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Abstract: The present investigation is directed towards synthesis of zinc oxide (ZnO) nanoparticles
and steady blending with soybean biodiesel (SBME25) to improve the fuel properties of SBME25 and
enhance the overall characteristics of a variable compression ratio diesel engine. The soybean biodiesel
(SBME) was prepared using the transesterification reaction. Numerous characterization tests were
carried out to ascertain the shape and size of zinc oxide nanoparticles. The synthesized asymmetric
ZnO nanoparticles were dispersed in SBME25 at three dosage levels (25, 50, and 75 ppm) with sodium
dodecyl benzene sulphonate (SDBS) surfactant using the ultrasonication process. The quantified
physicochemical properties of all the fuels blends were in symmetry with the American society for
testing and materials (ASTM) standards. Nanofuel blends demonstrated enhanced fuel properties
compared with SBME25. The engine was operated at two different compression ratios (18.5 and 21.5)
and a comparison was made, and best fuel blend and compression ratio (CR) were selected. Fuel blend
SBME25ZnO50 and compression ratio (CR) of 21.5 illustrated an overall enhancement in engine
characteristics. For SBME25ZnO50 and CR 21.5 fuel blend, brake thermal efficiency (BTE) increased
by 23.2%, brake specific fuel consumption (BSFC) were reduced by 26.66%, and hydrocarbon (HC),
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CO, smoke, and CO2 emissions were reduced by 32.234%, 28.21% 22.55% and 21.66%, respectively;
in addition, the heat release rate (HRR) and mean gas temperature (MGT) improved, and ignition
delay (ID) was reduced. In contrast, the NOx emissions increased for all the nanofuel blends due to
greater supply of oxygen and increase in the temperature of the combustion chamber. At a CR of 18.5,
a similar trend was observed, while the values of engine characteristics were lower compared with
CR of 21.5. The properties of nanofuel blend SBME25ZnO50 were in symmetry and comparable to
the diesel fuel.

Keywords: soybean biodiesel; zinc oxide nanoparticles; compression ratio; VCR engine performance;
emissions

1. Introduction

The global increase in fuel consumption and dependence on petroleum, and the increasing costs
due to higher demand, have sparked interest in alternate and sustainable energy sources [1]. Developing
nations are highly dependent on fossil fuels, particularly for their industrial and transport sectors [2].
Currently, due to an inadequate supply of fossil fuels, increasing global prices for crude oil and
environmental factors have led to renewable energy sources becoming increasingly more important [3,4].
Vegetable oils have certain comparable diesel fuel properties and are known to have several advantages
over fossil fuels, such as being environmentally friendly, nontoxic, and biodegradable, and thus
help in establishing environmental balance [5,6]. Their cetane number and vaporization pressure is
almost equivalent to that of diesel. Biodiesel contains extra oxygen atoms in its molecular structure,
which contribute oxygen that assist in enhanced fuel combustion. Nonetheless, despite the numerous
advantages of biodiesel, it has certain disadvantages, such as high viscosity, poor cold flow properties
and characteristics, and lower heating value [1,7,8]. A recently developed technique to improve
combustion characteristics and fuel properties is through the addition of fuel additives. The past
decade has witnessed a rise in the utilization of alcohol-based additives in biodiesel fuel blends, such as
ethanol, butanol, heptanol, and diethyl ether [9–11]. Alcohol-based additives supply more oxygen in
the combustion chamber to reduce emissions, however, due to the formation of a lean mixture it lowers
the calorific value, which, combined with higher auto ignition temperatures and lower lubrication
properties, results in engine deterioration and reduced performance characteristics. Hence, researchers
have explored the potential of micro- and nanoparticle additives. Microparticle additives assisted
in improving the engine characteristics, but they tend to agglomerate. Nanotechnology has found a
suitable place in many industrial applications, such as engineering, agricultural and medical science,
biotechnology, and transport. Nanoparticle additives exhibit higher thermophysical properties and ease
of miscibility in any base fluids [12–16]. Previous investigators reported nanoparticle additives to be
exceptionally effective in reducing the agglomeration in comparison with microparticles and improve
engine characteristics due to the large surface air-to-volume ratio, high thermophysical properties, high
combustion velocity, and high thermal conductivity [17–19]. In addition, the addition of nanoparticles
to base fluids improves the physiochemical properties, in the form of higher flash point, fire point,
cloud point, and calorific value, and lower density and viscosity of the base fluid [1,7,14,20–23]. Table 1
shows the effect of nanoparticles in different fuel blends. Recent studies on the effect of nanoparticles
and biodiesel in diesel engines reported an enhancement in combustion characteristics, such as cylinder
pressure, heat release rate (HRR), and mean gas temperature (MGT), and reduced the ignition delay
(ID) period for metal and carbon-based nano-additives, such as carbon nanotubes, graphene oxide,
Cu2O, FeCl3, CeO2, Co3O4, Al2O3, TiO2, and ZnO.
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Table 1. The effect of nanoparticles in different fuel blends.

Biofuel Blends Biodiesel Dosage of NPs Engine Type Application Output Ref.

D (80%) + BD (20%)
Dairy scum
oil methyl

ester

Graphene oxide
20 ppm
40 ppm
60 ppm

SC, DI, 4-S, CI engine, 23◦BDTC, WC,
17.5 CR, 3 FI nozzles

• Dosage level of 40 ppm of GNPs increased the BTE, HRR and
reduced the BSFC, ignition delay.

• The calorific value increased while the viscosity reduced.
• The emissions, CO, HC and smoke reduced.
• The NOx emission slightly increased.

[7]

D (80%) + BD (20%) Pongamia oil
methyl ester

FeO
30 nm and
Ferrofluid

100 nm

SC, DI, 4-S, CI engine, 23◦BTDC, WC,
17.5 CR, 3 FI nozzles

• Improves the peak HRR, BTE.
• Reduction in NOx emissions.
• BSFC reduces for Nanofuel blends.
• Reduction in CO, HC, PM, smoke.

[24]

D (40%) + BD (30%)
+ ethanol (30%)

Palm oil
methyl ester

ZnO
250 ppm

SC, DI, 4-S, CI engine, 23◦BTDC, WC,
17.5 CR, 3 FI nozzles

• Reduction of BSFC, HRR and cylinder pressure.
• Decrease in CO, NOx, smoke and BTE.
• Increases the calorific value.

[25]

D (70%) + BD (20%)
+ ethanol (10%)

Castor oil
methyl ester

γ-Alumina
10 ppm
20 ppm
30 ppm

SC, DI, 4-S, CI
Engine, 23◦BTDC

HCC, AC, 17.5 CR 3 FI nozzles, 0.3 mm
dia. FI holes, 661 cc

• Improved BTE, Cylinder pressure and heat release rate.
• Lower HC, CO emissions, BSEC.

[26]

BD (91%) + 50 mL
DEE

Jatropha
methyl ester

CNT
50 ppm

SC, DI, 4-S, CI
Engine, 26◦BTDC

HCC, AC, 17.5 CR 3 FI nozzles

• The CO, HC and NOx reduced in comparison with neat diesel.
• Enhanced combustion attributes, micro explosion of

fuel droplets.
• Improved BTE and reduced BSFC.

[27]

D (70%) + BD (10%)
+ ethanol (20%)
(Diesterol- E20)

Castor oil
methyl ester

Ceria and CNT
25 ppm
50 ppm

100 ppm

CI, WC, DI, 1500 rpm, 19:1, 23◦BTDC

• Accelerates the burning rate, lowers the ID and HRR.
• Improves the peak HRR, BTE.
• Reduces the NOx, smoke and HC.
• Avoids the accumulation of non-polar complexes on the

cylinder wall.

[28]

BD + (200 and 500
ppm

of Ethanox)

Calophyllum
Inophyllum
Methyl Ester

ZnO
50 ppm

100 ppm

2-C, DI, 4-S, CI
Engine, 23◦BTDC, WC, 18.5 CR, 5 FI

nozzles, 1670 cc

• Catalytic effect of NPs and micro explosion improved BTE,
HRR and cylinder gas pressure.

• Better atomization and rapid evaporation.
• NOx was reduced.
• Supply of excess O leads in lower CO and HC.

[29]

D (70%) + BD (20%)
+ ethanol (10%)

Jatropha
methyl ester

γ-Alumina
10 ppm
20 ppm
30 ppm

SC, DI, 4-S, CI
Engine, 23◦BTDC

HCC, AC, 17.5 CR, 3 FI nozzles, 0.3 mm
dia. FI holes, 661 cc

• Improved BTE, Cylinder pressure and heat release rate.
• Lower HC, CO emissions, BSEC.
• Lower NOx emissions.

[30]

D: Diesel; BD: Biodiesel; WC: Water Cooled; SC: Single Cylinder; AC: Air Cooled; 4-S: Four Stroke; DI: Direct Injection; CI: Compression-Ignition; FI: Fuel Injector; CR: Compression ratio;
BTDC: Before Top Dead Center.
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Özgür et al. [31] investigated the combined effect of the addition of 25 and 50 mg/L of MgO and
SiO2 nanoparticles in diesel. The authors observed that the addition of nanoparticles in diesel fuel
lowered the NOx and CO, and increased the engine performance marginally. Soudagar et al. [7,32]
studied the influence of graphene oxide and Al2O3 nanoparticles (20, 40, and 60 ppm) in dairy
scum methyl ester and honge oil methyl ester. Sodium dodecyl sulfate surfactant was used for
nanoparticle stabilization of nanofuel in the base fluid and the ultrasonication process was carried out
for proper blending of fuel blends. The authors reported an enhancement in the overall combustion
and performance characteristics, and reduction in hydrocarbon (HC), CO, and smoke opacity, of a
conventional mechanical fuel injection system diesel engine for the all the nanofuel blends in contrast
to B20 fuel. Karthikeyan et al. [33] performed a related study introducing ZnO nanoparticles to canola
biodiesel. They observed that for the B20+ZnO fuel blends, the brake thermal efficiency (BTE) increased,
and HC and CO decreased, in comparison with neat B20. The influence of alumina (Al2O3) nanoparticles
on biodiesel blends was investigated by Venu and Madhavan [34]. The authors reported the Al2O3 in
biodiesel reduced the brake specific fuel consumption (BSFC), NOX, HC, and carbon dioxide despite
the increased emission of CO. Sajith et al. [35] studied the influence of CeO2 nanoparticles in biodiesel
fuel blends. In order to achieve optimum efficiency, different dosing levels of CeO2 nanoparticles
(20, 40, 60, and 80 ppm) were used. The impact of CeO2 nanoparticles on compression-ignition (CI)
engine efficiency, thermophysical properties of the fuel, and emissions characteristics were investigated.
The authors reported a decline in the NOx and HC emissions and enhancement in the overall engine
characteristics. Keskin et al. [36] reported the influence of nanoparticles on specific fuel consumption
(SFC) and emission characteristics of diesel engines. The MnO2 and MgO nanoparticles were added to
the diesel at concentration levels of 8 and 16 µmol/L. The physiochemical properties of diesel fuel were
enhanced due to addition of the nanoparticles. The addition of combined nano-additives reduced CO
by 16%, smoke opacity by 29%, and the SFC by 4.16%, whereas a 10% increase in NOx emissions was
recorded. Consequently, the previous literature suggests that the addition of nanoparticle additives to
biodiesel fuel enhances the overall diesel engine characteristics and the fuel properties. Studies have
been carried out using fixed engine variables by numerous investigators.

Regarding environmental pollution due to the addition of nanoparticles in fuel, limited research
is available concerning the traces of nano-additives in engine exhaust emissions. Deqing Mei et al. [37]
reported CeO2 in diesel fuel enhances the combustion process, while a high dosing level of nano-CeO2

can cause early ignition, which can lead to escaping of nanoparticles through the exhaust. However,
the authors found only a trace of nanoparticles and an insignificant effect on particulate matter (PM)
emission. Qibai et al. [38] investigated the effects of Al and carbon nanoparticles in a diesel-biodiesel
blend; the exhaust gases were passed through diesel particulate filters (DPFs), and slight traces of
aluminum, oxygen, carbon, and silicon were found. Toxic effects of nanoparticles on animals include
crossing cell membranes and inhaled NPs can reach the blood and target sites such as the heart, blood
cells, and liver [1]. The information on these pathways is limited, but the actual number of particles
that move from one organ to another can be significant, depending on exposure time [39]. Studies on
the environmental pollution caused by nanoparticles as fuel additives are limited, hence there is a
scope for further study.

The objective of the current research is to investigate the combined effect of nanoparticle additives
and biodiesel fuel blends at varying compression ratios and loads in a variable compression ratio
(VCR) diesel engine. The study delves into the potential of a ZnO nanoparticle and soybean biodiesel
blend. The soybean biodiesel (SBME25) is blended with synthesized zinc oxide nanoparticles at
varying blending ratios of 25, 50, and 75 ppm. This study facilitates and proposes a direction for future
research and commercialization of all aspects of nanotechnology in biodiesel fuels in diesel engine
applications. In addition, this study enables the selection of optimal and most suitable compression
ratios for enhancement of diesel engine characteristics.
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2. Material and Methods

2.1. Production of Soybean Biodiesel

A Gas Chromatography Mass Spectrometer (GCMS/MS) Shimadzu, Japan (TQ 8030) was used to
analyze the free fatty acid (FFA) percentage in the soybean oil. Table 2 shows the FFA composition of
soybean biodiesel.

Table 2. Fatty acid composition of soybean oil.

Fatty Acid Carbon Chain Composition (wt.%)

Palmitic C 16:0 11.24
Stearic C 18:0 4.15
Oleic C 18:1 23.69

Linoleic C 18:2 51.66
Linolenic C 18:3 6.89

The preparation of biodiesel was carried out at Apex innovations laboratory, India. In the
esterification method, the soybean oil was heated with sulfuric acid at 70 ◦C and methanol in an
air-oven for about 60 min to eliminate the moisture. In the subsequent step, i.e., the transesterification
reaction, the solution was mixed with sodium hydroxide at 6:1 M and heated at 60 ◦C for about 60 min.
The mixing and heating processes were carried out on a magnetic stirrer rotating at a constant speed of
500 rpm. Then, the solution was transferred to a separating funnel and kept steady for 24 h. After 24 h,
a clear distinct layer was visible, distinguishing the glycerol and biodiesel. The lower layer containing
glycerol was drained and the upper layer was extracted and washed using warm water. The liquid
was dried to obtain soybean biodiesel.

2.2. Synthesis and Characterization of Zinc Oxide Nanoparticles

The zinc oxide nanoparticles were synthesized using the aqueous precipitation method as
previously reported Haniffa et al. [40] and Li Yuan et al. [41]. Initially, 0.5 M zinc nitrate (Zn(NO3)2)
was added of drop by drop to 0.5 M of sodium carbonate (Na2CO3) solution under vigorous stirring.
Soon after separation from the solution using vacuum filtration technique by washing and rinsing three
times with distilled water and then ethanol, the precipitate was dried in an air circulating oven at 80 ◦C
for 2 h. The oven-dried powder was calcined to 500 ◦C for 3 h to obtain zinc oxide nanopowder. Finally,
for a period of 5 h the nano powder was ball-milled at 200 rpm to obtain fine zinc oxide nanoparticles.
Figure 1 illustrates a flow chart showing the synthesis of zinc oxide nanoparticles using the aqueous
precipitation method.

Field emission scanning electron microscope (FESEM) analysis was used to determine chemical
composition and visualize the surface morphology of ZnO nanoparticles. The analysis was performed
using a Bruker XFlash 6I30, USA. Figure 2 represents the SEM image of ZnO nanoparticles at 25,000×
magnification. The synthesized ZnO nanoparticles had Rosette and irregular crystal structures with a
wurtzite hexagonal phase, in agreement with previous literature [42,43].

X-ray powder diffraction (XRD) was used to evaluate the crystallinity (phase identification) by
comparison with the integrated intensity of a previously reported pattern to that of the observed sharp
peaks of the synthesized zinc oxide nanoparticles. The XRD analysis is shown in Figure 3a; the analysis
was carried out using a Bruker D8 VENTURE, USA. The calculated hkl values for the peaks observed
for ZnO nanoparticles at 2θ = 32.45◦ (100), 34.64◦ (002), 36.57◦ (101), 48.52◦ (102), 56.43◦ (110), 62.66◦

(103), 66.36◦ (200), 68.13◦ (112), 69.44◦ (201), 72.32◦ (004), and 77.73◦ (004). A sharp peak was observed
at 36.57◦ (101), which indicates the crystallinity of ZnO nanoparticles; the peaks reported in the current
investigation were closer to the characteristic peaks reported by [44,45]. Figure 3b shows the UV-Vis
absorption spectra; ultra-violet absorption for ZnO nanoparticles confirms absorbance at a wavelength
of 365.47 nm, between the characteristic range of 350 to 380 nm [44].
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The main objective of transmission electron microscopy (TEM) analysis is to produce high
magnification images of the internal structure of a sample. Figure 3c illustrates the TEM image at
100 nm and magnification level of 20,000×. The TEM analysis is also used to collect data on crystalline
structures, contamination, stress, and internal fractures inside materials [44]. Initially, the ZnO
nanoparticles were dispersed in ethanol. The structure of ZnO nanoparticles was found to be hexagonal
wurtzite and the size of the nanoparticles was in the range of 15–40 nm.

2.3. Preparation and Physiochemical Properties of Nanofuel Blends

A scale was used to measure precise quantities of zinc oxide nanoparticles. The ZnO nanoparticles
(25, 50, and 75 mg/L) were mixed with 10 mL of distilled water. Sodium dodecyl sulfate (SDS) surfactant
was added for surface modifications and stabilization, to reduce the possibility of coagulation and
coalescence, and to reduce the surface tension. Surfactants tend to position themselves at the interface
between the nanoparticles and the base fluid, where it establishes a degree of continuity between the
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nanoparticles and fluids. The ultrasonication process was carried out for steady blending; initially the
ultrasonication bath was used to blend the solution with an agitation time of 60 min. Later, the different
nanofluid blends were blended using an ultrasonication probe at a frequency of 15–30 Hz for 20 min.
After the zinc oxide nanofluids were prepared they were transferred to the SBME25-diesel fuel blend,
and heated and steadily mixed using a magnetic stirrer at 60 ◦C for 30 min to remove traces of water
molecules. Then, the same ultrasonication processes were carried out for a steady dispersion of zinc
oxide nanoparticles in SBME25 biodiesel–diesel fuel blend. Figure 4 illustrates the comprehensive
steps involved in the preparation of nanofuel.Symmetry 2020, 12, x FOR PEER REVIEW 10 of 33 
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Figure 4. The comprehensive steps involved in the preparation of nanofuel.

The experiments were conducted in various lab facilities available in Maharashtra and Karnataka,
India. The detailed description of the equipment, procedure, and lab setup was presented in previous
articles by Soudagar et al. [7,32] on the addition of graphene oxide and Al2O3 nanoparticles in dairy
scum oil methyl ester and honge oil methyl ester. The physiochemical properties of the test fuel blends
are demonstrated in Table 3. The analysis indicates the addition of zinc oxide nanoparticles to soybean
biodiesel increases the calorific value and cetane number and demonstrates comparable diesel fuel
properties. The fuel blend SBME25ZnO50 demonstrated overall improvement in the physicochemical
properties. The analyzed results were within the ASTM D6751 standard for biodiesel.
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Table 3. Physicochemical properties of fuel blends.

Properties Unit ASTM
Standards

Test Limit
ASTM D6751 Diesel SBME25 SBME25ZnO25 SBME25ZnO50 SBME25ZnO75

Density kg/m3 at 15 ◦C D4052 860–900 810 845.66 845.87 846.22 846.84
Calorific value kJ/kg D5865 Min. 35,000 45,000 41,684 43,400 44,800 43,850

Kinematic Viscosity cSt at 40 ◦C D445 1.9–6 2.12 3.56 3.52 3.525 3.531
Specific Gravity gm/cc D891 0.87–0.90 0.811 0.825 0.820 0.821 0.824
Cetane Number - D613 Min. 40 51 48.66 52.55 53.74 53.15

Flash Point ◦C D93 >130 55 65.71 62.87 60.47 61.87
Pour Point ◦C D97-12 −15 to 16 −4 −6 −5 −5.65 −5.6

Cloud Point ◦C D2500-11 −3 to 12 −2 4.5 3.5 3.54 3.57
Sulphur content % w/w D5453 0.05 0.005 0.012 0.0156 0.0162 0.0188
Water content % vol D2709 0.05% vol - Trace Trace Trace Trace



Symmetry 2020, 12, 1042 10 of 31

2.4. Uncertainty Analysis of Expected Errors

Uncertainty analysis is an organized set of procedures followed for calculation of errors in
experimental data. The inaccuracies occur due to the error in electronic and mechanical components,
environmental factors, and human miscalculations. The data is gathered in ideal conditions,
and specifications and details of all the components are available. Measurement errors from several
different sources are classified into bias and precision errors; throughout the experimentation the bias
errors remain constant. In this work, the estimation of experimental uncertainty and the evaluation of
standard errors in the measurements were derived using the method proposed by Moffat et al. [46].
Table 4 illustrates the uncertainty and accuracy levels of calculated engine parameters.

Table 4. Uncertainty and accuracy levels of calculated engine parameters.

Parameters Accuracy (±) Uncertainty (%)

Brake power (KW) - ±0.22
Brake thermal efficiency (%) - ±0.28

Brake specific fuel consumption (%) - ±0.31
Heat release rate (J/◦CA) - ±0.24

Carbon monoxide emission (%) ±0.01% ±0.18
Nitrogen oxide emission (ppm) ±10 ppm ±0.24
Hydrocarbon emission (ppm) ±10 ppm ±0.14
Exhaust gas temperature (◦C) ±1 ±0.15

Mean gas temperature (◦C) - ±0.35
Smoke meter (HSU) ±1 ±0.25

In addition, the propagation of errors was studied using standard deviations by plotting error
bars, where error bars were derived considering the average of six readings. The propagation of
uncertainty for various factors are determined depending on two or more independent parameters is
carried out using Equation (1):

Uy

y
=

√(
ux1

x1

)2

+
(ux2

x2

)2
+ . . . . . . . . . . . . . . . . . . +

(uxn

xn

)n
(1)

where Uy: uncertainty; y: testing value; x1, x2,..., xn: evaluated parameter; and the uncertainty of
emissions is Uy = Resolution

Range .
The overall uncertainty of the engine characteristics is calculated using Equation (2):

Overall uncertainty = ±

√
Uncertainty % o f (BTE2 + BSFC2 + CO2 + NOx2 + HC2

+smoke2 + HRR2 + MGT2 + EGT2 ) = ± 1.82 (2)

2.5. Test Engine Setup

The engine used in the current investigation is a variable compression ratio (VCR), Kirloskar make,
single cylinder diesel engine. All the experiments were carried-out at Apex innovation laboratory,
India. The engine was coupled to a five-gas analyzer and smoke meter. The combustion chamber used
in the current investigation was hemispherical; compression ratios were varied without stopping the
VCR engine and the readings were derived using enginesoft software. A Data Acquisition System
(DAQ) and Labview software was used as an interface between the computer and the engine sensors
(air and fuel flow, temperatures, and load measurement sensors). Table 5 illustrates the specification of
the VCR test engine used in the current investigation.

Figure 5 illustrates the pictorial view of the test engine used in the current investigation. The heat
release rate was estimated using the data for 600 crank angle values. The compression ratio was varied
by the tilting block arrangement, in which the compression ratio could be varied without stopping
the engine. The arrangement consisted of compression ratio indicator and compression ratio adjuster
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with a lock nut and six Allen bolts. For varying the compression ratio, the Allen bolts were slightly
loosened, and the adjuster lock nut was loosened. Further, the adjuster was rotated to set a desired
compression ratio according to the compression ratio indicator, and then locked using a lock nut.
The chosen compression ratios in the current investigation were 18.5 and 21.5.

Table 5. Test Engine Specifications.

Number of Strokes 4

Fuel type Diesel, Biodiesel, and Nanofuel
Cylinder Single, Water cooled

Rated Power 3.5 KW
Speed 1500 rpm

Cylinder diameter 87.5 mm
Load indicator Digital, Range 0–50 Kg, Supply 230 V air cooled

Fuel tank Volume 15 liters with glass fuel metering column
Exhaust Gas Recirculation Water cooled, Stainless Steel, Range 0–15%

Piezo sensor Range 5000 PSI, with low noise cable
Temperature sensor RTD, PT100 and Thermocouple, Type K

Load sensor Load cell, type strain gauge, range 0–50 Kg
Rotameter Engine cooling 40–400 LPH; Cal. 25–250 LPH

Dynamometer
Model AG10
Make Saj test plant rig

End flanges both sides Cardon shaft model 1260 type
Air gap 0.77 mm
Torque 11.5 Nm

Hot coil voltage 60 V
Continuous current (amp) 5

Cold resistance ohm 9.8Symmetry 2020, 12, x FOR PEER REVIEW 13 of 33 

 
Figure 5. Variable compression ratio (VCR) test engine setup. 

3. Results and Discussions 

In this section, the combustion, performance, and emission characteristics of the diesel engine 
are investigated. The effect of nanofuel blends and compression ratios of 18.5 and 21.5 on heat release 
rate, ignition delay, BTE, BSFC, and mean gas temperature, and CO, NOx, HC, CO2, and smoke 
emissions are reported. A constant speed of 1500 rpm, injection timing (IT) of 23.5°BTDC (before top 
dead center), and five loads were maintained. Table 6 illustrates the factors considered and employed 
in the current investigation.  

Table 6. Engine parameters. 

Factors Considered Parameters Employed 
Engine Variable Compression Ratio (VCR) 

Combustion Chamber (CC) Hemispherical (HCC) 
Injection Pressure (IP) 220 bar 
Fuel Injector (FI) holes 4 holes, 0.25 mm dia. 

Injection timing (IT) 23˚BTDC 
Speed 1500 rpm (constant) 

Compression Ratio (CR) 18.5, 21.5 
Fuel Diesel, SBME25, SBME25ZnO25, SBME25ZnO50, SBME25ZnO75 

  

Figure 5. Variable compression ratio (VCR) test engine setup.



Symmetry 2020, 12, 1042 12 of 31

3. Results and Discussions

In this section, the combustion, performance, and emission characteristics of the diesel engine are
investigated. The effect of nanofuel blends and compression ratios of 18.5 and 21.5 on heat release rate,
ignition delay, BTE, BSFC, and mean gas temperature, and CO, NOx, HC, CO2, and smoke emissions
are reported. A constant speed of 1500 rpm, injection timing (IT) of 23.5◦BTDC (before top dead
center), and five loads were maintained. Table 6 illustrates the factors considered and employed in the
current investigation.

Table 6. Engine parameters.

Factors Considered Parameters Employed

Engine Variable Compression Ratio (VCR)
Combustion Chamber (CC) Hemispherical (HCC)

Injection Pressure (IP) 220 bar
Fuel Injector (FI) holes 4 holes, 0.25 mm dia.

Injection timing (IT) 23◦BTDC
Speed 1500 rpm (constant)

Compression Ratio (CR) 18.5, 21.5
Fuel Diesel, SBME25, SBME25ZnO25, SBME25ZnO50, SBME25ZnO75

3.1. The Effect of Zinc Oxide Nano Additives and Soybean Fuel Blend on the Engine Performance

3.1.1. The Effect of SBME25-ZnO Nanofuel Blends on Brake Thermal Efficiency (BTE) at Different
Compression Ratios

Figure 6 illustrates the variation of BTE at varying loads. The results demonstrate that the BTE of
the VCR diesel engine was enhanced at all dosage levels of zinc oxide nanoparticles. The zinc oxide
nanoparticles promote complete combustion of the fuel charge when compared with biodiesel fuel
blends. Equations (3) and (4) illustrates the estimation of BP and BTE, respectively:

BP =
2πNT
60000

=
2πN(W × R)

60000
=

0.785 × N × (W x 9.81) × Arm lenght
60000

kW (3)

BTE =
BP × 3600 × 100

Fuel f low
(

kg
hr

)
× Cv

% (4)

Brake thermal efficiency for all tested fuels with different compression ratios at variable load is
presented in Figure 7a,b. BTE increased with an increase in load up to 80%, then exhibited a slight
reduction at 100% load. At maximum load and CR 21.5, the BTE increased by 11.592% (SBME25ZnO25),
23.2% (SBME25ZnO50), and 19.024% (SBME25ZnO75) compared to SBME25 fuel. Diesel fuel exhibited
a BTE value that was 29.64% lower with 18.5 CR at 80% load. All fuel blends showed lower BTE values
compared to diesel due to lower calorific value, lower brake power, and higher BSFC. In addition,
the BTE value fell with a reduction in compression ratio. All tested fuels showed a reduction in
BTE values: 9.88% (diesel), 15.4% (SBME25ZnO25), 6.15% (SBME25ZnO50), 11.1% (SBME25ZnO75),
and 20.5% (SBME25) with a compression ratio of 18.5 compared to a CR of 21.5, due to lower
compression temperature, which resulted in poor combustion of fuel. BTE is directly proportional to
compression ratio [47]. Brake thermal efficiency showed an enhancement with an increase in loads
and lower heat losses at higher engine load [48]. The metal zinc oxide nanoparticles improved the
combustion process by reducing its duration and ignition delay, and increased in-cylinder temperature
and pressure, and high HRR subsequently increased the BTE [49,50]. Zinc oxide nanoparticles act as a
potential catalyst due to their high reactive surface area during the combustion process, which leads to
a micro explosion of fuel droplets resulting in improved combustion characteristics, such as cylinder
pressure and high heat release rate, therefore increasing the BTE.
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Brake thermal efficiency for all tested fuels with different compression ratios at variable load is 
presented in Figure 7a,b. BTE increased with an increase in load up to 80%, then exhibited a slight 
reduction at 100% load. At maximum load and CR 21.5, the BTE increased by 11.592% 
(SBME25ZnO25), 23.2% (SBME25ZnO50), and 19.024% (SBME25ZnO75) compared to SBME25 fuel. 
Diesel fuel exhibited a BTE value that was 29.64% lower with 18.5 CR at 80% load. All fuel blends 
showed lower BTE values compared to diesel due to lower calorific value, lower brake power, and 
higher BSFC. In addition, the BTE value fell with a reduction in compression ratio. All tested fuels 
showed a reduction in BTE values: 9.88% (diesel), 15.4% (SBME25ZnO25), 6.15% (SBME25ZnO50), 
11.1% (SBME25ZnO75), and 20.5% (SBME25) with a compression ratio of 18.5 compared to a CR of 
21.5, due to lower compression temperature, which resulted in poor combustion of fuel. BTE is 
directly proportional to compression ratio [47]. Brake thermal efficiency showed an enhancement 
with an increase in loads and lower heat losses at higher engine load [48]. The metal zinc oxide 
nanoparticles improved the combustion process by reducing its duration and ignition delay, and 
increased in-cylinder temperature and pressure, and high HRR subsequently increased the BTE 
[49,50]. Zinc oxide nanoparticles act as a potential catalyst due to their high reactive surface area 
during the combustion process, which leads to a micro explosion of fuel droplets resulting in 
improved combustion characteristics, such as cylinder pressure and high heat release rate, therefore 
increasing the BTE.  
  

Figure 6. The variation of BTE at compression ratios of (a) 18.5 and (b) 21.5.
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Figure 7. The variation of BTE at compression ratios: (a) 18.5 and (b) 21.5. 

3.2. The Effect of Zinc Oxide Nano-Additives and Soybean Fuel Blend on Engine Emissions 

3.2.1. The Effect of SBME25-ZnO Nanofuel Blends on Carbon Monoxide (CO) Emissions at Different 
Compression Ratios  

The variation in carbon monoxide emissions and loads for all tested fuels at different 
compression ratio is presented in Figure 8a,b. Carbon monoxide emissions are produced due to 
incomplete combustion during the combustion process. All tested fuels showed reduction in carbon 
monoxide emissions, with the exception of diesel, due to the presence of extra oxygen molecules, 
which results in complete conversion of CO to CO2 [57]. SBME25ZnO50 showed the lowest CO 
emissions among all tested fuels due to the presence of extra oxygen and reactive surface area (ZnO), 
which leads to high in-cylinder temperature and pressure resulting in complete combustion. On 
average, the CO emissions were reduced by 41.08%, 31.44%, and 18.66% for SBME25ZnO50, 
SBME25ZnO75, and SBME25ZnO25 ternary blends, respectively, compared to SBME25. All tested 
fuels showed an increase in CO emission values: 20.85% (diesel), 19.87% (SBME25ZnO25), 4.23% 
(SBME25ZnO50), 6.53% (SBME25ZnO75), and 14.45% (SBME25) with compression ratio of 18.5 
compared to a compression ratio of 21.5. This was due to a lower compression temperature, which 
resulted in poor combustion of fuel. A similar result has been reported by Sharma et al. [58], in which 
an increase in the compression ratio resulted in an increased air temperature, leading to a reduction 
in the ignition delay period and CO emissions due to complete combustion.  

Figure 7. The variation of BTE at compression ratios: (a) 18.5 and (b) 21.5.
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3.1.2. The Effect of SBME25-ZnO Nanofuel Blends on Brake Specific Fuel Consumption (BSFC) at
Different Compression Ratios

Figure 7a,b show the variation of BSFC and loads for various fuel blends at different compression
ratios. The BSFC is reduced with an increase in engine load. The lowest BSFC value with 21.5 CR
0.198 Kg/kWh for SBME25ZnO50 is obtained at 100% engine load. On average, the BSFC values were
0.258 Kg/kWh (diesel), 0.262 Kg/kWh (SBME25ZnO50), 0.2896 Kg/kWh (SBME25ZnO75), 0.304 Kg/kWh
(SBME25ZnO25), and 0.329 Kg/kWh (SBME25) at 21.5 CR. All ternary fuel blends showed reduction in
BSFC: 20.37%, 12.18%, and 7.82% for SBME25ZnO50, SBME25ZnO75, and SBME25ZnO25, respectively,
compared to SBME25. The minimum BSFC value was recorded with zinc oxide (50 ppm) as a fuel
additive. SBME25ZnO50 showed higher BSFC value 0.245 Kg/kWh with 18.5 compression ratio at 100%
engine load. The average BSFC values for all tested fuels increased with a decrease in compression
ratio. All tested fuels showed a rise in the BSFC for 18.5 compression ratio: 14.47% (diesel), 8.94%
(SBME25ZnO25), 15.46% (SBME25ZnO50), 4.48% (SBME25ZnO75), and 13.7% (SBME25), compared to
21.5 compression ratio. At higher load, BSFC values are reduced due to less heat loses and a smaller
amount of fuel is required to obtain specific brake power [51,52]. A similar increase in BSFC with an
increase in compression ratio has been reported by various researchers [48,53,54]. Biodiesel with fuel
additive (ZnO) showed significant reduction in BSFC due to improved combustion characteristics.
Nanoparticle enhanced the air–fuel mixing, micro explosion of fuel droplets, and secondary atomization,
resulting in lower BSFC. The combustion process is improved with the use of ZnO as a fuel additive
(oxidizing agent) due to its high calorific value, shorter ignition delay, and more reactive surface
area [49]. Dahad et al. [55] and Deepak et al. [56] reported a similar reduction in BSFC with the use of
zinc oxide as a fuel additive in a diesel engine.

3.2. The Effect of Zinc Oxide Nano-Additives and Soybean Fuel Blend on Engine Emissions

3.2.1. The Effect of SBME25-ZnO Nanofuel Blends on Carbon Monoxide (CO) Emissions at Different
Compression Ratios

The variation in carbon monoxide emissions and loads for all tested fuels at different compression
ratio is presented in Figure 8a,b. Carbon monoxide emissions are produced due to incomplete
combustion during the combustion process. All tested fuels showed reduction in carbon monoxide
emissions, with the exception of diesel, due to the presence of extra oxygen molecules, which results in
complete conversion of CO to CO2 [57]. SBME25ZnO50 showed the lowest CO emissions among all
tested fuels due to the presence of extra oxygen and reactive surface area (ZnO), which leads to high
in-cylinder temperature and pressure resulting in complete combustion. On average, the CO emissions
were reduced by 41.08%, 31.44%, and 18.66% for SBME25ZnO50, SBME25ZnO75, and SBME25ZnO25
ternary blends, respectively, compared to SBME25. All tested fuels showed an increase in CO emission
values: 20.85% (diesel), 19.87% (SBME25ZnO25), 4.23% (SBME25ZnO50), 6.53% (SBME25ZnO75),
and 14.45% (SBME25) with compression ratio of 18.5 compared to a compression ratio of 21.5. This
was due to a lower compression temperature, which resulted in poor combustion of fuel. A similar
result has been reported by Sharma et al. [58], in which an increase in the compression ratio resulted in
an increased air temperature, leading to a reduction in the ignition delay period and CO emissions due
to complete combustion.
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Figure 8. The variation of carbon monoxide at compression ratios: (a) 18.5 and (b) 21.5. 
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variable load with different compression ratios are shown in Figure 9a,b. HC emissions are mainly 
affected by fuel characteristics, fuel spray properties, and different engine operating conditions. The 
average HC emissions at CR 21.5 were 0.131, 0.139, 0.147, 0.1530, and 0.189 g/kWh for SBME25ZnO50, 
diesel, SBME25ZnO75, SBME25ZnO25, and SBME25, respectively, from minimum to maximum 
engine loads. All ternary fuel blends showed reduction in HC emissions compared to a neat 
biodiesel–diesel blend. Overall, significant reductions in HC emissions for a compression ratio of 21.5 
of 30.83%, 22.12%, and 18.76% were observed for SBME25ZnO50, SBME25ZnO75, and 
SBME25ZnO25, respectively, compared to SBME25. The fuel blend SBME25 showed maximum HC 
emissions due to its viscous attributes, which resulted in poor fuel spray characteristics and led to 
incomplete combustion. All fuels tested at CR 18.5 showed higher HC emissions compared to CR 
21.5. HC emissions are mainly affected by the air–fuel mixture and the air-to-fuel equivalence ratio 
from rich to lean mixture. A similar increase in HC emissions due to a lower compression ratio was 
reported by Sharma et al. [58]. All tested fuels showed an increase in CO emission values: 12.58% 
(diesel), 12.26% (SBME25ZnO25), 14.35% (SBME25ZnO50), 8.27% (SBME25ZnO75), and 20.48% 
(SBME25) with a compression ratio of 18.5 compared to 21.5 CR. 
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3.2.2. The Effect of SBME25-ZnO Nanofuel Blends on Hydrocarbon (HC) Emissions at Different
Compression Ratios

HC emissions for diesel, SBME25ZnO25, SBME25ZnO50, SBME25ZnO75, and SBME25 at variable
load with different compression ratios are shown in Figure 9a,b. HC emissions are mainly affected
by fuel characteristics, fuel spray properties, and different engine operating conditions. The average
HC emissions at CR 21.5 were 0.131, 0.139, 0.147, 0.1530, and 0.189 g/kWh for SBME25ZnO50, diesel,
SBME25ZnO75, SBME25ZnO25, and SBME25, respectively, from minimum to maximum engine loads.
All ternary fuel blends showed reduction in HC emissions compared to a neat biodiesel–diesel blend.
Overall, significant reductions in HC emissions for a compression ratio of 21.5 of 30.83%, 22.12%, and
18.76% were observed for SBME25ZnO50, SBME25ZnO75, and SBME25ZnO25, respectively, compared
to SBME25. The fuel blend SBME25 showed maximum HC emissions due to its viscous attributes,
which resulted in poor fuel spray characteristics and led to incomplete combustion. All fuels tested at
CR 18.5 showed higher HC emissions compared to CR 21.5. HC emissions are mainly affected by the
air–fuel mixture and the air-to-fuel equivalence ratio from rich to lean mixture. A similar increase in HC
emissions due to a lower compression ratio was reported by Sharma et al. [58]. All tested fuels showed
an increase in CO emission values: 12.58% (diesel), 12.26% (SBME25ZnO25), 14.35% (SBME25ZnO50),
8.27% (SBME25ZnO75), and 20.48% (SBME25) with a compression ratio of 18.5 compared to 21.5 CR.
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Figure 9. The variation of hydrocarbon emissions at compression ratios: (a) 18.5 and (b) 21.5. 

3.2.3. The Effect of SBME25-ZnO Nanofuel Blends on Nitrogen Oxide (NOx) Emissions at Different 
Compression Ratios  

NOx emissions for all tested fuels with variable loads and different compression ratios are 
presented in Figure 10a,b. NOx emissions increased with increase in engine load. High NOx 
emissions were generated due to high in-cylinder temperature resulting from complete combustion. 
Extra oxygen molecules in biodiesel and ternary blends enhanced the combustion process and 
resulted in the high in-cylinder pressure and temperature that leads to higher NOx emissions. 
Average NOx emissions at a compression ratio of 21.5 287.73, 290.77, 365.73, 412.51, and 456.14 ppm 
were obtained for SBME25, diesel, SBME25ZnO25, SBME25ZnO50, and SBME25ZnO75, respectively, 
between 20% and 100% engine loads. All ternary blends showed a slight increase in NOx emissions 
compared to diesel and biodiesel–diesel blends due to high in-cylinder temperature and pressure. 
NOx emissions were increased by 27.10%, 43.36% and 58.52% at 21.5 CR for SBME25ZnO25, 
SBME25ZnO50, and SBME25ZnO75, respectively, compared to SBME25. Ternary fuel blends 
improved the combustion process due to high oxygen content in fuel additives as well as in biodiesel, 
which leads to shorter ignition delay due to high cetane number [57,59]. At a compression ratio of 
18.5, NOx emissions were reduced compared to the engine tested at a higher compression ratio of 
21.5. The combustion temperature was increased due to a higher compression ratio because of the 
high oxygen intake that leads to improved combustion phenomena and results in higher NOx 
emissions. 
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3.2.3. The Effect of SBME25-ZnO Nanofuel Blends on Nitrogen Oxide (NOx) Emissions at Different
Compression Ratios

NOx emissions for all tested fuels with variable loads and different compression ratios are
presented in Figure 10a,b. NOx emissions increased with increase in engine load. High NOx emissions
were generated due to high in-cylinder temperature resulting from complete combustion. Extra oxygen
molecules in biodiesel and ternary blends enhanced the combustion process and resulted in the high
in-cylinder pressure and temperature that leads to higher NOx emissions. Average NOx emissions at a
compression ratio of 21.5 287.73, 290.77, 365.73, 412.51, and 456.14 ppm were obtained for SBME25, diesel,
SBME25ZnO25, SBME25ZnO50, and SBME25ZnO75, respectively, between 20% and 100% engine loads.
All ternary blends showed a slight increase in NOx emissions compared to diesel and biodiesel–diesel
blends due to high in-cylinder temperature and pressure. NOx emissions were increased by 27.10%,
43.36% and 58.52% at 21.5 CR for SBME25ZnO25, SBME25ZnO50, and SBME25ZnO75, respectively,
compared to SBME25. Ternary fuel blends improved the combustion process due to high oxygen
content in fuel additives as well as in biodiesel, which leads to shorter ignition delay due to high
cetane number [57,59]. At a compression ratio of 18.5, NOx emissions were reduced compared to the
engine tested at a higher compression ratio of 21.5. The combustion temperature was increased due
to a higher compression ratio because of the high oxygen intake that leads to improved combustion
phenomena and results in higher NOx emissions.
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Figure 10. The variation of nitrogen oxide emissions at compression ratios: (a) 18.5 and (b) 21.5. 

3.2.4. The Effect of SBME25-ZnO Nanofuel Blends on Carbon Dioxide (CO2) Emissions at Different 
Compression Ratios  

The carbon molecules from the fuel combustion combines with the oxygen to produce carbon 
dioxide emissions. Figure 11a,b show an increasing trend in CO2 emissions with increasing loading 
conditions. For the compression ratio of 18.5, all the nanofuel blends lowered the carbon dioxide 
emissions due to complete fuel combustion and lower generation of carbon molecules post 
combustion process compared to the SBME25 fuel blend. In addition, a similar trend was observed 
for a compression ratio of 21.5, however, lower carbon dioxide emissions were observed at a higher 
compression ratio due to rapid combustion and enhanced micro-explosion process. At compression 
ratio of 21.5, fuel blend SBME25ZnO50 showed lower carbon dioxide emissions compared to all fuel 
blends at maximum load. The CO2 for 50 ppm of ZnO in SNME25 was lower by 21.66% and 2.36%, 
respectively, compared to SBME25 and diesel fuel. This was due to the large surface area of ZnO 
nanoparticles enabling complete combustion of hydrocarbon molecules [59,60].  

Figure 10. The variation of nitrogen oxide emissions at compression ratios: (a) 18.5 and (b) 21.5.

3.2.4. The Effect of SBME25-ZnO Nanofuel Blends on Carbon Dioxide (CO2) Emissions at Different
Compression Ratios

The carbon molecules from the fuel combustion combines with the oxygen to produce carbon
dioxide emissions. Figure 11a,b show an increasing trend in CO2 emissions with increasing loading
conditions. For the compression ratio of 18.5, all the nanofuel blends lowered the carbon dioxide
emissions due to complete fuel combustion and lower generation of carbon molecules post combustion
process compared to the SBME25 fuel blend. In addition, a similar trend was observed for a compression
ratio of 21.5, however, lower carbon dioxide emissions were observed at a higher compression ratio due
to rapid combustion and enhanced micro-explosion process. At compression ratio of 21.5, fuel blend
SBME25ZnO50 showed lower carbon dioxide emissions compared to all fuel blends at maximum load.
The CO2 for 50 ppm of ZnO in SNME25 was lower by 21.66% and 2.36%, respectively, compared to
SBME25 and diesel fuel. This was due to the large surface area of ZnO nanoparticles enabling complete
combustion of hydrocarbon molecules [59,60].
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Figure 11. The variation of carbon dioxide emissions at compression ratios: (a) 18.5 and (b) 21.5. 

3.2.5. The Effect of SBME25-ZnO Nanofuel Blends on Smoke Emissions at Different Compression 
Ratios  

The smoke emissions for all tested fuels with variable loads and different compression ratios are 
illustrated in Figure 12. The smoke emissions are produced due to incomplete combustion of 
hydrocarbon particles in the combustion chamber, a rich air-to-fuel mixture, and poor fuel 
vaporization. 

Figure 11. The variation of carbon dioxide emissions at compression ratios: (a) 18.5 and (b) 21.5.

3.2.5. The Effect of SBME25-ZnO Nanofuel Blends on Smoke Emissions at Different
Compression Ratios

The smoke emissions for all tested fuels with variable loads and different compression ratios
are illustrated in Figure 12. The smoke emissions are produced due to incomplete combustion of
hydrocarbon particles in the combustion chamber, a rich air-to-fuel mixture, and poor fuel vaporization.

The SBME25 fuel blend produces higher smoke emissions due to lower calorific value and heat
release rate. In contrast, the biodiesel blends with ZnO nanoparticles improved the micro-explosion
phenomenon and air-to-fuel mixing, leading to lower smoke emissions. The smoke emissions for
compression ratios of 18.5 and 21.5 for SBME25ZnO50 fell by 19.95% and 22.54%, respectively, compared
with SBME25 and diesel fuel. The large surface area of the ZnO nanoparticles enhances the combustion
process resulting in complete fuel combustion. An increase in the compression ratio leads to better
air-to-fuel mixing and increases the temperature during the compression stroke. In addition, an increase
in the compression ratio reduces the dilution of the fuel charge by residual gases [61].
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Figure 12. The variation of smoke emissions at compression ratios: (a) 18.5 and (b) 21.5. 
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charge of fuel entering the combustion chamber to the period when the first flame propagates [62]. 
The ignition delay period depends primarily on the ambient temperature. Due to fuel vaporization, 
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3.3. The Effect of Zinc Oxide Nano-Additives and Soybean Fuel Blend on Engine Combustion Characteristics

3.3.1. The Effect of SBME25-ZnO Nanofuel Blends on Ignition Delay at Different Compression Ratios

The ignition delay period is a critical phenomenon from the perspectives of preparation of the fuel
before being injected into the combustion chamber and selection of ideal injection timings. The ignition
delay period of a diesel engine is the time period between the start of injection and start of combustion.
The ignition delay period in the context of diesel engines is the period from the first charge of fuel
entering the combustion chamber to the period when the first flame propagates [62]. The ignition
delay period depends primarily on the ambient temperature. Due to fuel vaporization, the HRR curve
shows negative values prior to the start of combustion for diesel engines.

As it is evident from Figure 13a,b that the ignition delay period reduces with an increase in the
loading conditions due to a rise in the pressure and temperature for all the fuel blends. The rise in
pressure results in the mixture of molecules coming closely together, enhancing the chemical reactions
due to the active collisions of molecules, and resulting in a shorter ignition delay period. The higher
viscosity of soybean biodiesel results in poor atomization of fuel droplets, air-to-fuel mixing, and lower
flame cone angle, resulting in an increase in the delay period. The ZnO nanoparticles in SBME25 result
in a reduction in the ignition delay period due to enhancement of combustion rate and better premixed
combustion phase. At the higher compression ratio of 21.5, due to higher injection air-to-fuel mixture
in the combustion chamber, at the same injection timing and injection pressure, the ignition delay
period is lowered compared to 18.5 CR. At maximum load and compression ratio of 21.5, the values of
ignition delay period for SBME25ZnO concentrations of 50, 75, and 25 ppm, respectively, were 7.21,
8.125 and 8.786 ◦CA, while at a compression ratio of 18.5 the values were 7.744, 8.125, and 9.174 ◦CA.
At both compression ratios, the ignition delay period observed for SBMEZnO50 was lower than that
of all the fuel blends. At a compression ratio of 21.5 for the SBMEZnO50 fuel blend, reductions of
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25.02% and 5.38% were observed, and at a compression ratio 18.5, reductions of 23.47% and 2.18%
were observed, compared to SBME25 and neat diesel, respectively. This was due to the high catalytic
activity of zinc oxide nanoparticles, which enhance the combustion phenomena. However at higher
proportions of ZnO in the fuel blends, the ignition delay period slightly increases due to a negligible
increase in the viscosity.
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maximum pressure is reached, although the process of combustion is incomplete, and the combustion 
continues for another few °CA in the boundary of the combustion chamber. Peaks in the mean gas 
temperature for all the fuel blends are observed from 370 to 385 °CA, and the mean gas temperature 
for diesel is 1334.29 °C at 380 °CA. The nanofuel blend, SBME25ZnO50, exhibited a mean cylinder 
temperature of 1329.11 °C at 379 °CA. Slightly lower values of mean gas temperature were observed 
for SBME25: the peak of 1301.87 °C was seen at 380 °CA due to viscosity and density.  
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3.3.2. The Effect of SBME25-ZnO Nanofuel Blends on Mean Gas Temperature at Different
Compression Ratios

The mean value of the cylinder temperature of combusted and unburned gases present in the
combustion chamber during a cycle is known as mean gas temperature. Figure 14 illustrates the mean
gas temperature of fuel blends at varying crank angles at maximum load and compression ratio of 21.5.
The gases present in the cylinder are the blend of combusted and unburned air–fuel mixture. The mean
gas temperature ascertains the rate of combustion reaction of the fuel, and the desired value should be
nearer to the adiabatic temperature of the flame. The adiabatic flame temperature is achieved when
there is no loss in thermal energy and an adiabatic state is reached. At this point, maximum pressure is
reached, although the process of combustion is incomplete, and the combustion continues for another
few ◦CA in the boundary of the combustion chamber. Peaks in the mean gas temperature for all the
fuel blends are observed from 370 to 385 ◦CA, and the mean gas temperature for diesel is 1334.29 ◦C at
380 ◦CA. The nanofuel blend, SBME25ZnO50, exhibited a mean cylinder temperature of 1329.11 ◦C
at 379 ◦CA. Slightly lower values of mean gas temperature were observed for SBME25: the peak of
1301.87 ◦C was seen at 380 ◦CA due to viscosity and density.
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3.3.3. The Effect of SBME25-ZnO Nanofuel Blends on Heat Release Rate at Different
Compression Ratios

The first law of thermodynamics is used to evaluate the heat release rate (HRR), which is the
decrease in heat transfer and mass at cylinder pressure, and effective variations in volume at a closed
engine cycle. The contents of the cylinder are considered uniform with modeled properties in the
thermodynamic state and characterized by average values. The model is considered as having zero
dimension as no spatial variants are considered. In the current investigation, the experimental heat
release rate is determined using the first law-single zone model illustrated in Equation (5):

dQn

dθ
=

γh

γh − 1
× p

dV
dθ

+
1

γh − 1
× V

dp
dθ

+
dQw

dθ
(5)

where Tm is the mean in-cylinder temperature. γh is the specific heat, shown in Equation (6):

γh = 1.35− 6 × 10−5
× Tm + 10−8

× Tm2 (6)

In Figure 15a,b, the heat release rate is averaged over 400 cycles for a smooth curve and to avoid
any irregularity in the combustion cycles that may occur in diesel engines fueled with low-ignition
biofuels. The HRR is negative during the ignition delay period, due to the cooling effect caused by
the vaporization of the fuel and loss of heat at the cylinder walls. Once the auto-ignition starts in
the combustion process, the heat release rate becomes positive and a rapid growth in the peak is
observed. The increase in the heat release rate for all the nanofuel blends is due to an enhanced cetane
number and lower ignition delay period, which assist in increasing the efficiency of the engine. At a
compression ratio of 21.5, all the fuel blends illustrated an enhancement in the heat release rate due to
higher pressure and combustion rate, leading to complete burning of the fuel charge and resulting in
higher energy output compared with the compression ratio of 18.5. The HRR for the SBME25 biodiesel
blend was lower than the other fuel blends due to the high molecular weight and low burning velocity.
The enhancement in heat release rate for the nanofuel blends is due to improved surface area, volume,
high ignition properties, and thermal conductivity. The maximum peaks observed for SBME25 ZnO
(25, 50, and 75 mg/L, respectively) at compression ratio 18.5 were 51.31, 58.97, and 62.26 J/◦CA, while
the peaks for diesel and SBME25 were 66.72 and 49.12 J/◦CA, respectively. The compression ratio of
21.5 illustrated a higher HRR due to higher burning velocity of fuel blends; the HRR values for 25, 50,
and 75 ppm of ZnO in SBME25 were 61.844, 70.44, and 65.854 J/◦CA, respectively. The addition of zinc
oxide nanoparticles in the SBME25 biodiesel blend increases the HRR at both compression ratios due
to enhancement in oxygen content during combustion and atomization of fuel particles [33,56,60–65].
Table 7 illustrates the final results analysis of SBME25 and nanofuel blends.
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Table 7. The results analysis of SBME25 and nanofuel blends.

SBME25 SBME25ZnO25 SBME25ZnO50 SBME25ZnO75

Color
Code Description Engine

Parameters
CR
18.5

CR
21.5

CR
18.5 (%) CR

21.5 (%) CR
18.5 (%) CR

21.5 (%) CR
18.5 (%) CR

21.5 (%)

CR 18.5
BSFC (kg/kWh) 0.295 0.27 0.264 10.508 0.245 9.25 0.238 19.322 0.198 26.66 0.245 16.94 0.234 13.33

BTE (%) 20.36 23.23 23.63 16.56 25.923 11.592 28.547 40.211 28.62 23.2 26.277 28.86 27.65 19.024

CR 21.5
CO (% vol.) 0.38 0.28 0.35 7.895 0.24 14.28 0.211 44.47 0.201 28.21 0.295 22.36 0.229 18.21
HC (g/kWh) 0.2642 0.21 0.21 20.514 0.165 21.45 0.182 31.112 0.142 32.234 0.1914 27.55 0.16 23.807

Decreases
CO2 (% vol.) 5.384 5.11 4.714 12.44 4.6 9.98 4.471 23.402 4.003 21.66 4.124 16.951 4.25 16.82
NOx (ppm) 438.48 430.68 445.741 1.62 442.786 2.27 457.786 4.235 455.408 5.414 468.474 6.128 466.11 7.601

Negative
Rise

Smoke (HSU) 60.84 58.412 55.741 8.334 51.644 11.58 48.7 19.954 45.24 22.55 52.64 13.477 49.35 15.55
ID (◦CA) 10.12 9.64 9.174 9.347 8.786 9.72 7.744 23.47 7.21 26.2 8.22 19.74 8.125 18.64

Increases
HRR (◦CA) 49.125 58.97 51.312 4.426 61.844 4.841 62.26 26.715 70.44 19.45 58.97 20.972 65.854 11.6
MGT (◦K) - 1303.36 - - 1311.97 0.66 - - 1334.72 2.406 - - 1317.22 1.06
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4. Conclusions

The present study focuses on the effects of zinc oxide nanoparticles and soybean biodiesel blends at
different loads and varying CRs on a VCR, single cylinder engine with IT of 23◦BTDC and at a constant
speed 1500 rpm. In the investigation, the engine was operated at two compression ratios of 18.5 and
21.5. Three nanofuel blends, SBME25ZnO25, SBME25ZnO50, and SBME25ZnO75, were prepared using
the ultrasonication process by varying the dosage levels of ZnO nanoparticles and sodium dodecyl
sulfate (SDS) surfactant. The following conclusions are drawn based on the obtained results:

1. The addition of ZnO nanoparticles to SBME25 enhanced the fuel properties, such as the calorific
value and cetane number, while the density and viscosity were comparable to SBME25.

2. The performance characteristics of the VCR engine were enhanced for the ternary fuel blends.
The dosage level of 50 ppm in SBME25 biodiesel and compression ratio of 21.5 increased the
BTE by 20.59% and reduced the BSFC by 20.37% compared with the SBME25 fuel blend due to
enhanced catalytic activity of zinc oxide nanoparticles.

3. The heat release rate and mean gas temperature of SBME25ZnO50 were comparable with diesel
fuel. The enhancement in the heat release rate is due to the micro-explosion phenomenon
occurring in the combustion chamber.

4. Emissions decreased with the addition of ZnO nanoparticles in the fuel blends. HC, CO,
smoke, and CO2 emissions were reduced by 30.83%, 41.08%, 22.54%, and 21.66%, respectively.
NOx emissions increased slightly due to excess oxygen in the combustion chamber.

The results and conclusion validate that ZnO nanoparticles in soybean biodiesel at a CR of
21.5 enhance performance and combustion, and reduce the emissions of a common rail direct
injection engine.

5. Recommendations for Future Research

Based on a recent comprehensive review of the effect of the addition of nanoparticles to fuel
blends on diesel engine characteristics by Soudagar et al. [1], the future research topics are suggested
as follows:

1. An extensive investigation of the surface reaction and engine wear on engine parts, such as the
combustion chamber, piston and piston rings, cylinder and cylinder linings, fuel injectors and
exhaust pipe, is required to confirm the reliability of nano-additives in a diesel engine.

2. The impact of metal-based nanoparticles used as fuel additives in diesel/biodiesel fuel on human
health should be examined before commercialization of the technology.

3. There is scope for further research on the effects of nanoparticles in exhaust emissions. This may
raise an issue related to environmental pollution caused by the addition of nanoparticles to diesel
and bio-diesel fuels.

4. Analysis of the cost and complexity in the preparation of nanoparticles, encompassing public
safety and economic feasibility, should be considered in future research. Furthermore, efforts
should be made in developing cost-effective and efficient nanoparticles.
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Nomenclature

NPs Nanoparticles
CRDI Common rail direct injection
CI Compression ignition
nm Nanometer
g/kWh Grams per kilowatt hour
CC Combustion chamber
ATDC After top dead center
FFA Free fatty acid
ASTM American Society for Testing and Materials
ID Injection delay
CO2 Carbon dioxide
NOX Oxides of nitrogen
BTE Brake thermal efficiency
SFC Specific fuel consumption
IP Injection pressure
EGT Exhaust gas temperature
◦CA Crank angle (degrees)
SBME Soybean methyl ester (Soybean biodiesel)
SBME25
ZnO25

SBME25 and 25 ppm
ZnO NPs

SBME25
ZnO75

SBME25 and 75 ppm
ZnO NPs

ZnO Zinc oxide
SDS Sodium dodecyl sulfate
IC Internal combustion
ppm Parts per million
m Meter
HCC Hemispherical combustion chamber
BTDC Before top dead center
CR Compression ratio
PP Peak pressure
HC Hydrocarbon
CO Carbon monoxide
PM Particulate matter
BSFC Brake specific fuel consumption
Tw Wall temperature
IT Injection timing
HRR Heat release rate
D100 100% diesel
SBME25 25% Soybean methyl ester blended with diesel
SBME25
ZnO50

SBME25 and 50 ppm
ZnO NPs
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