# Forms of the Symmetry Energy Relevant to Neutron Stars

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

^{208}Pb [2], frequency of isovector giant dipole resonance in

^{208}Pb, isospin diffusion in heavy ion reactions, excitation energies of isobaric analog states, isoscaling of fragments from intermediate energy heavy-ion collisions used in ground-based experiments to obtain data that allow constraining the symmetry energy below and in the vicinity of the saturation point ${n}_{0}$. Analysis of these data led to relatively consistent results for the form of the symmetry energy for sub-saturation densities [3,4]. Heavy-ion collisions (HICs) represent a class of experiments that allow one to study dense nuclear matter under conditions changing in a controlled manner. Although the experimental creation and then the analysis of nuclear matter in a wide temperature, density, and neutron-proton asymmetry range become feasible, the results strongly depend on the achievable composition of projectile and target nuclei and the energy of beams. Recent investigations of the asymmetric nuclear matter mostly focused on the symmetry energy. Nevertheless, the symmetry energy is still unconstrained for densities higher then the saturation density. This applies to both the experimental and theoretical aspects of this issue. The direct measurement of the symmetry energy is not possible, and therefore, many theoretical assumptions are necessary for the interpretation of the experimental data. The basic problem that influences the interpretation of the existing data is the fact that HICs are highly non-equilibrium processes, and their analysis necessarily involves a transport model. Another problem is the identification of observables sensitive to the symmetry energy in the presence of many uncertainties including those introduced by transport models. Analyses based on the theory of transport suggest using isospin ratio observables for extracting information about the symmetry energy [5,6]. The measurements of the observables in question are conditional on the energies achievable during experiments. The choice of observables suitable for obtaining information on the properties of asymmetric nuclear matter in the high-density range is connected with the phenomena of collective flows and meson production. The upper limit of the density that can be achieved in central heavy-ion collisions at beam energies of several hundred MeV per nucleon in the range $2\xf73\phantom{\rule{4pt}{0ex}}{n}_{0}$ [7]. A description of collisions during subsequent phases of the system evolution is carried out based on the transport model, which typically uses the power-law function that represents the symmetry energy dependence on density. The potential part of the symmetry energy has the form:

## 2. Symmetry Energy: The Taylor Series

- the binding energy at saturation density ${n}_{0}$: $E({n}_{0},0)$
- the symmetry energy ${E}_{2,sym}\left({n}_{b}\right)$ with the symmetry energy coefficient ${E}_{2,sym}\left({n}_{0}\right)$
- the slope of the symmetry energy ${E}_{2,sym}$: $L=3{n}_{0}\frac{d{E}_{2,sym}}{d{n}_{b}}\left({n}_{0}\right)$
- the incompressibility of symmetric nuclear matter $E({n}_{b},0)$: ${K}_{0}=9{n}_{0}^{2}\frac{{d}^{2}E({n}_{b},0)}{d{n}_{b}^{2}}\left({n}_{0}\right)$
- the curvature of the symmetry energy: ${K}_{sym}=9{n}_{0}^{2}\frac{{d}^{2}{E}_{2,sym}\left({n}_{b}\right)}{d{n}_{b}^{2}}\left({n}_{0}\right)$.

## 3. Symmetry Energy: The Padé Approximation

## 4. Isospin-Sensitive Properties of Neutron Stars

## 5. The Formalism

#### 5.1. Nuclear Matter

#### 5.2. Matter of a Neutron Star

## 6. Results

#### 6.1. The Effect of the Symmetry Energy for Neutron Star Matter

#### 6.2. The Effect of the Approximation Method for Neutron Star Matter

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Danielewicz, P.; Lacey, R.; Lynch, W.G. Determination of the equation of state of dense matter. Science
**2002**, 298, 1592–1619. [Google Scholar] [CrossRef] [PubMed][Green Version] - Tonchev, A.P.; Tsoneva, N.; Bhatia, C.; Arnold, C.W.; Goriely, S.; Hammond, S.L.; Kelley, J.H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; et al. Pygmy and core polarization dipole modes in
^{206}Pb: Connecting nuclear structure to stellar nucleosynthesis. Phys. Lett. B**2017**, 773, 20–25. [Google Scholar] [CrossRef] - Horowitz, C.J.; Brown, E.F.; Kim, Y.; Lynch, W.G.; Michaels, R.; Ono, A.; Piekarewicz, J.; Tsang, M.B.; Wolter, H.H. A way forward in the study of the symmetry energy: Experiment, theory, and observation. J. Phys. G Nucl. Part. Phys.
**2014**, 41, 093001–093019. [Google Scholar] [CrossRef] - Baran, V.; Colonna, M.; Greco, V. Reaction dynamics with exotic beams. Phys. Rep.
**2005**, 410, 335–466. [Google Scholar] [CrossRef][Green Version] - Zhang, Y.; Danielewicz, P.; Famiano, M.; Li, Z.; Lynch, W.G.; Tsang, M.B. The influence of cluster emission and the symmetry energy on neutron-proton spectral double ratios. Phys. Lett. B
**2008**, 664, 145–148. [Google Scholar] [CrossRef][Green Version] - Zielinska-Pfabe, M. The density dependence of the nuclear symmetry energy in heavy ion collisions. Acta Phys. Pol. B
**2017**, 10, 153–164. [Google Scholar] [CrossRef] - Russotto, P.; Gannon, S.; Lasko, P.; Acosta, L.; Adamczyk, M.; Al-Ajlan, A.; Al-Garawi, M.; Al-Homaidhi, S.; Amorini, F.; Auditore, L.; et al. Results of the ASY-EOS experiment at GSI: The symmetry energy at suprasaturation density. Phys. Rev. C
**2016**, 94, 034608–034632. [Google Scholar] [CrossRef][Green Version] - Li, Q.; Li, Z.; Soff, S.; Bleicher, M.; Stoecker, H. Probing the equation of state with pions. J. Phys. G Nucl. Part. Phys.
**2006**, 32, 151–164. [Google Scholar] [CrossRef] - Li, Q.; Li, Z.; Soff, S.; Bleicher, M.; Stoecker, H. Medium modifications of the nucleon–nucleon elastic cross section in neutron-rich intermediate energy HICs. J. Phys. G Nucl. Part. Phys.
**2006**, 32, 407–416. [Google Scholar] [CrossRef][Green Version] - Leifels, Y.; Blaich, T.; Elze, T.W.; Emling, H.; Freiesleben, H.; Grimm, K.; Henning, W.; Holzmann, R.; Keller, J.G.; Klingler, H.; et al. (FOPI Collaboration). Exclusive studies of neutron and charged particle emission in collisions of
^{197}Au+^{197}Au at 400 MeV/nucleon. Phys. Rev. Lett.**1993**, 71, 963–966. [Google Scholar] [CrossRef] - Lambrecht, D.; Blaich, T.; Elze, T.W.; Emling, H.; Freiesleben, H.; Grimm, K.; Henning, W.; Holzmann, R.; Keller, J.G.; Klingler, H.; et al. Energy dependence of collective flow of neutrons and protons in
^{197}Au+^{197}Au collisions. Z. Phys. A**1994**, 350, 115–120. [Google Scholar] [CrossRef] - Gandolfi, S.; Lippuner, J.; Steiner, A.W.; Tews, I.; Du, X.; Al-Mamun, M. From the microscopic to the macroscopic world: From nucleons to neutro stars. J. Phys. G Nucl. Part. Phys.
**2019**, 46, 21. [Google Scholar] [CrossRef][Green Version] - Li, B.A.; Krastev, P.G.; Wen, D.H.; Zhang, N.B. Towards understanding astrophysical effects of nuclear symmetry energy. Euro. Phys. J. A
**2019**, 55, 117–193. [Google Scholar] [CrossRef][Green Version] - Heinke, C.O.; Jonker, P.G.; Wijnands, R.R.; Taam, R.E. Constraints on Thermal X-Ray Radiation from SAX J1808.4–3658 and Implications for Neutron Star Neutrino Emission. Astrophys. J.
**2007**, 660, 1424–1427. [Google Scholar] - Providência, C.; Fortin, M.; Pais, H.; Rabhi, A. Hyperonic stars and the nuclear symmetry energy. Front. Astron. Space Sci.
**2019**, 6, 13. [Google Scholar] [CrossRef][Green Version] - Bednarek, I.; Sładkowski, J.; Syska, J. Modification of the Symmetry Energy by Strangeness. Acta Phys. Pol. B
**2019**, 50, 1849–1858. [Google Scholar] [CrossRef] - Bednarek, I.; Manka, R.; Pienkos, M. The influence of the enhanced vector meson sector on the properties of the matter of neutron stars. PLoS ONE
**2014**, 9, e106368–e106383. [Google Scholar] [CrossRef][Green Version] - Grigorian, H.; Voskresensky, D.N.; Maslov, K.A. Cooling of neutron stars in “nuclear medium cooling scenario” with stiff equation of state including hyperons. Nucl. Phys. A
**2018**, 980, 105–130. [Google Scholar] [CrossRef][Green Version] - Demorest, P.; Pennucci, T.; Ransom, S.; Roberts, M.; Hessels, J. Shapiro delay measurement of a two solar mass neutron star. Nature
**2010**, 467, 1081–1083. [Google Scholar] [CrossRef] - Fonesca, E.; Pennucci, T.T.; Ellis, J.A.; Stairs, I.H.; Nice, D.J.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Crowter, K.; Dolch, T.; et al. The Nanograv Nine-Year Data Set: Mass and Geometric Measurements of Binary Millisecond Pulsars. Astrophys. J.
**2016**, 832, 167. [Google Scholar] [CrossRef] - Antoniadis, J.; Freire, P.C.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; Kerkwijk, M.H.v.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A Massive Pulsar in a Compact Relativistic Binary. Science
**2013**, 340, 6131–6184. [Google Scholar] [CrossRef] [PubMed][Green Version] - Cromartie, H.T.; Fonseca, E.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Blumer, H.; Brook, P.R.; DeCesar, M.E.; Dolch, T.; Ellis, J.A.; et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron.
**2020**, 4, 72–76. [Google Scholar] [CrossRef][Green Version] - Kolomeitsev, E.E.; Maslov, K.A.; Voskresensky, D.N. Delta isobars in relativistic mean-field models with σ-scaled hadron masses and couplings. Nucl. Phys. A
**2017**, 961, 106–141. [Google Scholar] [CrossRef][Green Version] - Sotani, H.; Iida, K.; Oyamatsu, K. Constraining the density dependence of the nuclear symmetry energy from an X-ray bursting neutron star. Phys. Rev. C
**2015**, 91, 015805–015809. [Google Scholar] [CrossRef][Green Version] - Maslov, K.A.; Kolomeitsev, E.E.; Voskresensky, D.N. Relativistic mean-field models with scaled hadron masses and couplings: Hyperons and maximum neutron star mass. Nucl. Phys. A
**2016**, 950, 64–109. [Google Scholar] [CrossRef][Green Version] - Gendreau, K.; Arzoumanian, Z.; Okaajima, T. The Neutron star Interior Composition ExploreR (NICER): An Explorer mission of opportunity for soft x-ray timing spectroscopy. Proc. SPIE
**2012**, 8443, 8. [Google Scholar] - Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabartyl, D.; et al. A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. Lett.
**2019**, 887, L21. [Google Scholar] [CrossRef][Green Version] - Vidana, I. Nuclear symmetry energy and the r-mode instability of neutron stars. Phys. Rev. C
**2012**, 85, 045808–045816. [Google Scholar] [CrossRef][Green Version] - Tews, I.; Carlson, J.; Gandolfi, S.; Reddy, S. Constraining the speed of sound inside neutron stars with chiral effective field theory interactions and observations. Astrophys. J.
**2018**, 860, 24. [Google Scholar] [CrossRef] - Tews, I.; Margueron, J.; Reddy, S. A critical examination of constraints on the equation of state of dense matter obtained from GW170817. Phys. Rev. C
**2018**, 98, 045804. [Google Scholar] [CrossRef][Green Version] - Bednarek, I.; Sładkowski, J.; Syska, J. A cross-validation check in the covariance analysis of isospin sensitive observables from heavy ion collisions. Nucl. Phys. A
**2020**, 997, 121727. [Google Scholar] [CrossRef] - Cai, B.; Chen, L. Nuclear matter fourth-order symmetry energy in the relativistic mean field model. Phys. Rev. C
**2012**, 85, 024302–024311. [Google Scholar] [CrossRef] - Pearson, J.M.; Chamel, N.; Fantina, A.F.; Goriely, S. Symmetry energy: Nuclear masses and neutron stars. Eur. Phys. J. A
**2014**, 50, 43. [Google Scholar] [CrossRef][Green Version] - Gonzalez-Boquera, C.; Centelles, M.; Viñas, X.; Rios, A. Higher-order symmetry energy and neutron star core-crust transition with Gogny forces. Phys. Rev. C
**2017**, 96, 065806. [Google Scholar] [CrossRef][Green Version] - Roth, R.; Langhammer, J. Padé-resummed high-order perturbation theory for nuclear structure calculations. Phys. Lett. B
**2010**, 6, 272–277. [Google Scholar] [CrossRef][Green Version] - Itô, K. Encyclopedic Dictionary of Mathematics; MIT Press: London, UK, 1987. [Google Scholar]
- Brezinski, C. Padé-type Approximation and General Orthogonal Polynomials; Birkhäuser: Basel, Switzerland, 1980. [Google Scholar]
- Suetin, S.P. Padé approximants and efficient analytic continuation of a power series. Russ. Math. Surv.
**2002**, 57, 43–141. [Google Scholar] [CrossRef] - Baker, G.A., Jr.; Gammel, J.L.; Wills, J.G. An investigation of the applicability of the Padé approximant method. J. Math. Anal. Appl.
**1961**, 2, 405–418. [Google Scholar] [CrossRef][Green Version] - Stahl, H. The convergence of Padé approximants to functions with branch points. J. Approx. Theory.
**1997**, 91, 139. [Google Scholar] [CrossRef][Green Version] - Sasakawa, T. Scattering Theory; Shokabo: Tokyo, Japan, 1991. (In Japanese) [Google Scholar]
- Stanley, H.E. Introduction to Phase Transitions and Critical Phenomena; Clarendon Press: Oxford, UK, 1971. [Google Scholar]
- Gröber, R.; Maier, A.; Rauh, T. Reconstruction of top-quark mass effects in Higgs pair production and other gluon-fusion processes. J. High Energ. Phys.
**2018**, 20, 1–32. [Google Scholar] [CrossRef][Green Version] - Yang, C.N.; Lee, T.D. Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation. Phys. Rev.
**1952**, 87, 404–409. [Google Scholar] [CrossRef] - Nickel, B. On the singularity structure of the 2D Ising model susceptibility. J. Phys. A Math. Gen.
**1999**, 32, 3889–3906. [Google Scholar] [CrossRef] - Kubo, R.; Toda, M.; Hashizume, N.; Saito, N. Statistical Physics I: Equilibrium Statistical Mechanics; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Kubo, R.; Toda, M.; Hashizume, N.; Saito, N. Statistical Physics II: Nonequilibrium Statistical Mechanics; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Berretti, A.; Chierchia, L. On the complex analytic structure of the golden invariant curve for the standard map. Nonlinearity
**1990**, 3, 39–44. [Google Scholar] [CrossRef] - Bessis, D. Padé approximations in noise filtering. J. Comput. Appl. Math.
**1996**, 66, 85–88. [Google Scholar] [CrossRef][Green Version] - Stahl, H. The convergence of diagonal Padé approximants and the Pade conjecture. J. Comput. Appl. Math.
**1997**, 86, 287–296. [Google Scholar] [CrossRef][Green Version] - Gilewicz, J.; Pindor, M. Padé approximants and noise: A case of geometric series. J. Comput. Appl. Math.
**1997**, 87, 199–214. [Google Scholar] [CrossRef][Green Version] - Bessis, D.; Perotti, L. Universal analytic properties of noise: Introducing the J-matrix formalism. J. Phys. A Math. Theor.
**2009**, 42, 365202. [Google Scholar] [CrossRef][Green Version] - Falcolini, C.; Llave, R. Numerical calculation of domains of analyticity for perturbation theories in the presence of small divisors. J. Stat. Phys.
**1992**, 67, 645–666. [Google Scholar] [CrossRef] - Llave, R.; Tompaidis, S. Computation of domains of analyticity for some perturbative expansions of mechanics. Phys. D Nonlinear Phenom.
**1994**, 71, 55–81. [Google Scholar] [CrossRef] - Berretti, A.; Marmi, S. Scaling, perturbative renormalization and analyticity for the standard map and some generalizations. Chaos Solitons Fractals
**1995**, 5, 257–269. [Google Scholar] [CrossRef] - Berretti, A.; Falcolini, C.; Gentile, G. Shape of analyticity domains of Lindstedt series: The standard map. Phys. Rev. E
**2001**, 64, 015202(R). [Google Scholar] [CrossRef][Green Version] - Paszkowski, S. Hermite-Padé approximation (basic notions and theorems). J. Comp. Appl. Math.
**1990**, 32, 229–236. [Google Scholar] [CrossRef][Green Version] - Wallin, H. Convergence and Divergence of Multipoint Padé Approximants of Meromorphic Functions; Lecture Notes in Math. 1105; Springer: New York, NY, USA, 1984; pp. 272–284. [Google Scholar]
- Ibryaeva, O.L.; Adukov, V.M. An algorithm for computing a Padé approximant with minimal degree denominator. J. Comput. Appl. Math.
**2013**, 237, 529–541. [Google Scholar] [CrossRef][Green Version] - Sumiyoshi, K.; Nakazato, K.; Suzuki, H.; Hu, J.; Shen, H. Influence of density dependence of symmetry energy in hot and dense matter for supernova simulations. Astrophys. J.
**2019**, 887, 110–130. [Google Scholar] [CrossRef] - Atta, D.; Basu, D.N. Stability of β -equilibrated dense matter and core-crust transition in neutron stars. Phys. Rev. C
**2014**, 90, 035802. [Google Scholar] [CrossRef][Green Version] - Lai, D. Resonant oscillations and tidal heating in coalescing binary neutron stars. Mon. Not. R. Astron. Soc.
**1994**, 270, 611–629. [Google Scholar] [CrossRef][Green Version] - Horowitz, C.J.; Piekarewicz, J. Neutron star structure and the neutron radius of
^{208}Pb. Phys. Rev. Lett.**2001**, 86, 5647–5650. [Google Scholar] [CrossRef][Green Version] - Sharma, B.K.; Pal, S. Nuclear symmetry energy effects in finite nuclei and neutron star. Phys. Lett.B
**2009**, 682, 23–26. [Google Scholar] [CrossRef] - Bednarek, I.; Pienkos, M. The influence of the symmetry energy on the structure of hyperon stars. Acta Phys. Pol. B
**2015**, 46, 2343–2350. [Google Scholar] - Sugahara, Y.; Toki, H. Relativistic mean-field theory for unstable nuclei with non-linear σ and ω terms. Nucl. Phys. A
**1994**, 579, 557–572. [Google Scholar] [CrossRef] - Manka, R.; Bednarek, I. The nucleon and mesons effective masses in the relativistic mean field theory. J. Phys. G
**2001**, 27, 1975–1986. [Google Scholar] [CrossRef][Green Version] - Bednarek, I.; Sładkowski, J.; Syska, J. Aspects of Approximation in Modeling of the Asymmetric Nuclear Matter. J. Phys. Soc. Jpn.
**2019**, 88, 124201. [Google Scholar] [CrossRef] - Haensel, P.; Potekhin, A.Y.; Yakovlev, D.G. Neutron Stars 1. Equation of State and Structure, 1st ed.; Sringer: New York, NY, USA, 2007; pp. 264–266. [Google Scholar]
- Steiner, A.W.; Prakash, M.; Lattimer, J.M.; Ellis, P.J. Isospin asymmetry in nuclei and neutron stars. Phys. Rep.
**2005**, 411, 325–375. [Google Scholar] [CrossRef][Green Version] - Zhang, Y.; Liu, M.; Xia, C.-J.; Li, Z.; Biswal, S.K. Constraints on the symmetry energy and its associated parameters from nuclei to neutron stars. Phys. Rev. C
**2020**, 101, 034303. [Google Scholar] [CrossRef][Green Version] - Wang, R.; Chen, L. Empirical information on nuclear matter fourth-order symmetry energy from an extended nuclear mass formula. Phys. Lett. B
**2017**, 773, 62–67. [Google Scholar] [CrossRef]

**Figure 1.**The ratio ${E}_{4,sym}/{E}_{2,sym}$ in the discussed model and its linear approximation as a function of baryon number density ${n}_{b}$.

**Figure 2.**The EoSs obtained for the TM1 parameterization for ${\mathsf{\Lambda}}_{V}=0$, $0.0165$, and $0.03$, respectively.

**Figure 3.**The equilibrium relative baryon fractions ${Y}_{n}$ and ${Y}_{p}$ as a function of baryon number density ${n}_{b}$ obtained for the TM1 parameterization for ${\mathsf{\Lambda}}_{V}=0,\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}0.0165$, and $0.03$, respectively. The red dotted line represents the level of critical proton fraction ${Y}_{p}^{crit}$.

**Figure 4.**The equilibrium relative lepton fractions ${Y}_{e}$ and ${Y}_{\mu}$ as a function of baryon number density ${n}_{b}$ obtained for the TM1 parametrization for ${\mathsf{\Lambda}}_{V}=0,\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}0.0165$, and $0.03$, respectively.

**Figure 5.**The mass-radius relations calculated for the TM1 parameterization for ${\mathsf{\Lambda}}_{V}=0$ and for ${\mathsf{\Lambda}}_{V}=0.03$. Dots represent the selected neutron star configurations: the maximum mass configuration and the one characterized by the central density equal to $2{n}_{0}$.

**Figure 6.**Dependence of isospin asymmetry ${\delta}_{a}$ on baryon density $u={n}_{b}/{n}_{j}$, where ${n}_{j}$ denotes the saturation density (left panel), and on stellar radius r (right panel). The radial dependence includes two selected configurations of stars: the maximum mass configuration and the one with the central density $2{n}_{0}$. The results were obtained for TM1 parameterization for ${\mathsf{\Lambda}}_{V}=0$ and ${\mathsf{\Lambda}}_{V}=0.03$.

**Figure 7.**Neutron star masses and radii as a function of ${\Delta}_{a}$ (

**a**). The radial dependence of ${\Delta}_{a}$ calculated for two selected configurations: the maximum mass configuration and the one characterized by the central density equal to $2{n}_{0}$. The results were obtained for TM1 parameterization for ${\mathsf{\Lambda}}_{V}=0$ and ${\mathsf{\Lambda}}_{V}=0.03$ (

**b**). Dots represent the locations of masses and the radii of the presented configurations.

**Figure 8.**The equilibrium proton fraction obtained for the TM1 parameterization for ${\mathsf{\Lambda}}_{V}=0.0165$ and for ${\mathsf{\Lambda}}_{V}=0.03$. The results show differences that arise when different methods of approximation are applied (parabolic approximation and Padé approximants).

**Figure 9.**The equilibrium EoS. (

**a**) ${\mathsf{\Lambda}}_{V}=0$, (

**b**) ${\mathsf{\Lambda}}_{V}=0.0165$, and (

**c**) ${\mathsf{\Lambda}}_{V}=0.03$.

**Figure 10.**The sensitivity of the equilibrium proton concentrations ${Y}_{p}^{eq}$ (

**left panel**) and ${E}_{sym}$ (

**right panel**) to the change of L for ${n}_{b}=2\phantom{\rule{0.166667em}{0ex}}{n}_{0}$ for the Padé approximation and the truncated Taylor series cases.

**Table 1.**The TM1 parameter set described in [66].

$\sigma $ | ${m}_{\sigma}=511.198$ MeV | ${g}_{\sigma}=10.029$ | ${g}_{2}=$ 7.2327 fm${}^{-1}$ | ${g}_{3}=0.6183$ | - |

$\omega $ | ${m}_{\omega}=783$ MeV | ${g}_{\omega}=12.614$ | ${c}_{3}=71.308$ | - | - |

$\rho $ | ${m}_{\rho}=770$ MeV | ${\mathsf{\Lambda}}_{V}$ | 0.0 | 0.0165 | 0.03 |

${g}_{\rho}\left({\mathsf{\Lambda}}_{V}\right)$ | 9.2644 | 10.037 | 11.10 |

${\mathsf{\Lambda}}_{\mathit{V}}$ | ${\mathbf{\Delta}}_{\mathit{a}}$ | ${\mathit{n}}_{\mathit{c}}/{\mathit{n}}_{0}$ | M[M${}_{\odot}$] | R (km) | ${\mathit{\delta}}_{\mathit{a}}\left(0\right)$ | |
---|---|---|---|---|---|---|

M${}_{max}$ | 0.03 | 0.77 | 6.05 | 2.11 | 11.6 | 0.69 |

$2\times {n}_{0}$ | 0.03 | 0.85 | 2.08 | 1.13 | 12.42 | 0.79 |

M${}_{max}$ | 0.0 | 0.6 | 5.71 | 2.17 | 12.09 | 0.41 |

$2\times {n}_{0}$ | 0.0 | 0.79 | 2.05 | 1.33 | 13.05 | 0.63 |

**Table 3.**Crust-core transition density ${n}_{tr}$ and corresponding values of equilibrium proton fraction ${Y}_{p}^{eq}\left({n}_{tr}\right)$ and pressure ${P}^{eq}\left({n}_{tr}\right)\left[MeVf{m}^{-3}\right]$ obtained for the parabolic approximation (PA) and Padé approximants.

PA | ${\mathsf{\Lambda}}_{\mathit{V}}=0$ | ${\mathsf{\Lambda}}_{\mathit{V}}=0.0165$ | ${\mathsf{\Lambda}}_{\mathit{V}}=0.03$ | Padé | ${\mathsf{\Lambda}}_{\mathit{V}}=0$ | ${\mathsf{\Lambda}}_{\mathit{V}}=0.165$ | ${\mathsf{\Lambda}}_{\mathit{V}}=0.03$ |
---|---|---|---|---|---|---|---|

n${}_{tr}$ (fm${}^{-3})$ | 0.0876 | 0.0932 | 0.0947 | n${}_{tr}$ (fm${}^{-3}\left]\right)$ | 0.0877 | 0.0931 | 0.0946 |

Y${}_{p}^{eqT}\left({n}_{tr}\right)$ | 0.037 | 0.041 | 0.0430 | Y${}_{p}^{eqP}\left({n}_{tr}\right)$ | 0.041 | 0.047 | 0.05 |

P${}^{eqT}\left({n}_{tr}\right)$ | 1.256 | 0.378 | 0.410 | P${}^{eqP}\left({n}_{tr}\right)$ | 1.285 | 0.400 | 0.423 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bednarek, I.; Sładkowski, J.; Syska, J.
Forms of the Symmetry Energy Relevant to Neutron Stars. *Symmetry* **2020**, *12*, 898.
https://doi.org/10.3390/sym12060898

**AMA Style**

Bednarek I, Sładkowski J, Syska J.
Forms of the Symmetry Energy Relevant to Neutron Stars. *Symmetry*. 2020; 12(6):898.
https://doi.org/10.3390/sym12060898

**Chicago/Turabian Style**

Bednarek, Ilona, Jan Sładkowski, and Jacek Syska.
2020. "Forms of the Symmetry Energy Relevant to Neutron Stars" *Symmetry* 12, no. 6: 898.
https://doi.org/10.3390/sym12060898