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Abstract: In this paper, by utilizing the resolvent operator theory, the stochastic analysis method
and Picard type iterative technique, we first investigate the existence as well as the uniqueness
of mild solutions for a class of α ∈ (1, 2)-order Riemann–Liouville fractional stochastic evolution
equations of Sobolev type in abstract spaces. Then the symmetrical technique is used to deal with the
α ∈ (1, 2)-order Caputo fractional stochastic evolution equations of Sobolev type in abstract spaces.
Two examples are given as applications to the obtained results.

Keywords: fractional resolvent family; existence and uniqueness; fractional stochastic evolution
equations; Picard’s iteration technique

1. Introduction

Since fractional differential equations can describe many problems in the fields of physical,
biological and chemical and so on, some properties of solutions for the fractional differential equations
have been considered by many authors, see [1–8]. In [2], when the nonlinearity satisfies non-Lipschitz
conditions, Wang studied the existence of mild solutions of α ∈ (0, 1)-order fractional stochastic
evolution equations with Caputo derivative in abstract spaces. Li et al. [3] obtained the existence
as well as the uniqueness of weak solutions and strong solutions of an inhomogeneous Cauchy
problem of order α ∈ (1, 2) involving Riemann–Liouville fractional derivatives via the technique of
fractional resolvent.

Sobolev type (fractional) differential equation arises in various areas of physical problems,
see [4,5], hence it has been investigated by researchers recently, see [4–7]. Fec̆kan et al. [5] proved
the controllability results for α ∈ (0, 1)-order fractional functional evolution equations of Sobolev
type in abstract spaces. By virtue of the characteristic solution operators, they obtained the exact
controllability results via Schauder fixed point theorem. In [8], by using the characterizations of
compact resolvent families, Ponce investigated the Cauchy problem for a class of fractional evolution
equations. Furthermore, the stochastic perturbation is unavoidable in the natural systems. Therefore,
it is important to consider stochastic effects in studying fractional differential systems. Recently, in [6],
by means of the operator semigroup theory, fractional calculus and stochastic analysis technique,
Benchaabane et al. established a group of sufficient conditions to guarantee the existence as well as the
uniqueness of solutions for the α ∈ (0, 1)-order fractional stochastic evolution equations of Sobolev
type. As far as we know, the existence as well as the uniqueness of mild solutions for the Sobolev type
fractional stochastic evolution equations of order α ∈ (1, 2) have not been extensively discussed yet.

In the present work, we consider the existence as well as the uniqueness of mild solutions for
two classes of the initial value problems (IVPs) of fractional stochastic equations of Sobolev type in a
Hilbert space X
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LDα

t (Su(t)) = Au(t) + f (t, u(t)) + Σ(t, u(t)) dW(t)
dt , t ∈ I := [0, b],

S(g2−α ∗ u)(0) = ξ, [S(g2−α ∗ u)]′(0) = η
(1)

and 
CDα

t (Su(t)) = Au(t) + f (t, u(t)) + Σ(t, u(t)) dW(t)
dt , t ∈ I,

Su(0) = ξ, (Su)′(0) = η,
(2)

where 1 < α < 2 and b > 0 are constants, LDα
t and CDα

t denote, respectively, the α-order fractional
derivative operators of Riemann–Liouville and Caputo, A : D(A) ⊂ X → X is a densely defined
and closed linear operator in X, S : D(S) ⊂ X → X is also a closed linear operator in X, ξ and η are
X-valued random variable, f , Σ, W and g2−α will be specified later.

In the previous works, see [5,6], the authors often make the following assumptions on A and S
when they investigate the Sobolev type differential equations.

(i) D(S) ⊂ D(A) and S is bijective;
(ii) S has the compact and bounded inverse S−1.

In this situation, −AS−1 generates a semigroup T(t) := e−AS−1t for t ≥ 0 and S : D(S) ⊂ X → X
may be bounded.

In this paper, without assuming (i) and (ii) on A and S as well as any compactness conditions on
f and Σ, we investigate the existence as well as the uniqueness of mild solutions of the IVPs (1) and (2).
More precisely, we first present the concept of (α, α− 1)-resolvent family and (α, 1)-resolvent family
generated by the pair (A, S). With the help of (α, α− 1)-resolvent family and (α, 1)-resolvent family
and Laplace transform, the correct definitions of mild solutions of the IVPs (1) and (2) are presented.
Under some essential conditions on f and Σ, we study the existence as well as the uniqueness of
mild solutions of the IVPs (1) and (2) by virtue of the iteration technique of Picard type. We have
to emphasize that we do not assume the compactness of the (α, α − 1)-resolvent family and the
(α, 1)-resolvent family in our main results.

2. Preliminaries

In this part, we first recall some definitions of fractional calculus. The definition of the fractional
resolvent family is also given in this section. By using the fractional resolvent family and Laplace
transform, the concepts of mild solution of the IVPs (1) and (2) are introduced, and an inequality is
given in Lemma 1.

Denote by (Ω,F , {Ft}t≥0,P) the complete probability space involving a filtration {Ft}t≥0, which
satisfies the usual conditions. On (Ω,F , {Ft}t≥0,P), {W(t)}t≥0 is a Q-wiener process with values in
X, where Q is a bounded linear covariance operator and trQ < +∞. Let `k ≥ 0 be a bounded sequence
and {ek}k≥1 a complete orthonormal system of X satisfying Qek = `kek for k = 1, 2, · · · . Let {βk}k≥1
be independent Brownian motions satisfying

〈W(t), x〉 =
∞

∑
k=1

√
`k〈ek, x〉βk(t), ∀x ∈ X, t ≥ 0.

Further, let Ft be the σ-algebra generated by {W(θ) : 0 ≤ θ ≤ t}. Put L0
2 := L2(Q

1
2 , Y). Then L0

2 is a
real separable Hilbert space endowed with ‖ϕ‖2

L0
2
= tr[ϕQϕ∗]. For 1 ≤ p ≤ +∞, denote by Lp(F , X)

the set of strongly F -measurable random variables with values in X. Then Lp(F , X) is a Banach space
satisfying E‖x‖p ≤ +∞. Let C(I, Lp(F , X)) be the Banach space of all continuous maps from I to
Lp(F , X) satisfying the condition

sup
t∈I

E‖x(t)‖p < +∞.
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Let C p
b ⊂ C(I, Lp(F , X)) be the closed subspace of C(I, Lp(F , X)), which consist of Ft-adapted and

measurable processes u(t). Put

‖u‖C p
b

:= (sup
t∈I

E‖u(t)‖p)
1
p , ∀u ∈ C p

b , p ≥ 2. (3)

Then (C p
b , ‖ · ‖C p

b
) is a Banach space. ξ and η in the IVPs (1) and (2) are F0-measurable and X-valued

random variable independent of W.
Firstly, we recall a group of concepts of fractional calculus, see [9,10] for more details. For every

ν ≥ 0, let

gν(t) =


tν−1

Γ(ν) , i f t > 0,

0, else.

We define the finite convolution of the functions f and g by

( f ∗ g)(s) =
∫ s

0
f (s− θ)g(θ)dθ.

Definition 1. For α > 0, the α-order Riemann–Liouville fractional integral of the function u ∈ L1(I) is
defined by

Jα
t u(t) = (gα ∗ u)(t), t > 0.

Definition 2. For α > 0, the α-order Riemann-Liouville fractional derivative is defined for all u ∈ L1(I)
satisfying gm−α ∗ u ∈Wm,1(I) by

LDα
t u(t) = Dm

t (gm−α ∗ u)(t), t > 0,

where Dm
t = dm

dtm .

Definition 3. For α > 0, the α-order Caputo fractional derivative of all u ∈ L1(I) is defined by

CDα
t u(t) = Jm−α

t
LDm

t u(t), t > 0,

If u ∈ Cm(R+), for α ∈ (m− 1, m), the α-order Caputo fractional derivative is defined by

CDα
t u = (gm−α ∗ u(m))(t), t > 0.

Definition 4. Let the function u be defined on R+. If the integral∫ ∞

0
e−λθu(θ)dθ

is convergence, then the Laplace transform of u is given by

û(λ) =
∫ ∞

0
e−λθu(θ)dθ.

Remark 1. If a function u is defined on R+ satisfying the conditions
(K1) u(t) is piecewise continuous on every bounded subset of t ≥ 0;
(K2) There are L∗ ≥ 0 and a ≥ 0 satisfying

|u(t)| ≤ L∗eat, ∀t ≥ 0,

then the Laplace transform of u exists for Re(λ) > a.
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Hence from [10], since ĝα(λ) = λ−α for any α > 0, by Remark 1 and the properties of the Laplace
transform, we have

L̂Dα
t u(λ) = λαû(λ)−

m−1

∑
n=0

(gm−α ∗ u)(n)(0)λm−1−n (4)

and
ĈDα

t u(λ) = λαû(λ)−
m−1

∑
n=0

u(n)(0)λα−1−n. (5)

In the following, we establish the concept of the fractional resolvent family which is a basic
concept in our main results, see [4,8] for more details. Let {Π(t)}t≥0 be a strongly continuous family
of B(X). If there exist M ≥ 1 and ω > 0 satisfying

‖Π(t)‖ ≤ Meωt, ∀t ≥ 0,

then it is said to be of type (M, ω). Denote the set ρS(A) by
ρS(A) := {µ ∈ C | (µS− A) : D(A) ∩ D(S) → X is invertible and (µS− A)−1 ∈ B(X,D(A) ∩

D(S))}.
Let R(λαS, A) := (λαS − A)−1. According to the Definition 5 of [8], we present the

following definition.

Definition 5. Let A : D(A) ⊂ X → X and S : D(S) ⊂ X → X be closed linear operator, D(A) ∩D(S) 6=
{0}, and α > 0, β > 0. If there are ω ≥ 0 and a strongly continuous function CS

α,β : R+ → B(X) such that

CS
α,β(t) is of type (M, ω), {λα : Reλ > ω} ⊂ ρS(A), and for u ∈ X,

λα−βR(λαS, A)u =
∫ ∞

0
e−λθCS

α,β(θ)udθ, Reλ > ω, (6)

Then the pair (A, S) generates an (α, β)-resolvent family {CS
α,β(t)}t≥0 which is of type (M, ω).

For 1 < α < 2, choosing β = α− 1 > 0, by (6), we have

λR(λαS, A)u =
∫ ∞

0
e−λθCS

α,α−1(θ)udθ, Reλ > ω, u ∈ X. (7)

Then the pair (A, S) generates an (α, α− 1)-resolvent family {CS
α,α−1(t)}t≥0 of type (M, ω). Particularly,

if we choose β = 1, then {CS
α,β(t)}t≥0 changes to {CS

α,1(t)}t≥0, which is the (α, 1)-resolvent family.
It satisfies

λα−1R(λαS, A)u =
∫ ∞

0
e−λθCS

α,1(θ)udθ, Reλ > ω, u ∈ X.

For α, β, γ > 0, Since ̂(gγ ∗ CS
α,β)(λ) =

̂CS
α,β+γ(λ), choosing 1 < α < 2, β = α− 1, γ = 1, then by

the properties of Laplace transform, we get

CS
α,α(t) = (g1 ∗ CS

α,α−1)(t)

=
∫ t

0
CS

α,α−1(s)ds.

Consequently, for all u ∈ X, we have

R(λαS, A)u =
∫ ∞

0
e−λθCS

α,α(θ)udθ, Reλ > ω. (8)
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Since {CS
α,α−1(t)}t≥0 is of type (M, ω), for any t ∈ I, we have

‖CS
α,α−1(t)‖ ≤ Meωb.

Without loss of generality, we put M := sup
t∈I
‖CS

α,α−1(t)‖. Thus, ‖CS
α,α(t)‖ ≤ Mb, ∀t ∈ I.

Let

û(λ) =
∫ ∞

0
e−λθu(θ)dθ,

f̂ (λ) =
∫ ∞

0
e−λθ f (θ, u(θ))dθ.

Applying the Laplace transform to the first equation of the IVP (1), by virtue of Ŝu(λ) = Sû(λ) and (4),
we have

L̂Dα
t (Su(λ)) = λαSû(λ)− λS(g2−α ∗ u)(0)− [S(g2−α ∗ u)]′(0),

= Aû(λ) + f̂ (λ) +
∫ ∞

0
e−λθΣ(θ, u(θ))dW(θ).

Together this fact with (7) and (8), we obtain

û(λ) = λR(λαS, A)ξ + R(λαS, A)η,

+ R(λαS, A) f̂ (λ) + R(λαS, A)
∫ ∞

0
e−λθΣ(θ, u(θ))dW(θ)

=
∫ ∞

0
e−λθCS

α,α−1(θ)ξdθ +
∫ ∞

0
e−λθCS

α,α(θ)ηdθ,

+
∫ ∞

0
e−λθCS

α,α(θ) f̂ (λ)dθ +
∫ ∞

0
e−λθCS

α,α(θ)

[ ∫ ∞

0
e−λtΣ(t, u(t))dW(t)

]
dθ.

Since ∫ ∞

0
e−λθCS

α,α(θ) f̂ (λ)dθ =
∫ ∞

0
e−λθCS

α,α(θ)

[ ∫ ∞

0
e−λt f (t, u(t))dt

]
dθ

=
∫ ∞

0

∫ ∞

0
e−λ(θ+t)CS

α,α(θ) f (t, u(t))dθdt

=
∫ ∞

0

∫ ∞

t
e−λθCS

α,α(θ − t) f (t, u(t))dθdt

=
∫ ∞

0
e−λθ

∫ θ

0
CS

α,α(θ − t) f (t, u(t))dtdθ,

and (similarly)

∫ ∞

0
e−λθCS

α,α(θ)

[ ∫ ∞

0
e−λtΣ(t, u(t))dW(t)

]
dθ =

∫ ∞

0
e−λθ

[ ∫ θ

0
CS

α,α(θ − t)Σ(t, u(t))dW(t)
]

dθ,

by the properties of Laplace transform, we get

u(t) = CS
α,α−1(t)ξ + CS

α,α(t)η +
∫ t

0
CS

α,α(t− θ) f (θ, u(θ))dθ +
∫ t

0
CS

α,α(t− θ)Σ(θ, u(θ))dW(θ). (9)

Thus, based on the above discussion, the mild solution of the IVP (1) is defined below.
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Definition 6. A stochastic process u ∈ C(I, Lp(F , X)) is called a mild solution of the IVP (1) if it satisfies the
integral Equation (9).

Similarly, we can define the mild solution of the IVP (2) by applying (5).

Definition 7. A stochastic process u ∈ C(I, Lp(F , X)) is called a mild solution of the IVP (2) if it satisfies the
integral equation

u(t) = CS
α,1(t)ξ + KS

α,1(t)η +
∫ t

0
HS

α,1(t− θ) f (θ, u(θ))dθ +
∫ t

0
HS

α,1(t− θ)Σ(θ, u(θ))dW(θ), (10)

where {CS
α,1(t)}t≥0 is the (α, 1)-resolvent family generated by (A, S), and

KS
α,1(t) =

∫ t

0
CS

α,1(θ)dθ, ∀t ≥ 0,

HS
α,1(ζ) =

1
Γ(α− 1)

∫ ζ

0
(ζ − θ)α−2CS

α,1(θ)dθ, ∀ζ ≥ 0.

At last, we recall an inequality, which cites from the Proposition 1.9 of [11–14].

Lemma 1. If Σ : I ×Ω→ L0
2 is a strongly measurable mapping satisfying

∫ T
0 E‖Σ(θ)‖p

L0
2
dθ < +∞ for some

p ≥ 2, then

E
∥∥∥∥ ∫ t

0
Σ(θ)dW(θ)

∥∥∥∥p

≤ LΣ

∫ t

0
E‖Σ(θ)‖p

L0
2
dθ, ∀t ∈ I,

where LΣ > 0 is a constant involving p and b.

3. Main Results

In this part, by utilizing the iteration technique of Picard type, we will prove the existence as well
as the uniqueness of mild solutions of the IVPs (1) and (2). To this end, the following assumptions
are needed.

Hypothesis 1 (H1). f : I × X → X and Σ : I × X → L0
2 are continuous functions and there is a function

Φ : I ×R+ → R+ satisfying

max
{

E‖ f (t, x)‖p, E‖Σ(t, x)‖p
L0

2

}
≤ Φ(t, E‖x‖p), x ∈ Lp(F , X), t ∈ I.

Hypothesis 2 (H2). The function Φ : I ×R+ → R+ satisfies the assumptions:

(i) For every u ∈ [0, ∞), Φ(·, u) is locally integrable.
(ii) For every t ∈ I, Φ(t, ·) is nondecreasing and continuous.

(iii) For all C1 > 0, C2 ≥ 0, the equation

u(t) = C1 + C2

∫ t

0
Φ(s, u(s))ds

has a global solution on I.

Hypothesis 3 (H3). There exists a function Ψ : I ×R+ → R+ satisfying

max
{

E‖Σ(t, x)− Σ(t, y)‖p
L0

2
, E‖ f (t, x)− f (t, y)‖p

}
≤ Ψ(t, E‖x− y‖p), ∀ x, y ∈ Lp(F , X), t ∈ I.
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Hypothesis 4 (H4). The function Ψ : I ×R+ → R+ satisfies the assumptions:

(i) For each u ∈ [0, ∞), Ψ(·, u) is locally integrable.
(ii) For t ∈ I, the function Ψ(t, ·) is nondecreasing and continuous.

(iii) Ψ(t, 0) = 0 and if a monotone nondecreasing and nonnegative function ϑ(t), t ∈ I satisfies ϑ(t) ≤ τ
∫ t

0 Ψ(θ, ϑ(θ))dθ, t ∈ I,

ϑ(0) = 0,

where τ > 0 is a constant, then ϑ(t) ≡ 0 for all t ∈ I.

Remark 2. If Ψ(t, u) = Lu, u ≥ 0, where L > 0, the condition Hypothesis 3 (H3) implies the global
Lipschitz condition. Hence, the condition Hypothesis 3 (H3) includes some existing cases.

Remark 3. If u(t) is a global solution on I of the IVP of the first-order ordinary differential equation{
u′(t) = C2Φ(t, u(t)), t ∈ I,

u(0) = C1,

where C1 > 0, C2 ≥ 0 are constants, then the assumption Hypothesis 2 (H2)(iii) holds.

We will use Picard type approximate technique to prove our main results. For this purpose,
we define the sequence of stochastic process {un}n≥0 as follows: u0(t) = CS

α,α−1(t)ξ + CS
α,α(t)η, t ∈ I,

un+1(t) = CS
α,α−1(t)ξ + CS

α,α(t)η + Q1(un)(t) + Q2(un)(t), t ∈ I, n ≥ 0,
(11)

where

Q1(un)(t) :=
∫ t

0
CS

α,α(t− θ) f (θ, un(θ))dθ,

Q2(un)(t) :=
∫ t

0
CS

α,α(t− θ)Σ(θ, un(θ))dW(θ).

Lemma 2. Let (A, S) be the pair which generates an (α, α− 1)-resolvent family {CS
α,α−1(t)}t≥0 of type (M, ω).

If the Hypothesis 1 (H1) and Hypothesis 2 (H2) hold, the sequence {un}n≥0 is well-defined. Moreover,
there is a constant C > 0 satisfying

sup
n≥0
‖un‖p

C p
b
≤ C. (12)

Proof of Lemma 2. By (11), we have

E‖un+1(t)‖p ≤ 4p−1E‖CS
α,α−1(t)ξ‖p + 4p−1E‖CS

α,α(t)η‖p

+4p−1E‖Q1(un)(t)‖p + 4p−1E‖Q2(un)(t)‖p, t ∈ I, n ≥ 0.

By applying Hölder inequality and Lemma 1, we get
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E‖Q1(un)(t)‖p ≤ MpbpE‖
∫ t

0
f (θ, un(θ))dθ‖p

≤ Mpb2p−1
∫ t

0
E‖ f (θ, un(θ))‖pdθ

≤ Mpb2p−1
∫ t

0
Φ(θ, E‖un(θ))‖p)dθ

and

E‖Q2(un)(t)‖p ≤ MpbpLΣ

∫ t

0
E‖Σ(θ, un(θ))‖p

L0
2
dθ

≤ MpbpLΣ

∫ t

0
Φ(θ, E‖un(θ))‖p)dθ.

Together these facts with the monotonicity of Φ, by (3), we conclude that

‖un+1‖
p
C p

t
≤ C1 + C2

∫ t

0
Φ(θ, ‖un‖p

C p
θ

)dθ, (13)

where C1 = 4p−1Mp(E‖ξ‖p + bpE‖η‖p), C2 = 4p−1Mpbp(bp−1 + LΣ).
In view of Hypothesis 2 (H2)(iii), the solution u(·) of the integral equation

u(t) = C1 + C2

∫ t

0
Φ(θ, u(θ))dθ (14)

global exists on I. In the following, we prove ‖un‖C p
t
≤ u(t) for all t ∈ I, n ≥ 0 by utilizing the

induction method. Indeed,

‖u0‖
p
C p

t
≤ 2p−1MpE‖ξ‖p + 2p−1MpbpE‖η‖p ≤ C1 ≤ u(t), ∀t ∈ I.

Let ‖un‖C p
t
≤ u(t) for all t ∈ I, n ≥ 0. By means of (13) and (14), we obtain

u(t)− ‖un+1‖
p
C p

t
≥ C2

∫ t

0

(
Φ(θ, u(θ))−Φ(θ, ‖un‖p

C p
θ

)
)
dθ ≥ 0, ∀t ∈ I.

This implies that (12) holds with C := u(b) and the sequence {un}n≥0 is well-defined.

Theorem 1. Let (A, S) be the pair which generates an (α, α − 1)-resolvent family {CS
α,α−1(t)}t≥0 of type

(M, ω). Suppose that the Hypothesis 1 (H1)–Hypothesis 4 (H4) hold, then there is a unique mild solution
of the IVP (1) on I.

Proof of Theorem 1. By the Hypothesis 3 (H3), Lemma 1 and (11), for any m ≥ n ≥ 0, we have

E‖um(t)− un(t)‖p ≤ 2p−1E‖Q1(um−1)(t)−Q1(un−1)(t)‖p

+2p−1E‖Q2(um−1)(t)−Q2(un−1)(t)‖p

≤ 2p−1Mpb2p−1
∫ t

0
E‖ f (θ, um−1(θ))− f (θ, un−1(θ))‖pdθ

+2p−1MpbpLΣ

∫ t

0
E‖Σ(θ, um−1(θ))− Σ(θ, un−1(θ))‖

p
L0

2
dθ

≤ 2p−1Mpbp(bp−1 + LΣ)
∫ t

0
Ψ(θ, E‖um−1(θ)− un−1(θ)‖p)dθ, ∀t ∈ I.
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By the monotonicity of Ψ and (3), we can obtain

‖um − un‖p
C p

t
≤ τ

∫ t

0
Ψ(θ, ‖um−1 − un−1‖

p
C p

θ

)dθ, (15)

where τ := 2p−1Mpbp(bp−1 + LΣ). Let

φn(t) = sup
m≥n
‖um − un‖p

C p
t
, ∀t ∈ I.

By (15), we have

φn(t) ≤ τ
∫ t

0
Ψ(θ, φn−1(θ))dθ. (16)

Since {φn(t)}n≥0 is monotone and uniformly bounded due to Lemma 2, we know that there exists a
function φ(t) satisfying

lim
n→∞

φn(t) = φ(t), ∀t ∈ I.

Taking n → ∞ in the inequality (16), by the continuity of Ψ and dominated convergence theorem,
we deduce that

φ(t) ≤ τ
∫ t

0
Ψ(θ, φ(θ))dθ.

Hence, φ(t) ≡ 0 for all t ∈ I in view of Hypothesis 4 (H4). Particularly, φ(b) = 0. Consequently,
we obtain

0 ≤ ‖um − un‖p
C p

b
≤ φn(b)→ φ(b) = 0.

Then {un}n≥0 is a Cauchy sequence in C p
b . Since C p

b is complete, we put

u∗(t) := lim
n→∞

un(t), ∀t ∈ I.

Then taking n→ ∞ in the second equality of (11), by the continuity of f , Σ and dominated convergence
theorem, we can obtain

u∗(t) = CS
α,α−1(t)ξ +CS

α,α(t)η +
∫ t

0
CS

α,α(t− θ) f (θ, u∗(θ))dθ +
∫ t

0
CS

α,α(t− θ)Σ(θ, u∗(θ))dW(θ), ∀t ∈ I.

Therefore, the IVP (1) has a mild solution u∗ belongs to C p
b due to Definition 6.

Next, we prove the uniqueness. Let the IVP (1) have mild solutions u∗ and v∗. By a similar
method as above, we obtain

‖u∗ − v∗‖p
C p

t
≤ τ

∫ t

0
Ψ(θ, ‖u∗ − v∗‖p

C p
θ

)dθ.

Hence ‖u∗ − v∗‖p
C p

t
≡ 0 for all t ∈ I. Thus, u∗ ≡ v∗ and the proof is completed.

For the IVP (2), by (10), we define the sequence of stochastic process {vn}n≥1 by v0(t) = CS
α,1(t)ξ + KS

α,1(t)η, t ∈ I,

vn+1(t) = CS
α,1(t)ξ + KS

α,1(t)η + Q1(vn)(t) + Q2(vn)(t), t ∈ I, n ≥ 0,

where

Q1(vn)(t) =
∫ t

0
HS

α,1(t− θ) f (θ, vn(θ))dθ,

Q2(vn)(t) =
∫ t

0
HS

α,1(t− θ)Σ(θ, vn(θ))dW(θ).
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By utilizing similar techniques as in the proof of Lemma 2 and Theorem 1, the following conclusions
are obtained.

Lemma 3. Let the pair (A, S) generate an (α, 1)-resolvent family {CS
α,1(t)}t≥0 of type (M, ω). If the

Hypothesis 1 (H1) and Hypothesis 2 (H2) hold, the sequence {vn}n≥0 is well-defined. Moreover, there is a
constant C > 0 satisfying

sup
n≥0
‖vn‖p

C p
b
≤ C.

Theorem 2. Let the pair (A, S) generate an (α, 1)-resolvent family {CS
α,1(t)}t≥0 of type (M, ω). If the

Hypothesis 1 (H1)–Hypothesis 4 (H4) hold, there is a unique mild solution of the IVP (2) on I.

Remark 4. In Theorems 1 and 2, we do not assume the compactness of fractional resolvent families
{CS

α,α−1(t)}t≥0 and {CS
α,1(t)}t≥0 as well as any compact conditions on f and Σ. Hence our results extend some

results of [4,8].

Remark 5. In Theorems 1 and 2, we do not assume the existence, boundedness and compactness of S−1, which
are essential assumptions of [5,6]. So, the operator S in the IVP (1) and (2) may be unbounded. Therefore, our
results improve the ones of [5,6].

Remark 6. By employing the symmetrical technique of Theorem 1 and 2, we can study the fractional evolution
systems in the following form

LDα
t (Su(t)) = Au(t) + S[ f (t, u(t)) + Σ(t, u(t)) dW(t)

dt ], t ∈ I,

S(g2−α ∗ u)(0) = Sξ, [S(g2−α ∗ u)]′(0) = Sη
(17)

and 
CDα

t (Su(t)) = Au(t) + S[ f (t, u(t)) + Σ(t, u(t)) dW(t)
dt ], t ∈ I,

Su(0) = Sξ, (Su)′(0) = Sη,
(18)

where 1 < α < 2, LDα
t ,C Dα

t , A and S are defined as in the IVP (1) and (2), ξ, η ∈ D(S), f , Σ, W and g2−α

are appropriate functions.
In this case, similar to (6) and Definition 5, for any α > 0, β > 0, let (A, S) generate an (α, β)-resolvent

family {CS
α,β(t)}t≥0 of type (M, ω) satisfying

λα−βR(λαS, A)Su =
∫ ∞

0
e−λθCS

α,β(θ)udθ, Reλ > ω, u ∈ D(S).

If the functions f : I × X → D(S) ⊂ X and Σ : I × X → D(S) ⊂ L0
2 satisfy the Hypothesis 1

(H1)–Hypothesis 4 (H4), the fractional evolution systems (17) and (18) have a unique mild solution
on I, respectively.

4. Applications

Let X := L2[0, π]. We consider the Caputo fractional partial differential equation with
initial-boundary conditions of order α ∈ (1, 2)

CDα
t [(I − ∂2

∂s2 )u(t, s)] = ∂4

∂s4 u(t, s) + h(t, s, u(t, s)) + σ(t, s, u(t, s)) dW(t)
dt , (t, s) ∈ [0, 1]× [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, 1],

[(I − ∂2

∂s2 )u](0, s) = ξ(s), s ∈ [0, π],

[(I − ∂2

∂s2 )u]t(0, s) = η(s), s ∈ [0, π].

(19)
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We define A : D(A) ⊂ X → X and S : D(S) ⊂ X → X by

Au := − ∂4

∂s4 u, ∀u ∈ D(A),

Su := (I − ∂2

∂s2 )u, ∀u ∈ D(S),

where D(A) = D(S) = {u ∈ X : u ∈W4,2[0, π], and u(0) = u(π) = 0}. From [4,5,7], we have

Au = −
∞

∑
`=1

`4〈u, e`〉e`, u ∈ D(A),

Su = −
∞

∑
`=1

(1 + `2)〈u, e`〉e`, u ∈ D(S),

where e`(s) =
√

2
π sin `s, ` ∈ N is the eigenvector of A associated with the eigenvalue −`4. From [4],

we obtain that (A, S) generates an (α, 1)-resolvent family CS
α,1(t)(t ≥ 0) expressed by

CS
α,1(t)u =

∞

∑
n=1

ρn
α(t)〈u, en〉en, ∀u ∈ X,

where

ρn
α(t) =

∞

∑
n=1

(−1)kn4ktαk

(1 + n2)kΓ(αk + 1)
.

By [4], we know that CS
α,1(t)(t ≥ 0) is of type (2, 1).

Let u(t)(s) = u(t, s) and
f (t, u(t))(s) = h(t, s, u(t, s)),

Σ(t, u(t))(s) = σ(t, s, u(t, s)).

Then the problem (19) can be abstracted as the IVP (2). If we assume that the Hypothesis 1
(H1)–Hypothesis 4 (H4) hold, by Theorem 2, there is a unique mild solution of the IVP (19) on
[0, 1].

Analogously, we can investigate the Riemann-Liouville fractional partial differential equation
with initial-boundary conditions of order α ∈ (1, 2)

LDα
t [(I − ∂2

∂s2 )u(t, s)] = ∂4

∂s4 u(t, s) + g(t, s, u(t, s)) + σ(t, s, u(t, s)) dW(t)
dt , t ∈ [0, 1], s ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, 1],

[(I − ∂2

∂s2 )(g2−α ∗ u)](0, s) = ξ(s), s ∈ [0, π],

[(I − ∂2

∂s2 )(g2−α ∗ u)]t(0, s) = η(s), s ∈ [0, π].

(20)

Similarly, (A, S) can generate an (α, α− 1)-resolvent family CS
α,α−1(t)(t ≥ 0), which is of type (2, 1).

Under the same assumptions, we can obtain that there is a unique mild solution of the IVP(20) on [0, 1]
due to Theorem 1.

5. Conclusions

In the present work, we investigate the existence as well as the uniqueness of mild solutions for
the IVPs of Sobolev type fractional evolution equations involving α ∈ (1, 2)-order Riemann–Liouville
or Caputo fractional derivatives. By using the stochastic analysis method, the Laplace transform and
the fractional resolvent family, we first present the concept of mild solutions to the concerned problems.
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Then the existence as well as the uniqueness theorems are proved by using an iteration technique of the
Picard type. At the end of this paper, two examples are provided as applications of the abstract results.
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Nomenclature

The next list describes several symbols in the manuscript.
X, Y real separable Hilbert spaces
B(X, Y) the space of all bounded linear operators from X to Y
B(X) the space of all bounded linear operators from X to X
m the smallest integer which is bigger than or equal to any α > 0
Γ(·) the Gamma function
R+ [0,+∞)

C the complex number

References

1. Wang, J.R.; Zhou, Y.; Medved, M. On the solvability and optimal controls of fractional integrodifferential
evolution systems with infinite delay. J. Optim. Theory Appl. 2012, 152, 31–50. [CrossRef]

2. Wang, J.R. Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces.
Appl. Math. Comput. 2015, 256, 315–323. [CrossRef]

3. Li, K.X.; Peng, J.G.; Jia, J.X. Cauchy problems for fractional differential equations with Riemann-Liouville
fractional derivatives. J. Funct. Anal. 2012, 263, 476–510. [CrossRef]

4. Chang, Y.K.; Pei, Y.T.; Ponce, R. Existence and optimal controls for fractional stochastic evolution equations
of Sobolev type via fractional resolvent operators. J. Optim. Theory Appl. 2019, 182, 558–572. [CrossRef]

5. Fec̆kan, M.; Wang, J.R.; Zhou, Y. Controllability of fractional functional evolution equations of Sobolev type
via characteristic solution operators. J. Optim. Theory Appl. 2013, 156, 79–95. [CrossRef]

6. Benchaabane, A.; Sakthivel, R. Sobolev-type fractional stochastic differential equations with non-Lipschitz
coefficients. J. Comput. Appl. Math. 2017, 312, 65–73. [CrossRef]

7. Lightbourne, J.; Rankin, S. A partial functional differential equations of Sobolev type. J. Math. Anal. Appl.
1983, 93, 328–337. [CrossRef]

8. Ponce, R. Existence of mild solutions to nonlocal fractional Cauchy problems via compactness.
Abstr. Appl. Anal. 2016, 2016. [CrossRef]

9. Zhou, Y. Fractional Evolution Equations and Inclusions: Analysis and Control; Elsevier: New York, NY, USA, 2016.
10. Bazhlekova, E. Fractional Evolution Equations in Banach Spaces; University Press Facilities, Eindhoven

University of Technology: Eindhoven, The Netherlands, 2001.
11. Ichikawa, A. Stability of semilinear stochastic evolution equations. J. Math. Anal. Appl. 1982, 90, 12–44.

[CrossRef]
12. Fan, Z.B. Characterization of compactness for resolvents and its applications. Appl. Math. Comput. 2014, 232,

60–67. [CrossRef]
13. lMahmudov, N. Controllability of linear stochastic systems in Hilbert space. J. Math. Anal. Appl. 2003, 288,

197–211. [CrossRef]
14. Yang, H.; Agarwal, R.; Liang, Y. Controllability for a class of integro-differential evolution equations

involving non-local initial conditions. Int. J. Control 2017, 90, 2567–2574. [CrossRef]

c© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10957-011-9892-5
http://dx.doi.org/10.1016/j.amc.2014.12.155
http://dx.doi.org/10.1016/j.jfa.2012.04.011
http://dx.doi.org/10.1007/s10957-018-1314-5
http://dx.doi.org/10.1007/s10957-012-0174-7
http://dx.doi.org/10.1016/j.cam.2015.12.020
http://dx.doi.org/10.1016/0022-247X(83)90178-6
http://dx.doi.org/10.1155/2016/4567092
http://dx.doi.org/10.1016/0022-247X(82)90041-5
http://dx.doi.org/10.1016/j.amc.2014.01.051
http://dx.doi.org/10.1016/S0022-247X(03)00592-4
http://dx.doi.org/10.1080/00207179.2016.1260161
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Main Results
	Applications
	Conclusions
	References

