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Abstract: Let (X, M, µ) be a σ-finite measure space and denote by P(X) the µ-measurable
functions f : X → [0, ∞], f < ∞ µ ae. Suppose K : X × X → [0, ∞) is µ× µ-measurable and define
the mutually transposed operators T and T′ on P(X) by (T f )(x) =

∫
X K(x, y) f (y) dµ(y) and

(T′g)(y) =
∫

X K(x, y)g(x) dµ(x), f , g ∈ P(X), x, y ∈ X. Our interest is in inequalities involving
a fixed (weight) function w ∈ P(X) and an index p ∈ (1, ∞) such that: (*):∫

X [w(x)(T f )(x)]pdµ(x) . C
∫

X [w(y) f (y)]pdµ(y). The constant C > 1 is to be independent of
f ∈ P(X). We wish to construct all w for which (*) holds. Considerations concerning
Schur’s Lemma ensure that every such w is within constant multiples of expressions of
the form φ

1/p−1
1 φ

1/p
2 , where φ1, φ2 ∈ P(X) satisfy Tφ1 ≤ C1φ1 and T′φ2 ≤ C2φ2.

Our fundamental result shows that the φ1 and φ2 above are within constant multiples of (**):
ψ1 + ∑∞

j=1 E−jT(j)ψ1 and ψ2 + ∑∞
j=1 E−jT′(j)

ψ2respectively; here ψ1, ψ2 ∈ P(X), E > 1 and T(j), T′(j)

are the jth iterates of T and T′. This result is explored in the context of Poisson, Bessel and
Gauss–Weierstrass means and of Hardy averaging operators. All but the Hardy averaging operators
are defined through symmetric kernels K(x, y) = K(y, x), so that T′ = T. This means that only the
first series in (**) needs to be studied.

Keywords: weights; positive integral operators; convolution operators

MSC: 2000 Primary 47B34; Secondary 27D10

1. Introduction

Consider a σ-finite measure space (X, M, µ) and a positive integral operator T defined through a
nonnegative kernel K = K(x, y) which is µ× µ measurable on X× X; that is, T is given on the class,
P(X), of µ-measurable functions f : X → [0, ∞], f < ∞ µ ae, by

(T f )(x) =
∫

X
K(x, y) f (y) dµ(y), x ∈ X.

The transpose, T′, of T at g ∈ P(X) is

(T′g)(y) =
∫

X
K(x, y)g(x) dµ(x), y ∈ X;

it satisfies ∫
X

gT f dµ =
∫

X
f T′g dµ, f , g ∈ P(X).

Our focus will be on inequalities of the form∫
X
[uT f ]p dµ ≤ Bp

∫
X
[v f ]p dµ, (1)
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with the index p fixed in (1, ∞) and B > 0 independent of f ∈ P(X); here, u, v ∈ P(X), 0 ≤ u, v < ∞,
µ ae, are so-called weights.

The equivalence need only be proved in one direction. Suppose, then, (1) holds and g ∈ P(x)
satisfies

∫
X [u
−1g]p dµ < ∞. Then

[∫
X
[v−1T′g]p

′
dµ

] 1
p′
= sup

∫
X

f v−1T′g dµ,

the supremum being take over f ∈ P(X) with
∫

X f p dµ ≤ 1. But, Fubini’s Theorem ensures∫
X

f v−1T′g dµ =
∫

X
gT( f v−1) dµ

=
∫

X
(u−1g)uT( f v−1) dµ

≤
[∫

X
[u−1g]p

′
dµ

] 1
p′
[

Bp
∫

X
[v f v−1]p dµ

] 1
p

≤
[

Bp′
∫

X
[u−1g]p

′
dµ

] 1
p′

.

Further, (1) holds if and only if the dual inequality∫
X
[v−1T′g]p

′
dµ ≤ Bp′

∫
X
[u−1g]p

′
dµ, p′ =

p
p− 1

, (2)

does.
Inequality (1) has been studied for various operators T in such papers as [1–9].
In this paper, we are interested in constructing weights u and v for which (1) holds. We restrict

attention the case u = v = w; the general case will be investigated in the future. Our approach is based
on the observation that, implicit in a proof of the converse of Schur’s lemma, given in [10], is a method
for constructing w. An interesting application of Schur’s lemma itself to weighted norm inequalities is
given in Christ [11].

In Section 2, we prove a number of general results the first of which is the following one.

Theorem 1. Let (X, M, µ) be a σ-finite measure space with u, v ∈ P(X), 0 ≤ u, v < ∞, µ ae. Suppose that T
is a positive integral operator on P(X) with transpose T′. Then, for fixed p, 1 < p < ∞, one has (1), with C > 1
independent of f ∈ P(X), if and only if them exists a function φ ∈ P(X) and a constant C > 1 for which

T(v−1φp′) ≤ Cu−1φp′ and T′(uφp) ≤ Cvφp. (3)

In this case, B0, the smallest B possible in (1) and Co, the smallest possible C so that (3) holds for
some φ, satisfy

B0 ≤ C0 = max
[

Bp
1 , Bp′

1

]
,

where B1 = B1/p
0 + B1/p′

0 .
Theorem 1 has the following consequence.

Corollary 1. Under the condition of Theorem 1, (1) holds for u = v = w if and only if w = φ
−1/p′
1 φ

1/p
2 ,

where φ1, φ2 are functions in P(X) satisfying

Tφ1 ≤ Cφ1 and T′φ2 ≤ Cφ2, (4)



Symmetry 2020, 12, 1004 3 of 16

for some C > 1.

Though it is often possible to work with the inequalities (4) directly (see Remark 1) it is
important to have a general method to construct the functions φ1 and φ2. This method is given
in our principal result.

Theorem 2. Suppose X, µ and T are as in Theorem 1. Let φ∈P(X). Then, φ satisfies an inequality of the form

Tφ ≤ C1φ, C1 > 0 constant, (5)

if and only if there is a constant C > 1 such that

C−1φ ≤ ψ +
∞

∑
j=1

C−j
2 T(j)ψ ≤ Cφ, (6)

where ψ ∈ P(X), C2 > 1 is constant and T(j) = T ◦ T · · · ◦ T, j times.

The kernels of operator of the form

∞

∑
j=1

C−jT(j) and
∞

∑
j=1

C−jT
′(j)

will be called the weight generating kernels of T. In Sections 3–6 these kernels will be calculated
for particular T. All but the Hardy operators considered in Section 6 operate on the class P(Rn) of
nonnegative, Lebesgue-measurable functions on Rn.

The operators last referred to are, in fact, convolution operators

(Tk f )(x) = (k ∗ f )(x) =
∫

Rn
k(x− y) f (y) dy, x ∈ Rn,

with even integrable kernels k,
∫

Rn
k(y) dy = 1. In particular, the kernel k(x − y) is symmetric,

so T′k = Tk, whence only the first series in (**) need be considered.
Further, the convolution kernels are part of an approximate identity {kt}t>0 on

LP(Rn) =

{
f Leb. meas:

[∫
Rn
| f |p

]1/p
< ∞

}
,

see [12]. Thus, it becomes of interest to characterize the weights w for which {kt}l>0 is an approximate
identity on

Lp(w) = Lp(Rn, w) =

{
f Leb. meas: ‖ f ‖p,w =

[∫
Rn
|w f |p

]1/p
< ∞

}
;

that is kt ∗ f ∈ Lp(w) and
lim

t→0+
‖kt ∗ f − f ‖p,w = 0

for all f ∈ Lp(w). It is a consequence of the Banach-Steinhaus Theorem that this will be so if and only if

sup
0<t<a

‖kt‖ < ∞
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for some fixed a > 0, where ‖kt‖ denotes the operator norm of Tkt on Lp(w). We remark here that the
operators in Sections 3–5 are bounded on Lp(w) and, indeed, form part of an approximate identity on
Lp(w), if w satisfies the Ap condition, namely,

sup
[

1
|Q|

∫
Q

wp
] [

1
|Q|

∫
Q

w−p′
]1/p′

< ∞, p′ =
p

p− 1
, (7)

the supremum being taken over all cubes Q in Rn whose sides are parallel to the coordinate axes with
∞ > |Q| = Lebesgue measure of Q. See ([13], p. 62) and [14].

Finally, all the convolution operators are part of a convolution semigroup (kt)t>0;
that is kt(x) = t−nk

( x
t
)

and kt1 ∗ kt2 = kt1+t2 , t1, t2 > 0. The approximate identity result can thus
be interpreted as the continuity of the semigroup.

We conclude the introduction with some remarks on terminology and notation. The fact that T is
bounded on Lp(w) if and only if T′ is bounded on Lp′(w−1) is called the principle of duality or, simply,
duality. Two functions f , g ∈ P(X) are said to be equivalent if a constant C > 1 exists for which

C−1g ≤ f ≤ Cg. (8)

We indicate this by f ≈ g, with the understanding that C is independent of all parameters
appearing, (except dimension) unless otherwise stated. If only one of the inequalities in (8) holds,
we use the notation f � g or f � g, as appropriate. Lastly, a convolution operator and its kernel are
frequently denoted by the same symbol.

2. General Results

In this section we give the proofs of the results stated in the Introduction, together with
some remarks.

Proof of Theorem 1. The conditions (3) are, respectively, equivalent to

T′ : L1(u−1φp′)→ L1(v−1φp′)

i.e., T : L∞(vφ−p′)→ L∞(uφ−p′)

and
T : L1(vφp)→ L1(uφp).

It will suffice to deal with the first condition in (3). So, Fubini’s Theorem yields∫
X

v−1φp′T′ f dµ ≤ C
∫

X
u−1φp′ f dµ

equivalent to ∫
X

f T(v−1φp′) dµ ≤ C
∫

X
f u−1φp′ dµ, f ∈ P(X),

and hence to
T(v−1φp′) ≤ Cu−1φp′ ,

since f is arbitrary.
According to the main result of [15], then,

T : Lp
(
(vφp)1/p(vφ−p′)1/p′

)
→ Lp

(
(uφp)1/p(uφ−p′)1/p′

)
i.e., T : Lp(v)→ Lp(u), with norm ≤ C, so that (1) holds with B ≤ C.
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Suppose now (1) holds. Following [10], choose g ∈ P(X) with∫
X

gpp′ dµ = 1.

Let T1g =
[
uT(v−1gp′)

]1/p′
and T2g =

[
v−1T′(ugp)

]1/p . Set

S = T1 + T2, A = B0 + ε and φ =
∞

∑
j=0

A−jS(j)g.

As in [10], conclude T1φ ≤ Aφ and T2φ ≤ Aφ, so that (2) is satisfied for C0 ≤
[

Bp
1 , Bp′

1

]
,

where B1 = B1/p
0 + B1/p′

0 .

Proof of Corollary 1. Given (1), one has (2) and Theorem 1 then implies (3), with T replaced by T′,
namely for u = v = w,

T(w−1φp′) ≤ Cw−1φp′ and T(wφp) ≤ Cwφp,

whence the inequalities (4) are satisfied by φ1 = wφp and φ2 = w−1ψp′ . Conversely, given (4), and taking
u = v = w = φ

1/p−1
1 φ

1/p
2 , one readily obtains (3), with ψ = (ψ1ψ2)

1/pp′ .

Proof of Theorem 2. Clearly, if (6) holds,

Tφ ≤ C

[
Tψ +

∞

∑
j=1

C−j
2 T(j+1)ψ

]
= CC2

∞

∑
j=1

C−j
2 T(j)ψ ≤ C2C2φ.

Suppose φ ∈ P(X) satisfies (5). Then,

T(j)φ ≤ Cj
1φ1, j = 1, 2, . . . .

It only remains to observe that(
1 +

C1

ε

)−1
φ ≤ φ +

∞

∑
j=1

(C1 + ε)−jT(j)φ ≤ φ +
∞

∑
j=1

(
C1

C1 + ε

)j
φ ≤

(
1 +

C1

ε

)
φ,

for any ε > 0.

Remark 1. The class of functions φ determined by the weight-generating operators
∞

∑
j=1

C−jT(j) effectively

remains the same as C increases. Thus, suppose 0 < C1 < C2, ψ ∈ P(X) and φ = ψ+
∞

∑
j=1

C−j
1 T(j)ψ. Then, φ is

equivalent to ψ +
∞

∑
j=1

C−j
2 T(j)ψ, since

φ ≤ φ +
∞

∑
j=1

C−j
2 T(j)φ =

∞

∑
j=0

C−j
2

∞

∑
k=0

C−k
1 T(j+k)ψ =

∞

∑
l=0

(
∑

j+h=l
C−k

1 C−j
2

)
T(l)ψ

=
∞

∑
l=0

∞

∑
j=0

(
C1

C2

)j
C−l

1 T(l)ψ =
C2

C2 − C1

∞

∑
l=0

C−l
1 T(l)ψ

=
C2

C2 − C1
φ.

This means that in dealing with weight-generating operators we need only consider C > 1.
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We conclude this section with the following observations on approximate identities in weighted
Lebesgue spaces.

Remark 2. Suppose {kt}t>0 is an approximate identity in Lp(Rn), 1 < p < ∞. If the inequalities (4) involving
φ1 and φ2 can be shown to hold for Tkt, t ∈ (0, a] for some a > 0, with C > 1 independent of such t, then {kt}t>0

will also be an approximate identity in Lp(w) = Lp(Rn, w), w = φ
−1/p′
1 φ

1/p
2 .

Example 1. Let k = k(|x|) be any bounded, nonnegative radial function on Rn which is a decreasing function

of |x| and suppose
∫

Rn
k(x) dx = 1. It is well-known, see ([13], p. 63), that kt(x) = t−nk(x/t), x ∈ Rn, is an

approximate identity in Lp(Rn), 1 < p < ∞.

The weight w(x) = 1 + |x|−n/p(1 + log+(1/|x|))−1, for fixed p, 1 < p < ∞, has the interesting
properly that Tkt : Lp(w)→ Lp(w) for all t > 0, yet {kt}t>0 is never an approximate identity in Lp(w).

To obtain the boundedness assertion take φ1(x) = 1 and φ2(x) = 1 + |x|−n (1 + log+(1/|x|))−p

in Corollary 1.
Arguments similar to those in [6] show that if {kt}t>0 is an approximate identity in Lp(w), then w

must satisfy the Ap condition for all cubes Q will sides parallel to the coordinate axes and |Q| ≤ a for
some a > 0. However, the weight w does not have this property.

3. The Poisson Integral Operators

We recall that for t > 0 and y ∈ Rn, the Poisson kernel, Pt, is defined by

Pt(y) = cnt(t2 + |y|2)−(n+1)/2, cn = π−(n+1)/2Γ((n + 1)/2).

Theorem 3. The weight-generating kernels for Pt, t > 0, are equivalent to P ≡ P0. Indeed, given ψ ∈ P(Rn),
with Pψ < ∞ a.e.,

C−1
t Pψ ≤

∞

∑
j=1

C−jPjtψ ≤ C′tPψ, (9)

where C > 1, Ct = C max[t−1, tn] and C′t = Ct

∞

∑
j=1

C−j max[jt, (jt)−n].

Proof. Observe that by the semigroup property P(j)
t = Pjt, j = 1, 2, . . . .

Also,
min[t, t−n]P ≤ Pt ≤ max[t, t−n]P.

Now, suppose

ψ +
∞

∑
j=1

C−jPjtψ is in P(Rn),

with C > 1. Then,

Pψ ≤ CtPtψ +
∞

∑
j=1

C−jP(j+1)tψ ≤ Ct

∞

∑
j=1

C−jPjtψ ≤ Ct

∞

∑
j=1

C−j max[jt, (j)−n]Pψ

≤ C′tPψ.

As stated in Section 1, w ∈ Ap is sufficient for {Pt}t>0 to be an approximate identify in LP(w).
Moreover, w ∈ Ap is also necessary for this in the periodic case. See [6,8,16]. It is perhaps surprising
then that the class of approximate identity weights is much larger than Ap, as is seen in the next result.
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Proposition 1. Let wα(x) = [1 + |x|]α, α ∈ R. Then, for any t > 0, Pt is bounded on Lp(wα) if any only if
− n

p − 1 < α < n
p′ + 1. Moreover, on that range of α one has

lim
t→0+

‖Pt ∗ f − f ‖p,ωα = 0, (10)

for all f ∈ Lp(ωα). The set of α for which wα ∈ Ap, however, is

−n
p
< α <

n
p′

.

Proof. We omit the easy proof of the assertion concerning the α for which wα ∈ Ap.
To obtain the “if” part of the other assertion we will show

Pt ∗ wβ ≤ Cwβ, t > 0, (11)

if and only if −n− 1 ≤ β < 1, with C > 1 independent of both s and t, if t ∈ (0, 1). Corollary 1 and
Remark 2, then yield (10) when − n

p − 1 < α < n
p′ + 1.

Consider, then, fixed x ∈ Rn and 0 < t < 1. We have

(Pt ∗ wβ)(x) =
(∫
|y|≤ |x|2

+
∫
|x|
2 <|y|<2|x|

+
∫
|y|≥2|x|

)
Pt(y)wβ(s− t) dy

= I1 + I2 + I3.

Now,
I1 ≤ wβ(x)

∫
|y|< |x|2

Pt(y) dy ≤ Cwβ(x),

for all β ∈ R.
Again,

I2 ≥ cPt(x)
∫
|x−y|≤1

(1 + |x− y|)β dy ≥ cPt(x) ≥ c|x|−n−1,

so we require β > n− 1, if (11) is to hold.
Moreover, for x ∈ Rn and 0 < t < 1,

I2 ≈ Pt(x)
[
|x|nχ|x|≤1 + |x|β+nχ|x|>1

]
≈
(
|x|
t

)n
χ|x|≤1 +

t
|x|χt≤|x|≤1 +

t
|x| |x|

βχ|x|≥1

≤ Cwβ(x).

Next, for |x| � 1

I3 =
∫
|y|>2|x|

Pt(y)wβ(y) dy � t
∫
|y|>2|x|

|y|−n−1+βdy

which requires β < 1 to have I3 < ∞. In that case

I3 �
∫

r>2|x|
r−n−1+βrn−1 dr � |x|β−1 � wβ(x).

That Pt is not bounded on Lp(wα) when α ≤ − n
p − 1 can be seen by noting that, for appropriate

ε > 0, the function f (x) = |x|[log(1+ |x|)]−(1+ε)/p is in Lp(wα), while Pt f ≡ ∞. The range α ≥ n/p+ 1
is then ruled out by duality.
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4. The Bessel Potential Operators

The Bessel kernel, Gα, α > 0, can be defined explicitly by

Gα(y) = Cα|y|(α−n)/2K(n−α)/2(|y|), y ∈ Rn,

where Kr is the modified Bessel function of the third kind and

C−1
α = πn/22(n+α−2)Γ(α/2).

It is, however, more readily recognized by its Fourier transformation

Ĝα(z) = (2π)−n/2[1 + |z|2]−α/2.

Using the latter formula one picks out the special cases Gn−1 and Gn+1 which, except for constant
multiplies, are, respectively, |y|−1e−|y| and the Picard kernel e−|y|.

The semigroup properly Gα ∗ Gβ = Gα+β holds and so the jth convolution iterate has kernel Gjα.

Also,
∫

Rn
Gα(y) dy = 1.

We use the integral representation

Gα(y) = gα,n(|y|) = (4π)−n/2Γ(α/2)−1
∫ ∞

0
e−|y|

2t/4e−1/tt(n−2)/2 dt
t

(12)

to show in Lemma 1 below that known estimates [17], are in fact, sharp.

Lemma 1. Suppose n, α > 0, n ∈ Z+. Set m = n− α and define r−m+ to be r−m, log+

( 2
r
)

or 1, according as
m > 0, m = 0 or m < 0. Then, a constant C > 1 exists, depending on n, such that

C−1r−m+ ≤ gα,n(r) ≤ Cr−m+, 0 < r < 1,

C−1r−(m+1)/2e−r ≤ gα,n(r) ≤ Cr−(m+1)/2e−r, r ≥ 1. (13)

Proof. As in [17], p. 296

gα,n(r) = Cαe−r(α/r)m/2
∫ ∞

1
e−

r
2 (x+ 1

x−2)
[

xm/2 + x−m/2
] dx

x

with Cα = (4π)−n/2Γ(α/2)−1. Clearly,

gα,n(r) ≈ r−m/ne−r
∫ ∞

1
e−

r
2

(√
x− 1√

x

)2

x|m|/2 dx
x

. (14)

Let y =
√

x− 1/
√

x, so that x =
2 + y2 +

√
(1 + y2)2 − 4
2

which is essentially 1, when 0 < y < 2

and y2 when y > 2. The integral in (14) is thus equivalent to

∫ √2

0
e−

r
2 y2

dy +
∫ ∞
√

2
e−

r
2 y2

y|m|
dy
y

. (15)

Next, let y =
√

2z/t to get (15) equivalent to

r−1/2
∫ r

0
e−2 dz√

z
+
∫ ∞

r
e−z|z||m|/2 dz

z
. (16)
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Using L’Hospital’s Rule and the asymptotic formula for the incomplete gamma function we find
that the expression (16) is effectively r−|m|/2 in (0, 0) and r−1/2 in (1, ∞). This completes the proof
when m 6= 0. The case m = 0 is left to the reader.

Remark 3. For p ∈ (1, ∞), let Wα,p denote the class of weights w for which Gα is bounded on Lp(w).
Then Wα,p increases with α and Wα,p = Wp,p, whenever α, β > n. These facts follow from the semigroup
property, the estimates (13) and the inequality Gαt ≤ CG1−t

α1
, Gt

α2
which holds for αt = (1 − t)α1 + tα2,

provided 0 < α1 < α2, 0 < t < 1 and either α2 < n or α1 > n. However,no two classes Wα,p are identical, as is
shown in the following proposition.

Proposition 2. Fix p ∈ (1, ∞) and α, β ∈ (0, n), with α < β/p. Then, there is a weight w ∈Wβ,p −Wα,p.

Proof. Let φγ(x) = 1 +
∞

∑
k=1
|x− 4−k|−γχEk (x), where

Ek =
{

x ∈ Rn : |x− 4−k| ≤ 1
2 4k
}

.

One readily shows Gβφγ ≤ Cφγ, if 0 < γ < β. Hence, taking wγ = φ
1/p
γ , we have wγ ∈Wβ,p.

For 0 < δ < n, Lp(wγ) contains the function

f (x) =
∞

∑
k=1
|x− xk|−δ/pχFk

where
xk =

1
2

[
3
2 · 4

k+1 + 1
2 · 4

k
]
= 7/4k + 2

and
Fk =

{
x ∈ Rn : |x− xk| < 1

2 · 4k + 1
}

.

We seek conditions on r and δ so that wγ /∈Wα,p.
Now, Gα f = 4k[δ/p−ᾱ] on Ek, so

‖Gα f ‖p
p,wγ ≥

∞

∑
k=1

4k[δ−αp+γ−n] = ∞,

if δ− αp + γ− n ≥ 0. By taking γ sufficiently close to β and δ sufficiently closed to n, this condition
can be met.

Theorem 4. Suppose n, α, m and m+ are as in Lemma 1. Fix C > 1 and set k = [1− C−2/γ]1/2. Then,
the weight-generating kernel for Gα corresponding to C is equivalent to

|y|m+ , |y| ≤ 1,

and [
|y|−(m+1)/2 + |y|(1−n)/2

]
e−k|y|, |y| ≥ 1.

In particular, for α ∈ (0, 2], the kernel is equivalent to Gα(ky) + G2(ky).

Proof. In view of (12), the kernel is given by

(4π)−n/2
∫ ∞

0
e−(r

2/4)te−1/tt
n
2−1S(t) dt,
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where r = |y| and

S(t) =
∞

∑
j=1

[C−1t−α/2]j

Γ(jα/2)
,

When C−1t−α/2 ≤ 1, that is, t ≥ C−2/α ≡ c, the sum S(t) is, effectively, t−α/2, as is seen from
the inequalities

C−1t−α/2

Γ(α/2)
≤ S(t) ≤ C−1t−α/2

Γ(α/2)

[
1 +

∞

∑
j=1

1
Γ(jα/2)

]
.

Here, we have used Γ(x + y) ≥ Γ(x)Γ(y) when x, y > 0.
For t ≤ c, the asymptotic expression

∞

∑
j=1

tj

Γ(`j)
= t1/let1/l

[1 + 0(t−1)], as t→ ∞,

given in [8], yields
S(t) ≈ t−1ea/t, t ≤ c.

Thus, the kernel is, essentially,∫ c

0
e−(r

2/4)te(c−1)/tt(n/2)−2 dt +
∫ ∞

c
e−(r

2/4)te−1/tt(n−α)/2 dt
t

. (17)

Now, the first term in (17) is bounded on 0 ≤ r ≤ 1, while the second term is equivalent to Gα for
all r ≥ 0. It only remains to show the first integral, I, satisfies I ≈ r(1−n)/2e−kr for r ≥ 1. To this end set
s = rt/2 in I to obtain

I ≈ r(2−n)/2e−kr
∫ cr/2

0
e−r[

√
s−k/

√
s]

2
/2 · S

n
2−2 ds

Next, let y =
√

s− k/
√

s so that

I ≈ r(2−n)/2e−kr
∫ β(r)

−∞
e−ry2/2[y + f (y)]n−3[1 + y f (y)−1] dy,

where β(r) =
√

cr/2− k
√

2/cr and f (y) =
√

y2 + 4l =
√

s + k√
s .

Finally, take z =
√

r/2y to get

I ≈ r(1−n)/2e−kr
∫ γ(r)

−∞
e−z2

[√
2/rz + f

(√
2/rz

)]n−3

[
1 +
√

2/rz f
(√

2/rz
)−1

]
dz,

with γ(r) =
√

cr/2− k/
√

c. We have now just to observe that when z ∈ R and r ≥ 1

0 ≤ 1 +
√

2/rz f
(√

2/rz
)−1

< 2

while
√

2/rz + f
(√

2/rz
)

lies between 2k1/2 and
√

2z2 + 4k.

Typical of Gα weights are the exponential functions eβx, −1 < β < 1.

Proposition 3. Suppose α ∈ (0, 1/2) and p ∈ (1, ∞). Set wβ( f ) = eβ|x|, x ∈ Rn. Then, Gα is bounded on
Lp(wβ) if and only if −1 < β < 1. Moreover, on this range of β, one has

lim
α→0+

‖Gα ∗ f − f ‖p,wβ
= 0



Symmetry 2020, 12, 1004 11 of 16

for all f ∈ Lp(wβ).

Proof. Fix β ∈ (−1, 1). We show C > 1 exists, independent of α ∈ (0, 1/2), such that

(Gαwβ)(x) ≤ Cwβ(x), x ∈ Rn.

The “if” part then follows by Remark 2.
Using the simple inequalities |x + y| ≤ |x|+ |y| when β > 0 and |x− y| ≥ |x| − |y| when β < 0

we obtain
(Gαwβ)(x) ≤ wβ(x)

∫
Rn

e|β| |y|Gα(y) dy.

But, the proof of Lemma 1 shows∫
Rn

e|β| |y|Gα(y) dy ≤
∫
|y|≤1

e|β| |y||y|α−n dy +
∫
|y|>1

e[|β|−1]|y||y|−
n
2−

1
4 dy

≈ 1,

when α ∈ (0, 1).
To prove the “only if” part, only the care β = −1 needs to be considered. We observed that

f (x) = e|x|
1+|x|n+1 is in Lp(w−1) and that Gα bounded on Lp(w−1) implies the same of Gjα, j = 2, 3, . . . .

However, for j ≥ n + 3
α

, Gjα f ≡ ∞.

Example 2. Consider the Bessel potential G2(y) so that the weight-generating kernels are equivalent to G2(ky),
0 < k < 1. These are especially simple when the dimension, n, is 1 or 3. In the first case G2(y) is essentially
equal to the Picard kernel, e−|y|, and in the second case to |y|−1e−|y|.

According to Corollary 1, then, TG2 is bounded on Lp(ek/p′ |y|) and Lp(e−k/p|y|) when n = 1; on

Lp
(
|y|1/p′ ek/p′ |y|

)
and Lp

(
|y|1/pe−k/p|y|

)
when n = 3.

5. The Gauss–Weierstrass Operators

In this section, we briefly treat the Gauss–Weierstrass kernels, {Wt}t>0, defined by

Wt(y) = (4πt)−n/2 exp(−|y|2/4t), y ∈ Rn.

The iterates of Wt satisfy W(h)
t = Wht, h = 1, 2, . . . .

Proposition 4. Fix p ∈ (1, ∞) and set wβ(x) = eβ|x|. Then, Wt is bounded on Lp(wβ) for all β ∈ (−∞, ∞).
Moreover, one has

lim
t→0+

‖Wt ∗ f − f ‖p,wβ
= 0, (18)

for every f ∈ Lp(wβ).

Proof. Only β ≥ 0 need by considered, the result for β < 0 follows by duality.
It will suffice to show that for each β ≥ 0,

(Wt ∗ eβ|·|)(x) ≤ Ceβ|x|,

with C > 1 independent of x ∈ Rn and t ∈ (0, 1).
Now, ∫

Rn
Wt(y)eβ|x−y| dy ≤

∫
Rn

Wt(y)eβ[|x|+|y|] dy = eβ|x|
∫

Rn
Wt(y)eβ|y| dy,
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from which the boundedness assertion follows. Again Wt(y) is an increasing function of t for fixed y
with |y| ≥

√
2nt so,

∫
Rn

Wt(y)eβ|y| dy =

(∫
|y|<
√

2nt
+
∫
|y|>
√

2nt

)
Wt(y)eβ|y| dy

≤ eβ
√

2nt
∫
|y|<
√

2nt
Wt(y) dy +

∫
|y|>
√

2nt
W1(y)eβ|y| dy

≤ eβ
√

2n + (4π)−n/2
∫

Rn
exp(−|y|2/4)eβ|y| dy

when t ∈ (0, 1), thereby yielding (18).

Theorem 5. Fix C > 1. Then, the weight-generating kernel for Wl corresponding to C is equivalent to

t−
n
4−

1
2 |y|1−n/2 exp(−t−1/2k|y|), k =

√
log K, for some K > 1,

with the constants of equivalence independent of t ∈ (0, a), |y| > 4ka1/2, where 0 < a < 1.

Proof. The desired kernel is
∞

∑
j=1

C−j(4πtj)−n/2 exp(−r2/4jt) (19)

where r = |y|.
Let f (r, t, u) = C−u(4πtu)−n/2 exp(−r2/4ut), u > 0, and let α = t−1/2kr. Denote by I1, I2 and

I3 the intervals (0, α/4k2), (α/4k2, 2α/k2) and (2α/k2, ∞), respectively. It is easily shown that when
r > 1 and t ∈ (0, 1), the function f , as a function of u, increases on I1, decreases on I3 and satisfies
K−1 f (r, t, u) ≤ f (r, t, u + s) ≤ K f (r, t, u) for some K > 1 and all u ∈ I2, s ∈ (0, 1). Thus, the study of
the sum in (19) amounts to looking at the integrals

Ji =
∫

Ii

f (r, t, u) du, i = 1, 2, 3.

Indeed, C−u = e−k2u, therefore,

C−1(J1 + J2 + J3) = C−1

(∫ [α/4h2]+1

0
+
∫ [2α/k2]

[α/4k2]+1
+
∫ ∞

[2α/k2]

)
f (r, t, u) du

≤
∞

∑
j=1

f (r, t, j)

=

[α/4k2]

∑
j=1

+
[2α/k2]

∑
j=[α/4k2]+1

+
∞

∑
j=[2α/k2]+1

 f (r, t, u) du

≤ C(J1 + J2 + J3).

We have

J1 ≤ t−n/2
( α

4k2

)−n/2
exp

(
−k2 α

4k2

)
exp

(
−|y|2

/4αt
4k2

)
α

4k2

≤ t−
n
4−

1
2 |y|1−

n
2 exp

(
−5

4
t−1/2k|y|

)
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Again,

J3 ≤ t−n/2
(

2α

k2

)−n/2
exp

(
−r2

/ 4α

4k2 t
)

exp
(
−k2 α

4k2

)
≤ t−n/4|y|−n/2 exp

(
−5

4
t−1/2k|y|

)
≤ J1.

Finally, in J2 take u = αv/2k2 to get

J2 ≤ t−n/4|y|−n/2
∫ 4

1/2
exp

(
−α

2

[
v +

1
v

])
v−n/2 dv

≤ t−
n
4−

1
2 |y|1−

n
2 exp

(
−t−1/2k|y|

)
.

Altogether, then, ∫ ∞

0
f (|y|, t, u) du ≤ t−

n
4−

1
2 |y|1−

n
2 exp

(
−t−1/2k|y|

)
.

Remark 4. The weight-generating kernels are similar to those of G2 on R1 and R3 (see Example 2), whence the
exponential weights of Proposition 4 are in some sense typical. This illustrates a general theorem of Lofstrom, [18],
which asserts that no translation-invariant operator is bounded on Lp(w), when w is a rapidly varying weight
such as w(α) = exp(|x|α), α > 1.

6. The Hardy Averaging Operators

In this section we consider Lebesgue-measurable functions defined on the set

Rn
+ = {y ∈ Rn : yi > 0, i = 1, . . . , n},

where, as usual, we write y = (y1, . . . , yn). Given x ∈ Rn
+, we define the sets

En(x) = {y ∈ Rn
+ : 0 < yi < xi, i = 1, . . . , n}

and
Fn(x) = {y ∈ Rn

+ : 0 < xi < yi, i = 1, . . . , n}.

Finally, we denote the product x−1
1 . . . x−1

n by x−1 or 1
x and the product (log x1

y1
) . . . (log xn

yn
) by

log x
y ; here, x = (x1, . . . , xn) and y = (y1, . . . , yn) belong to Rn

+.
The Hardy averaging operators, Pn and Qn, are defined at f ∈ P(Rn

+), x ∈ Rn
+, by

(Pn f )(x) = x−1
∫

En(x)
f (y) dy

and
(Qn f )(x) =

∫
Fn(x)

f (y)
dy
y

.

These operators, which are the transposes of one another, are generalizations to n-dimensions
of the well-known ones, considered in [5] for example. A simple induction argument leads to the
following formulas for the iterates of Pn and Qn :

(
P(j)

n f
)
(x) =

x−1

Γ(j)n

∫
Fn(s)

f (y)[log x/y]j−1 dy
y

,
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and (
Q(j)

n f
)
(x) =

1
Γ(j)n

∫
Fn(s)

f (y)[log y/x]j−1 dy
y

,

in which x ∈ Rn
+ and j = 0, 1, . . . .

From Theorem 1 of [19], we obtain the representations of the weight-generating kernels of Pn and
Qn described below.

Theorem 6. For C > 1 and set α = nC−1/n. Then, the weight-generating kernels for Pn and Qn corresponding
to C are equivalent, respectively, to

x−1
[
1 + (log x/y)1/2(n−1) exp[α(log x/y)1/n]

]
χEn(x)(y) (20)

and
y−1

[
1 + (log y/x)1/2(n−1) exp[α(log y/x)1/n]

]
χFn(x)(y). (21)

Proposition 5. Let wβ(x) = [1 + |x|]β, β ∈ R. Then Pn is bounded on Lp(wβ) if and only if β < 1/p′;
by duality, Qn is bounded on Lp(wβ) of and only if β > −1/p.

Proof. For simplicity, we consider n = 2 only.
Take ψ = wγ and fix α ∈ (0, 2). Denote by g the weight-generating kernel (20) applied to ψ. The

change of variable y1 = x1z1, y2 = x2z2 in the integral giving g(x) yields

g(x) =
∫ 1

0

∫ 1

0

[
1 +

√
x2

1z2
1 + x2

2z2
2

]γ

[
1 + (log 1/z1 log 1/z2)

−1/4 × exp
[
α(log 1/z1 log 1/z2)

1/2
]]

dz1 dz2

Hence, when r > −1, we find

g(x) ≈


1, 0 < x1, x2 ≤ 1

xγ
2 , 0 < x1 ≤ 1, x2 > 1

xγ
1 , x1 > 1, 0 < x2 ≤ 1

max
[
xγ

1 , xγ
2
]

, x1, x2 ≥ 1;

that is, g(x) ≈ wγ(x), provided r > −1. This proves the “if” part, since β = −γ/p′ < 1/p′.
To see that we must have γ < 1/p′, note that h = χE2(ẋ), ẋ = (1, 1), is in Lp(wγ) and

(P2h)(x) =


1, 0 < x1, x2 ≤ 1

x−1
2 , 0 < x1 ≤ 1, x2 > 1

x−1
1 , x1 > 1, 0 < x2 ≤ 1

x−1
1 x−1

2 , x1, x2 ≥ 1

so ∫
R2
+

[wβP2h]p = ∞, if β ≥ 1/p′.

Theorem 7. Denote by G1 and G2 the positive integral operators on P(Rn
+) with kernels (20) and (21),

respectively. Suppose ψi ∈ P(Rn
+) is such that Giψi < ∞ ae on Rn

+, i = 1, 2. Take φi = ψi + Giψi, i = 1, 2

and set w = φ
− 1

p′
1 φ

1
p
2 . Then,

Pn : Lp(Rn
+)→ Lp(Rn

+). (22)
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Moreover, any weight w satisfying (22) is equivalent to one in the above form.

Proof. This result is a consequence of Corollary 1 and Theorem 2.

Remark 5. When n = 1, the functions xβ, β > −1, are eigenfunctions of the operator P corresponding

to the eigenvalue (β + 1)−1. As a result, if φ(x) =
∞

∑
k=0

akxk converges for all x and if ak > 0,

then there exists ψ ∈ P(R+) for which ψ +
∞

∑
j=1

C−jP(j)ψ ≈ φ, C > 1; namely. ψ(x) = b0 +
∞

∑
k=1

bkxk,

where bk = ak

(
1 +

∞

∑
j=1

c−j

(k + 1)
j

)−1

k

, k = 0, 1, . . . .

For example, φ1(x) = eβp′ex
, β > 0, is an entire function with φ(k)(0) > 0, k = 0, 1, . . . . Combining

this φ1(x) with φ2(x) = xγp we obtain the P-weight xγe−βex
, γ < 0 < β. Interpolation with change of

measure shows one can, in fact, take all γ < 1/p′.
Similar results are obtained when φ(x1, . . . , xn) is everywhere on Rn the sum of a power series

in x1, . . . , xn with nonnegative coefficients. To take a specific example, consider a power series in one

variable,
∞

∑
k=0

akxk, ak > 0, which converges for all x ∈ R. Then, φ(x1, . . . , xn) =
∞

∑
k=0

ak(x1 . . . xn)
k leads

to the Pn-weights w(x1, . . . , xn) = xγ1
1 . . . xγn

n φ(x1, . . . , xn)1/p′ , where γi < 1/p′, i = 1, . . . , n.
Criteria for the boundedness of Hardy operators between weighted Lebesgue spaces with possibly

different weights are given in [5] for the case n = 1 and in [7] for the case n = 2.

Added in Proof: While this work was in press the author came across the paper [20]. In it Bloom proves our
Theorem 1 using complex interpolation rather than interpolation with change of measure. A (typical) application
of his result to the Hardy operators substitutes them in the necessary and sufficient conditions, thereby giving a
criterion for their two weighted boundedness. This is in contrast to our Theorem 6, in which the explicit form of a
single weight is given.
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