B∗, respectively. Set γ = max{β, µ}
and α = max{α1, α2}.

Ω designates the set of the solutions to problem (2), more precisely

Ω = {(x, y) ∈ H1 ×H2 : x ∈ F(S), y ∈ F(T) and Ax = By}.

Presume that Ω 6= ∅. Denote byH∗ = H1 ×H2. We endow this set with the scalar product:

〈(x1, y1), (x2, y2)〉 = 〈x1, x2〉+ 〈y1, y2〉, for all (x1, y1), (x2, y2) ∈ H∗.

Observe thatH∗ can be organized as a real Hilbert space and

‖(x, y)‖ = (‖x‖2 + ‖y‖2)
1
2 , for all (x, y) ∈ H∗.

We propose the algorithm below to determine the solutions to problem (2).

Algorithm 1. Let x1 ∈ H1, and y1 ∈ H2 be arbitrarily given.

The algorithm becomes
Step 1. If

‖xn − Sxn +A∗(Axn −Byn)‖2 + ‖yn − Tyn + B∗(Byn −Axn)‖2 = 0,

then stop, and (xn, yn) fulfills problem (2); otherwise, move on to the next step.
Step 2. Define xn+1 and yn+1,{

xn+1 = αn f1(xn) + (1− αn)[xn − τn(xn − Sxn +A∗(Axn −Byn)],
yn+1 = αn f2(yn) + (1− αn)[yn − τn(yn − Tyn + B∗(Byn −Axn)],

where the step size τn is taken as in relation (5), and return to Step 1.

Lemma 4. (x∗, y∗) ∈ H1 ×H2 checks problem (2) if and only if

‖x∗ − Sx∗ +A∗(Ax∗ −By∗)‖2 + ‖y∗ − Ty∗ + B∗(By∗ −Ax∗)‖2 = 0. (7)

Proof. Suppose that (x∗, y∗) solves problem (2). Then, x∗ = Sx∗, y∗ = Ty∗ and Ax∗ = By∗. It is
obvious that ‖x∗ − Sx∗ +A∗(Ax∗ −By∗)‖2 + ‖y∗ − Ty∗ + B∗(By∗ −Ax∗)‖2 = 0.

To prove the converse statement, presume that (7) holds. Since S and T are demicontractive,
for any

(x, y) ∈ Ω, inequality (6) compels

〈x∗ − Sx∗, x∗ − x〉 ≥ 1− β

2
‖x∗ − Sx∗‖2, (8)

〈y∗ − Ty∗, y∗ − y〉 ≥ 1− µ

2
‖y∗ − Ty∗‖2. (9)

Taking advantage of inequalities (8) and (9), and Ax = By, we obtain
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0 = ‖x∗ − Sx∗ +A∗(Ax∗ −By∗)‖‖x∗ − x‖+ ‖y∗ − Ty∗ + B∗(By∗ −Ax∗)‖‖y∗ − y‖
≥ 〈x∗ − Sx∗ +A∗(Ax∗ −By∗), x∗ − x〉+ 〈y∗ − Ty∗ + B∗(By∗ −Ax∗), y∗ − y〉
= 〈x∗ − Sx∗, x∗ − x〉+ 〈Ax∗ −By∗,Ax∗ −Ax〉+ 〈y∗ − Ty∗, y∗ − y〉+ 〈By∗ −Ax∗,By∗ −By〉

≥ 1− β

2
‖x∗ − Sx∗‖2 +

1− µ

2
‖y∗ − Ty∗‖2 + ‖Ax∗ −By∗‖2,

which implies that x∗ ∈ F(S), y∗ ∈ F(T) and Ax∗ = By∗, completing the proof.

By Lemma 4, we may assume that Algorithm 1 produced, by and large, an infinite sequence {xn}.
If the algorithm requires only a finite number of iterations, a solution is obviously reached.

Lemma 5. Suppose {xn} and {yn} are sequences endowed with a boundedness property, and

lim
n→∞

‖xn − Sxn +A∗(Axn −Byn)‖ = lim
n→∞

‖yn − Tyn + B∗(Byn −Axn)‖ = 0.

Then, limn→∞ ‖xn − Sxn‖ = 0, limn→∞ ‖yn − Tyn‖ = 0, and limn→∞ ‖Axn −Byn‖ = 0.

Proof. Set zn = xn − Sxn +A∗(Axn −Byn), wn = yn − Tyn + B∗(Byn −Axn). For any (x∗, y∗) ∈ Ω,
by relation (6), we obtain

〈zn, xn − x∗〉+ 〈wn, yn − y∗〉
= 〈xn − Sxn, xn − x∗〉+ 〈Axn −Byn,Axn −Ax∗〉+ 〈yn − Tyn, yn − y∗〉+ 〈Byn −Axn,Byn −By∗〉

≥ 1− β

2
‖(I − S)xn‖2 +

1− µ

2
‖(I − T)yn‖2 + ‖Axn −Byn‖2.

Since ‖zn‖ → 0, ‖wn‖ → 0, the boundedness of {xn} and {yn} compels

1− β

2
‖(I − S)xn‖2 +

1− µ

2
‖(I − T)yn‖2 + ‖Axn −Byn‖2

≤ 〈zn, xn − x∗〉+ 〈wn, yn − y∗〉 ≤ ‖zn‖‖xn − x∗‖+ ‖wn‖‖yn − y∗‖ → 0.

Due to the fact that β, µ ∈ (0, 1), the conclusion has been proved.

The next theorem refers to the strong convergence of the scheme designed previously; it links it
also to a variational inequality.

Theorem 1. Let {αn} ⊆ (0, 1) and {ρn} ⊆ (0,+∞) be two sequences. Assume that the following conditions
are satisfied:

(a) I − S and I − T are demiclosed at 0;
(b) ∑∞

n=1 ρ2
n < ∞;

(c) limn→∞ αn = 0 and ∑∞
n=0 αn = ∞;

(d) limn→∞
αn
ρn

= 0.

Then, {(xn, yn)} in Algorithm 1 is strongly convergent to (x∗, y∗) ∈ Ω, the unique solution to the
following variational inequality problem (VIP):

〈((I − f1)x∗, (I − f2)y∗), (x, y)− (x∗, y∗)〉 ≥ 0, for all (x, y) ∈ Ω. (10)

Proof. Lemma 2 ensures the closedness and convexity of F(S) and F(T). The boundedness and
linearity of the operators A and B imply the closedness and the convexity of Ω. Similarly to Step 1 in
the proof of Theorem 3.3 in [34], the uniqueness of the solution to the VIP (10) follows; denote this
solution by (x∗, y∗) ∈ Ω.

Next, we have divided the proof into two stages.
Step 1. We prove that the boundedness characterizes the sequence {(xn, yn)}.
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Set zn = xn − Sxn + B∗(Axn − Byn), wn = yn − Tyn + B∗(Byn − Axn), pn = xn − τnzn, and
qn = yn − τnwn. Since (x∗, y∗) ∈ Ω, by (6), we obtain

〈zn, xn − x∗〉+ 〈wn, yn − y∗〉
= 〈xn − Sxn, xn − x∗〉+ 〈Axn −Byn,Axn −Ax∗〉+ 〈yn − Tyn, yn − y∗〉+ 〈Byn −Axn,Byn −By∗〉

≥ 1− β

2
‖xn − Sxn‖2 +

1− µ

2
‖yn − Tyn‖2 + ‖Axn −Byn‖2

≥ 1− γ

2
‖xn − Sxn‖2 +

1− γ

2
‖yn − Tyn‖2

+
1

2‖A∗‖2 ‖A
∗(Axn −Byn)‖2 +

1
2‖B∗‖2 ‖B

∗(Axn −Byn)‖2

≥ 1
2

min{1− γ,
1

max{‖A∗‖2, ‖B∗‖2} }(‖xn − Sxn‖2 + ‖yn − Tyn‖2

+‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2)

≥ 1
4

min{1− γ,
1

max{‖A∗‖2, ‖B∗‖2} }(‖xn − Sxn +A∗(Axn −Byn)‖2

+‖yn − Tyn + B∗(Axn −Byn)‖2)

= τ(‖zn‖2 + ‖wn‖2), (11)

where τ = 1
4 min

{
1− γ, 1

max{‖A∗‖2,‖B∗‖2}
}

.

Denote by sn = ‖xn − x∗‖2 + ‖yn − y∗‖2. From (5), we have ρn = τn(‖zn‖2 + ‖wn‖2)
1
2 . Then, relation (11)

leads us to

‖pn − x∗‖2 + ‖qn − y∗‖2 = ‖xn − x∗ − τnzn‖2 + ‖yn − y∗ − τnwn‖2

= ‖xn − x∗‖2 + ‖yn − y∗‖2 + τ2
n (‖zn‖2 + ‖wn‖2)

−2τn(〈zn, xn − x∗〉+ 〈wn, yn − y∗〉)
≤ sn − 2ττn(‖zn‖2 + ‖wn‖2) + τ2

n (‖zn‖2 + ‖wn‖2)

= sn − 2τρn(‖zn‖2 + ‖wn‖2)
1
2 + ρ2

n (12)

≤ sn + ρ2
n. (13)

According to Algorithm 1, it follows

‖xn+1 − x∗‖2 ≤ (αn‖ f1(xn)− x∗‖+ (1− αn)‖pn − x∗‖)2

= α2
n‖ f1(xn)− x∗‖2 + (1− αn)

2‖pn − x∗‖2+2αn(1− αn)‖ f1(xn)− x∗‖‖pn − x∗‖
≤ α2

n‖ f1(xn)− x∗‖2 + (1− αn)
2‖pn − x∗‖2+αn(1− αn)(‖ f1(xn)− x∗‖2 + ‖pn − x∗‖2)

= αn‖ f1(xn)− x∗‖2 + (1− αn)‖pn − x∗‖2

≤ αn(‖ f1(xn)− f1(x∗)‖+ ‖ f1(x∗)− x∗‖)2 + (1− αn)‖pn − x∗‖2

≤ 2αn(α
2‖xn − x∗‖2 + ‖ f1(x∗)− x∗‖2) + (1− αn)‖pn − x∗‖2. (14)

Analogously, we have

‖yn+1 − y∗‖2 ≤ 2αn(α
2‖yn − y∗‖2 + ‖ f2(y∗)− y∗‖2) + (1− αn)‖qn − y∗‖2. (15)

Relations (13)–(15) compel

sn+1 ≤ 2α2αnsn + 2αn(‖ f1(x∗)− x∗‖2 + ‖ f2(y∗)− y∗‖2) + (1− αn)(‖pn − x∗‖2 + ‖qn − y∗‖2)

≤ 2α2αnsn + 2αn(‖ f1(x∗)− x∗‖2 + ‖ f2(y∗)− y∗‖2) + (1− αn)(sn + ρ2
n)

≤ [1− (1− 2α2)αn]sn + ρ2
n

+(1− 2α2)αn
2(‖ f1(x∗)− x∗‖2 + ‖ f2(y∗)− y∗‖2)

1− 2α2 .

Mathematical induction ensures us that the next inequality holds true



Symmetry 2020, 12, 902 8 of 14

sn+1 ≤ max{s1,
2(‖ f1(x∗)− x∗‖2 + ‖ f2(y∗)− y∗‖2)

1− 2α2 }+
n

∑
i=1

ρ2
i .

Taking also into account condition (b) of the theorem, we get that {sn} is bounded, so do {(xn, yn)}, {xn}, {yn}.
Relation (11) implies the boundedness of {zn} and {wn}.

Step 2. We prove now the strong convergence of {(xn, yn)} to (x∗, y∗).
In fact, since f1 and f2 are contractions, the next relations hold true:

2〈 f1(xn)− x∗, pn − x∗〉+ 2〈 f2(yn)− y∗, qn − y∗〉
≤ 2α‖xn − x∗‖‖pn − x∗‖+ 2α‖yn − y∗‖‖qn − y∗‖

+2〈 f1(x∗)− x∗, pn − x∗〉+ 2〈 f2(y∗)− y∗, qn − y∗〉
≤ α2sn + ‖pn − x∗‖2 + ‖qn − y∗‖2 + 2(〈 f1(x∗)− x∗, pn − x∗〉+ 〈 f2(y∗)− y∗, qn − y∗〉). (16)

Algorithm 1, (12) and (16) lead us to

sn+1 = ‖(1− αn)(pn − x∗) + αn( f1(xn)− x∗)‖2 + ‖(1− αn)(qn − y∗) + αn( f2(yn)− y∗)‖2

= (1− αn)
2(‖pn − x∗‖2 + ‖qn − y∗‖2) + α2

n(‖ f1(x∗)− x∗‖2 + ‖ f2(y∗)− y∗‖2)

+2αn(1− αn)(〈 f1(xn)− x∗, pn − x∗〉+ 〈 f2(yn)− y∗, qn − y∗〉)
≤ (1− αn)

2(‖pn − x∗‖2 + ‖qn − y∗‖2) + α2
n(‖ f1(x∗)− x∗‖2 + ‖ f2(y∗)− y∗‖2)

+αn(1− αn)[α
2sn + ‖pn − x∗‖2 + ‖qn − y∗‖2

+2(〈 f1(x∗)− x∗, pn − x∗〉+ 〈 f2(y∗)− y∗, qn − y∗〉)]
= (1− αn)(‖pn − x∗‖2 + ‖qn − y∗‖2) + αn(1− αn)α

2sn + α2
n M

+2αn(1− αn)(〈 f1(x∗)− x∗, pn − x∗〉+ 〈 f2(y∗)− y∗, qn − y∗〉)

≤ (1− αn)(sn − 2τρn(‖zn‖2 + ‖wn‖2)
1
2 + ρ2

n) + αn(1− αn)α
2sn + α2

n M

+2αn(1− αn)(〈 f1(x∗)− x∗, pn − x∗〉+ 〈 f2(y∗)− y∗, qn − y∗〉)
≤ [1− αn(1− (1− αn)α

2)]sn + ρ2
n + αn(1− (1− αn)α

2) ·[ 2(1− αn)

1− (1− αn)α2 (〈 f1(x∗)− x∗, pn − x∗〉+ 〈 f2(y∗)− y∗, qn − y∗〉)

− 2τ(1− αn)

1− (1− αn)α2
ρn

αn
(‖zn‖2 + ‖wn‖2)

1
2 +

αn M
1− (1− αn)α2

]
= [1− αn(1− (1− αn)α

2)]sn + αn(1− (1− αn)α
2)bn + ρ2

n, (17)

where

M = ‖ f1(x∗)− x∗‖2 + ‖ f2(y∗)− y∗‖2,

bn =
2(1− αn)

1− (1− αn)α2 (〈 f1(x∗)− x∗, pn − x∗〉+ 〈 f2(y∗)− y∗, qn − y∗〉)

− 2τ(1− αn)

1− (1− αn)α2
ρn

αn
(‖zn‖2 + ‖wn‖2)

1
2 +

αn M
1− (1− αn)α2 .

From condition (b), we get that

‖pn − xn‖ = ‖τnzn‖ ≤ τn(‖zn‖2 + ‖wn‖2)
1
2 = ρn → 0,

‖qn − yn‖ = ‖τnwn‖ ≤ τn(‖zn‖2 + ‖wn‖2)
1
2 = ρn → 0.

Since {sn} is bounded, from (13) and condition (b), it follows that {pn} and {qn} are bounded. Hence,
{bn} is bounded from above, that is, lim supn→∞ bn is finite. By consequence, there can be found a subsequence
{nk} ⊆ {n} such that
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lim sup
n→∞

bn = lim
k→∞

bnk = lim
k→∞

[ 2(1− αnk )

1− (1− αnk )α
2 (〈 f1(x∗)− x∗, pnk − xnk + xnk − x∗〉

+〈 f2(y∗)− y∗, qnk − ynk + ynk − y∗〉)

− 2τ(1− αnk )

1− (1− αnk )α
2

ρnk

αnk

(‖znk‖2 + ‖wnk‖2)
1
2 +

αnk M
1− (1− αnk )α

2

]
= lim

k→∞

[ 2(1− αnk )

1− (1− αnk )α
2 (〈 f1(x∗)− x∗, xnk − x∗〉+ 〈 f2(y∗)− y∗, ynk − y∗〉)

− 2τ(1− αnk )

1− (1− αnk )α
2

ρnk

αnk

(‖znk‖2 + ‖wnk‖2)
1
2

]
(18)

The boundedness of {(xn, yn)} allows us to assume, with no loss of generality, that {(xnk , ynk )} is weakly
convergent to (x̂, ŷ). It follows that

lim
k→∞

(〈 f1(x∗)− x∗, xnk − x∗〉+ 〈 f2(y∗)− y∗, ynk − y∗〉)

= 〈 f1(x∗)− x∗, x̂− x∗〉+ 〈 f2(y∗)− y∗, ŷ− y∗〉. (19)

It follows from (18) and (19), and αn → 0 that

lim
k→∞

ρnk

αnk

(‖znk‖2 + ‖wnk‖2)
1
2

exists in R. Hence, condition (d) implies

(‖znk‖2 + ‖wnk‖2)
1
2 =

αnk

ρnk

ρnk

αnk

(‖znk‖2 + ‖wnk‖2)
1
2 → 0,

that is,

lim
k→∞
‖znk‖ = lim

k→∞
‖wnk‖ = 0. (20)

Equalities (20) and Lemma 5 lead to

lim
k→∞
‖xnk − Sxnk‖ = lim

k→∞
‖ynk − Tynk‖ = 0, (21)

lim
k→∞
‖Axnk −Bynk‖ = 0. (22)

Since xnk ⇀ x̂, ynk ⇀ ŷ, from condition (a) and (21), we obtain that x̂ ∈ F(S) and ŷ ∈ F(T). Since the
boundedness and linearity characterize the operators A and B, we have Axnk − Bynk ⇀ Ax̂ − Bŷ. Taking
advantage of the semicontinuity which characterizes the norm and of (22), we obtain

‖Ax̂−Bŷ‖ ≤ lim inf
k→∞

‖Axnk −Bynk‖ = 0.

Thus, (x̂, ŷ) ∈ Ω. Then, by αn → 0, (10), (18), and (19), we obtain

lim sup
n→∞

bn ≤ 2
1− α2 lim

k→∞
(〈 f1(x∗)− x∗, xnk − x∗〉+ 〈 f2(y∗)− y∗, ynk − y∗〉)

=
2

1− α2 (〈 f1(x∗)− x∗, x̂− x∗〉+ 〈 f2(y∗)− y∗, ŷ− y∗〉)

=
2

1− α2 〈((I − f1)x∗, (I − f2)y∗), (x∗, y∗)− (x̂, ŷ)〉 ≤ 0. (23)

By the use of (17) and (23), condition (b), and Lemma 1, it follows that sn → 0, so {(xn, yn)} is strongly convergent
to (x∗, y∗).

Remark 2. Theorem 1 enlarges ([21], Theorem 3.1) on the following issues:

(I) The split common fixed point problem is generalized to the SEFP problem; the nonexpansive mappings are
extended to the demicontractive operators;

(II) The weak convergence in ([21], Theorem 3.1) is extended to the strong convergence.
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4. Numerical Example

In order to illustrate the usability of the algorithm of Theorem 1, we consider the following
example in (R, | · |).

Example 3 (Numerical Example). LetH1 = H2 = H3 = R. Let f1, f2 : R→ R, f1(x) = f2(x) = 1
2 sin x.

Let A, B : R → R, Ax = Bx = −x. Let S, T : R → R, Sx = −2x and Tx = −3x, respectively.
Let {(xn, yn)} be the sequence generated iteratively by Algorithm 1, where αn = 1

n , ρn = 1

n
3
4

, n ≥ 1. Then,

{(xn, yn)} is strongly convergent to (0,0).

Solution: For any x, y ∈ R, define A∗x = −x and B∗y = −y. Example 1 ensures that
F(S) = F(T) = {0} and A0 = 0 = B0. Obviously, Ω = {(0, 0)} 6= ∅. I − S and I − T are
characterized by demiclosedness at 0. All the assumptions of Theorem 1 are accomplished.

Algorithm 1 becomes, in this case,{
xn+1 = 1

2n sin xn + (1− 1
n )[xn − τn(4xn − yn)],

yn+1 = 1
2n sin yn + (1− 1

n )[yn − τn(5yn − xn)],
(24)

where the step size τn is as follows:

τn =
1

n
3
4 (|4xn − yn|2 + |5yn − xn|2)1/2

.

By using scheme (24), we obtained the numerical results in Table 1. Figure 1 also illustrates the
usefulness of Theorem 1.

Figure 1. The convergence of {(xn, yn)} with initial values (0.3,0.1).

Table 1. The convergence of {(xn, yn)} with initial values (0.3,0.1).

n xn yn

1 0.300000000000000 0.100000000000000
2 0.147760103330670 0.049916708323414
3 −0.181488306475344 −0.017546156041863
4 0.138858140885285 −0.052994167458393
5 −0.099484842363747 0.100270304873921
... ... ...
197 0.004448866036788 −0.007198416659655
198 −0.005472189665092 0.008854189036970
199 0.004414260565043 −0.007142423823788
200 −0.005432678586300 0.008790258763243
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5. Application

In this section, Theorem 1 will be applied to the study of the SEFP problem in the case of quasi
pseudo-contractive operators, a more general class than the class of demicontractive mappings in
Hilbert spaces.

In 2015, the following iterative method for solving the SEFP (2) was taken into consideration by
Chang et al. [35]:

un = xn − γnA∗(Axn −Byn),
xn+1 = αnxn + (1− αn)((1− ξ)I + ξS((1− η)I + ηS))un,
vn = yn + γnB∗(Axn −Byn),
yn+1 = αnyn + (1− αn)((1− ξ)I + ξT((1− η)I + ηT))vn,

(25)

where S and T are quasi-pseudocontractive, and γn ∈
(

0, min
{

1
‖A‖2 , 1

‖B‖2

})
. Furthermore, the

weak convergence of the sequence generated by (25) to a solution to the SEFP (2) under some mild
assumptions was proved. If S and T are both semi-compact, they obtained a strong convergence result.

Consider the next hypotheses:
(A1) Let S and T be two L−Lipschitzian quasi-pseudo-contractive mappings with L > 1;
(A2) Let 0 < ξ < η < 1

1+
√

1+L2 . Consider the mappings K and W,

{
K = (1− ξ)I + ξS((1− η)I + ηS),
W = (1− ξ)I + ξT((1− η)I + ηT).

Algorithm 2. Let x1 ∈ H1, y1 ∈ H2 be arbitrarily given.

The algorithm becomes
Step 1. If

‖xn − Kxn +A∗(Axn −Byn)‖2 + ‖yn −Wyn + B∗(Byn −Axn)‖2 = 0,

then stop, and (xn, yn) is a solution to (2); if not, move on to the next step.
Step 2. Define xn+1 and yn+1,{

xn+1 = αn f1(xn) + (1− αn)[xn − τn(xn − Kxn +A∗(Axn −Byn)],
yn+1 = αn f2(yn) + (1− αn)[yn − τn(yn −Wyn + B∗(Byn −Axn)],

where the step size τn is chosen as follows:

τn =
ρn

(‖xn − Kxn +A∗(Axn −Byn)‖2 + ‖yn −Wyn + B∗(Byn −Axn)‖2)
1
2

, (26)

and return to Step 1.

We need the following lemma which helps us to prove our result.

Lemma 6. [35] LetH be a real Hilbert space and T be a Lipschitzian mapping with L ≥ 1. Denote by

K = (1− ξ)I + ξT((1− η)I + ηT),

where 0 < ξ < η < 1
1+
√

1+L2 . The next statements hold true:

(1) F(T) = F(T((1− η)I + ηT)) = F(K).
(2) If I − T is demiclosed at 0, then so is I − K.



Symmetry 2020, 12, 902 12 of 14

(3) Additionally, if T is quasi-pseudo-contractive, K is quasi-nonexpansive.

The next theorem proves that the algorithm is strongly convergent to the solution to a variational
inequality.

Theorem 2. Let H1,H2,H3 be three real Hilbert spaces. Assume that A, B, f1, f2, Ω are the same as in
Theorem 1, and assumptions (A1) and (A2) hold. If the following conditions are satisfied:

(a) I − S and I − T are demiclosed at 0;
(b) ∑∞

n=0 ρ2
n < ∞;

(c) limn→∞ αn = 0 and ∑∞
n=0 αn = ∞;

(d) limn→∞
αn
ρn

= 0,

then {(xn, yn)} generated by Algorithm 2 converges strongly to the unique solution to problem (10).

Proof. By Lemma 6 and the conditions imposed here, we obtain that I−K and I−W are endowed with
demiclosedness at 0, and K and W are quasi-nonexpansive. Therefore, K and W are demicontractive.
It follows from Theorem 1 that the conclusion holds.

6. Conclusions

Along this work, we study the SEFP (2), a generalization of the SCFP (1). With the purpose of
obtaining a strong convergence result, a new numerical scheme was introduced, combining viscosity
approximation methodologies for the SEFP (2) of adequate operators in Hilbert spaces. Meanwhile,
we applied our main result to the SEFP (2) of quasi pseudo-contractive mappings. We would like to
note the following:

(1) Theorem 1 mainly enlarge the ones in ([21], Theorem 3.1) and ([22], Theorem 14) from the
following issues: (i) we extend the weak convergence result ([21], Theorem 3.1) for the
SCFP (1) involving nonexpansive mappings to the strong convergent result for the SEFP (2)
involving demicontractive operators; we improve and extend the weak convergence result ([22],
Theorem 14) to the strong convergence result and remove the Lipschitz continuous conditions of
the operators S and T; the proof of the strong convergence in Theorem 1 is different from the
technique used to prove the weak convergence used in ([21], Theorem 3.1) and ([22], Theorem 14)
because we use viscosity approximation methods.

(2) Theorem 2 improves and extends ([35], Theorem 3.2) from the following points of view:
(i) we remove the conditions of semi-compactness on the operators S and T, and still
obtain a strong convergence result by using viscosity approximation methods; (ii) the choice
{γn} ∈ (0, min{ 1

‖A‖2 , 1
‖B‖2 }) in proving the convergence of Algorithm 3.1 in [35] requires the

computation of the related operator norms, which is a complicated task to be accomplished.
Thus, our choice (26) of the step sizes is more efficient and desirable.

(3) We give a numerical example to demonstrate the usefulness and convergence of our algorithm.
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