# Comments on the Paper “Lie Symmetry Analysis, Explicit Solutions, and Conservation Laws of a Spatially Two-Dimensional Burgers–Huxley Equation”

## Abstract

**:**

**2020**, vol.12, 170), in which several results are either incorrect, or incomplete, or misleading.

## 1. Introduction

## 2. Lie Symmetries, Optimal Subalgebras and Exact Solutions

**Remark**

**1.**

**Remark**

**2.**

**Remark**

**3.**

## 3. Discussion

## Funding

## Conflicts of Interest

## References

- Hussain, A.; Bano, S.; Khan, I.; Baleanu, D.; Sooppy Nisar, K. Lie Symmetry Analysis, Explicit Solutions and Conservation Laws of a Spatially Two-Dimensional Burgers–Huxley Equation. Symmery
**2020**, 12, 170. [Google Scholar] [CrossRef][Green Version] - Fitzhugh, R. Impulse and physiological states in models of nerve membrane. Biophys. J.
**1961**, 1, 445–466. [Google Scholar] [CrossRef][Green Version] - Nagumo, J.S.; Arimoto, S.; Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE
**1962**, 50, 2061–2071. [Google Scholar] [CrossRef] - Nucci, M.C.; Clarkson, P.A. The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh-Nagumo equation. Phys. Lett. A
**1992**, 164, 49–56. [Google Scholar] [CrossRef] - Chen, Z.-X.; Guo, B.-Y. Analytic solutions of the Nagumo equation. IMA J. Appl. Math.
**1992**, 48, 107–115. [Google Scholar] - Arrigo, D.J.; Hill, J.M.; Broadbridge, P. Nonclassical symmetries reductions of the linear diffusion equation with a nonlinear source. IMA J. Appl. Math.
**1994**, 52, 1–24. [Google Scholar] [CrossRef] - Cherniha, R.; Serov, M.; Pliukhin, O. Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications; Chapman and Hall/CRC: New York, NY, USA, 2018. [Google Scholar]
- Pathera, J.; Winternitz, P. Subalgebras of real three- and four-diensional Lie algebras. J. Math. Phys.
**1977**, 18, 1449–1455. [Google Scholar] [CrossRef] - Fokas, A.S.; Liu, Q.M. Generalized conditional symmetries and exact solutions of nonitegrable equations. Theor. Math. Phys.
**1994**, 99, 571–582. [Google Scholar] [CrossRef] - Cherniha, R. New Q-conditional symmetries and exact solutions of some reaction-diffusion-convection equations arising in mathematical biology. J. Math. Anal. Appl.
**2007**, 326, 783–799. [Google Scholar] [CrossRef][Green Version] - Kawahara, T.; Tanaka, M. Interactions of traveling fronts: An exact solution of a nonlinear diffusion equation. Phys. Lett. A
**1983**, 97, 311–314. [Google Scholar] [CrossRef] - Ma, W.X.; Fuchssteiner, B. Explicit and exact solutions of a Kolmogorov-Petrovskii-Piskunov equation. Int. J. Nonlinear Mech.
**1996**, 31, 329–338. [Google Scholar] [CrossRef][Green Version] - Polyanin, A.D.; Zaitsev, V.F. Handbook of Exact Solutions for Ordinary Differential Equations; CRC Press Company: London, UK, 2003. [Google Scholar]
- Edwards, M.P.; Broadbridge, P. Exceptional symmetry reductions of Burgers’ equation in two and three spatial dimensions. Z. Angew. Math. Phys. ZAMP
**1995**, 46, 595–622. [Google Scholar] [CrossRef] - Cherniha, R.; Serov, M.; Prystavka, Y. A complete Lie symmetry classification of a class of (1+2)-dimensional reaction-diffusion-convection equations. arXiv
**2020**, arXiv:2004.10434. [Google Scholar] - Cherniha, R.; Kovalenko, S. Lie symmetries and reductions of multidimensional boundary value problems of the Stefan type. J. Phys. A Math. Theor.
**2011**, 44, 485202. [Google Scholar] [CrossRef] - Fedorchuk, V.; Fedorchuk, V. Classification and Symmetry Reductions for the Eikonal Equation; Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, NAS of Ukraine: Lviv, Ukraine, 2018. [Google Scholar]
- Cherniha, R.; Davydovych, V. Nonlinear Reaction-Diffusion Systems—Conditional Symmetry, Exact Solutions and Their Applications in Biology; Lecture Notes in Math. 2196; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Qu, C. Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source. Stud. Appl. Math.
**1997**, 99, 107–136. [Google Scholar] [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cherniha, R.
Comments on the Paper “Lie Symmetry Analysis, Explicit Solutions, and Conservation Laws of a Spatially Two-Dimensional Burgers–Huxley Equation”. *Symmetry* **2020**, *12*, 900.
https://doi.org/10.3390/sym12060900

**AMA Style**

Cherniha R.
Comments on the Paper “Lie Symmetry Analysis, Explicit Solutions, and Conservation Laws of a Spatially Two-Dimensional Burgers–Huxley Equation”. *Symmetry*. 2020; 12(6):900.
https://doi.org/10.3390/sym12060900

**Chicago/Turabian Style**

Cherniha, Roman.
2020. "Comments on the Paper “Lie Symmetry Analysis, Explicit Solutions, and Conservation Laws of a Spatially Two-Dimensional Burgers–Huxley Equation”" *Symmetry* 12, no. 6: 900.
https://doi.org/10.3390/sym12060900