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Abstract: High dimensionality continues to be a challenge in computational systems biology.
The kinetic models of many phenomena of interest are high-dimensional and complex, resulting
in large computational effort in the simulation. Model order reduction (MOR) is a mathematical
technique that is used to reduce the computational complexity of high-dimensional systems by
approximation with lower dimensional systems, while retaining the important information and
properties of the full order system. Proper orthogonal decomposition (POD) is a method based on
Galerkin projection that can be used for reducing the model order. POD is considered an optimal linear
approach since it obtains the minimum squared distance between the original model and its reduced
representation. However, POD may represent a restriction for nonlinear systems. By applying the
POD method for nonlinear systems, the complexity to solve the nonlinear term still remains that
of the full order model. To overcome the complexity for nonlinear terms in the dynamical system,
an approach called the discrete empirical interpolation method (DEIM) can be used. In this paper,
we discuss model reduction by POD and DEIM to reduce the order of kinetic models of biological
systems and illustrate the approaches on some examples. Additional computational costs for setting
up the reduced order system pay off for large-scale systems. In general, a reduced model should not
be expected to yield good approximations if different initial conditions are used from that used to
produce the reduced order model. We used the POD method of a kinetic model with different initial
conditions to compute the reduced model. This reduced order model is able to predict the full order
model for a variety of different initial conditions.

Keywords: model reduction; singular value decomposition; proper orthogonal method; discrete
empirical interpolation method; kinetic modeling; systems biology

1. Introduction

In biological systems, kinetic models of biochemical networks are necessary for predicting and
optimizing the behavior of cells in culture. Most of these models are high-dimensional and involve
a large number of reactions and species and reaction rate constants of widely different orders of
magnitude [1]. Thus, model order reduction (MOR) is considered to be a vital topic and essential
for an efficient numerical simulation. In general, model order reduction is a mathematical theory for
reducing the computational complexity of large-scale dynamical systems via finding a low-dimensional
approximation while preserving the most important information of the full order system. The
computational complexity of a method is a measure of time or storage space that the method requires
to solve a given task. In this paper, we reduce the time cost of the simulation of dynamical systems
using MOR methods, as we will discuss later; see Section 3. Moreover, MOR methods of a higher order
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dimensional system produce a lower order dimensional system, which is considered more efficient for
reducing the computational effort in mathematical processes, e.g., an optimization process.

The model reduction method has been discussed in mathematical modeling of biological
systems. Here, Michaelis–Menten kinetics [2,3], whose derivation is based on a quasi-steady state
assumption [4,5], is considered the famous example of the model reduction theory of enzymatic
reactions. Many other model reduction methods [6] have been discussed that are based on different
ways of analyzing the system. Sensitivity analysis [7,8] is based on eliminating parameters that are
noticed to be the least sensitive in affecting the model. The lumping method was initially presented
in the 1960s by Wei and Kuo [9,10]. The idea behind the lumping method is to remove a group of
state variables from the system and replace them with a new dynamical variable (lumped), which is
related to the original system by lumping functions [11,12]. Time scale analysis [13] is the most recent
model reduction approach that is used in biological systems. It assumes two time scales, fast and
slow, whereby the fast one converges to a quasi-steady state. However, in some cases, the differences
in the time scales do not suffice for obtaining a reduced model that behaves in the same way as the
original model [14]. Thus, the required conditions of Tikhonov’s theorem (see [15,16]) should be
satisfied to apply the model order reduction method. In [17], the model reduction of a small single
metabolic-genetic network was studied using the time scale separation. The model reduction of a
two-stage anaerobic digestion process model was also studied in [18], and the model reduction of RNA
polymerase was studied in [19].

The conditions that have to hold for the applicability of Tikhonov’s theorem are not trivial,
especially for a large-scale dynamical system. Therefore, we aim to apply another popular approach
for model reduction: the proper orthogonal decomposition (POD), a method that aims at obtaining
low-dimensional approximate descriptions of high-dimensional systems while preserving important
information. The POD method, also known as Karhunen–Loève Expansion (KLE) [20,21], is based
on the idea of projecting the full order system onto a lower dimensional subspace while capturing
the main characteristics of the system. Within the POD method, the key idea is to use singular value
decomposition (SVD) [22–24] to calculate the basis for the low-dimensional subspace. The SVD is
considered to be one of the most important matrix factorizations in the field of data science, since it
exists for any matrix and can be used for approximating high-dimensional data by low-dimensional
data in terms of dominant patterns.

A drawback of the POD method is that for time-dependent and/or parameterized nonlinear
systems, the computational complexity for evaluating the nonlinear term in the reduced order model
remains that of the original problem, although the dimension of the system is reduced. The discrete
empirical interpolation method (DEIM) was proposed in [25] for high-dimensional nonlinear ODE
models and is able to greatly improve the dimension reduction efficiency of the POD method.

In this paper, we discuss the model order reduction techniques by POD and DEIM for kinetic
models of biological systems. From a practical point of view, the POD and DEIM methods are more
advantageous for large-scale dynamical systems than time scale separation techniques, since we do
not have to take care of satisfying the conditions required, e.g., for Tikhonov’s theorem.

The methods are applied to a kinetic model of a metabolic-genetic network that was introduced
in [26]. In addition, we apply the approaches to different models of biological systems from the
BioModels database (http://identifiers.org/biomodels.db), and we compare the time costs of the
simulation for the original and the reduced order model in different cases. The MOR methods depend
on a snapshot matrix generated from numerical simulations of the dynamical system with certain
initial conditions. In general, a reduced model should not be expected to yield good approximations if
different initial conditions are used from those used to produce the reduced order model [27].

However, an important characteristic of a kinetic model in systems biology is that it can predict
different scenarios of behavior for the system that can be stimulated by prescribing different initial
conditions. Here, we use the POD approach to compute a reduced order model of a kinetic model for
different initial conditions of the dynamical system. This reduced order model is able to predict the
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full order model for a variety of different initial conditions. Using different initial conditions in the
time scale separation technique will usually fail, since the algebraic equations of the fast variables may
not be solvable if inconsistent initial values are prescribed; see [17].

The remainder of this paper is organized in the following manner. We discuss the model reduction
of a dynamical system using POD and DEIM in Section 2. We then apply the approaches to a simplified
metabolic-genetic network and to different kinetic models from the BioModels database in Section 3.
We study the POD method of a kinetic model with different initial conditions in Section 4. Finally, we
end with some concluding remarks in Section 5.

2. Proper Orthogonal Decomposition for Differential Equations

We consider a system of ordinary differential equations that is given by:

d
dt

x(t) = f (x(t), θ), x(0) = x0, for t ∈ [0, T], (1)

where x(t) is the m-dimensional state vector of the model and f is a nonlinear function mapping from
Dx ⊂ Rm × Dθ to the m-dimensional space Rm depending on parameters θ ∈ Dθ ⊂ Rnθ . Moreover, nθ

denotes the number of parameters, and x0 ∈ Rm is a given initial value.
The proper orthogonal decomposition (POD) method is a projection-based order reduction

technique that aims at constructing a reduced order system of order k� m approximating the original
system (1) from a subspace that is spanned by a reduced basis of dimension k in Rm using Galerkin
projection. Let Vk ∈ Rm×k denote a matrix whose orthonormal columns form the reduced POD basis,
then the reduced system of (1) is obtained by replacing x(t) in (1) by Vk x̃(t), x̃(t) ∈ Rk and projecting
the system (1) onto Vk to get:

d
dt

x̃(t) = VT
k f (Vk x̃(t), θ), x̃(0) = VT

k x0, for t ∈ [0, T]. (2)

In the POD approach, a reduced basis is constructed from a truncated singular value
decomposition (SVD) of a matrix of sample trajectory vectors (snapshots), assuming that the samples
are on or near the attracting low-dimensional manifold that represents the solution space.

We introduce the trajectory snapshot matrix X = [x1, x2, . . . , xns ] ∈ Rm×ns , consisting of a time
series of data (samples of trajectories) and assume that rankX = r ≤ min (m, ns). This snapshot matrix
can be obtained via a numerical solution of the dynamical system or from measured datasets. The SVD
guarantees the existence of real non-negative numbers σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and orthogonal matrices
V = [v1, . . . , vm] ∈ Rm×m with columns {vi}m

i=1 and W = [w1, . . . , wns ] ∈ Rns×ns with columns {wi}ns
i=1

such that:

VTXW =

[
D 0
0 0

]
=: Σ ∈ Rm×ns (3)

where D = diag(σ1, . . . , σr) ∈ Rr×r and the zeros denote matrices of appropriate dimensions. Similarly,
we have:

X = VΣWT .

Then, the POD basis is given by {vi}k
i=1. We set Vk = [v1, . . . , vk] ∈ Rm×k, and the linear span

of the vectors {v1, . . . , vk} determines the best rank-k approximation of Range(X) in the sense that is
minimizes the two-norm of the approximation error:

ns

∑
j=1

∥∥∥xj −VkVT
k xj

∥∥∥2

2
=

r

∑
i=k+1

σ2
i ;
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see [28]. In this truncation of the SVD, we try to approximate the matrix VΣWT with k chosen as small
as possible, but as large as necessary to obtain a good approximation. The strong decay of singular
values allows a good representation with only a few modes. If the decay of singular values is gradual,
one is forced to use a high number of modes to get a good approximation.

The general philosophy in model order reduction is to cut off singular values with σi < ε, where ε

is chosen such that a (much) smaller number of basis elements k� m is sufficient to capture the main
features of the solution of (1). The goal is to choose k small enough, while the relative information
content [29] of the basis for the k-dimensional subspace, defined by:

I(k) =
∑k

i=1 σ2
i

∑r
i=1 σ2

i
, (4)

is near one. If the k-dimensional subspace should contain a percentage p of the information contained
in the full-dimensional space Rn, then one should choose k such that:

k = argmin
{

I(k) | I(k) ≥ p
100

}
;

see [29].
A drawback of the POD method is the computational complexity for time-dependent and/or

parameterized nonlinear systems. Although the dimension of the system is reduced in the sense
that far fewer variables are present in the reduced order system (2), the complexity of evaluating the
nonlinear term remains that of the original problem. The nonlinear term:

Ñ(x̃) := VT
k︸︷︷︸

k×m

f (Vk x̃(t), θ)︸ ︷︷ ︸
m×1

(5)

in the reduced system (2) has a computational complexity that depends on m, the dimension of the
original full-order system (1), and in particular, it requires a full evaluation of the nonlinear function
f at the m-dimensional vector Vk x̃(t), such that solving this system is still as costly as solving the
original system.

The discrete empirical interpolation method (DEIM) was proposed in [25] for high-dimensional
nonlinear ODE models to improve greatly the dimension reduction efficiency of POD with Galerkin
projection by approximating the nonlinear function by combining projection with interpolation.

The nonlinear function f (Vk x̃(t), θ) is approximated by projecting it onto a subspace spanned by
a POD basis of dimension `� m. This POD basis {u1, . . . , u`} for the nonlinear function is constructed
by applying the POD to the nonlinear snapshot matrix F = [ f1, . . . , fns ] ∈ Rm×ns obtained from the
original full order model (1), where f j = f (xj, θ) and xj ≈ x(tj) with k, ` ≤ min{m, ns}. The values in
F are already needed to generate the snapshot matrix X, and thus, it requires no additional cost other
than the truncated SVD to obtain U` = [u1, . . . , u`] ∈ Rm×`. Similar as above, the two-norm error for
the approximation of the nonlinear function is given by:

ns

∑
j=1

∥∥∥ f j −U`UT
` f j

∥∥∥2

2
=

rs

∑
i=`+1

ρ2
i ,

where f j = f (x(tj), θ), tj ∈ [0, T], rs := rank(F), and ρi denotes the singular values of F; again, see [28].
The corresponding POD-DEIM reduced system is designed by applying Galerkin projection on the

space spanned by the columns of the POD basis matrix Vk and then applying the DEIM approximation
to the nonlinear function using interpolation projection onto the columns space of the POD basis
matrix U`. The resulting reduced system is then given by:

d
dt

x̃(t) = VT
k P f (Vk x̃(t), θ), x̃(0) = VT

k x0, for t ∈ [0, T], (6)
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where P := U`(PTU`)
−1PT ∈ Rm×` and P ∈ Rm×` is a matrix whose columns come from some

selected columns of the identity matrix corresponding to the so-called DEIM indices. In more detail,
the nonlinear function in (2) approximated by DEIM can be written as:

f (Vk x̃(t), θ) ≈ P f (Vk x̃(t)) =: f̂ (Vk x̃(t)),

such that the nonlinear term (5) can be approximated by:

Ñ(x̃) ≈ VT
k U`(PTU`)

−1︸ ︷︷ ︸
k×`

PT f (Vk x̃(t))︸ ︷︷ ︸
`×1

.

The first term does not depend on t and can be precomputed before solving the system of ODEs.
The interpolation indices {p1, . . . , p`} used in the construction of the matrix P = [ep1 , . . . , ep` ] ∈ Rm×`,
where epi is the pth

i columns of the identity matrix Im ∈ Rm×m for i = 1, . . . , `, are selected inductively
from the basis {u1, . . . , u`} by the DEIM algorithm; see [25]. By using the DEIM algorithm, it is
guaranteed that PTU` is always nonsingular.

Note that the DEIM approximation is uniquely determined by the projection matrix U`, and f̂ is
an interpolation approximation for the original function f , since f̂ is exact at the interpolation indices,
i.e., it holds that PT f̂ (Vk x̃(t)) = PT f (Vk x̃(t)) for all t ∈ [0, T].

DEIM solves the computational complexity problem that occurs since the nonlinear term has to
be evaluated by replacing the orthogonal projection of POD with an interpolatory projection. As a
result, the nonlinear term has to be assessed only at a few selected component functions, which greatly
reduces the complexity. Note that the choice of the snapshots is a crucial factor in the construction of
the POD basis, and the choice of the projection basis greatly affects the accuracy of the approximation
of the original solution space. The snapshots are numerically sampled values of the trajectory x(.) at
particular time steps for a particular initial condition and at particular parameter values. The DEIM
state approximation error for large systems of nonlinear ODEs was analyzed in [28], and a bound on
the global state space approximation error was provided.

3. Application of the POD-DEIM Approach to Kinetic Model Examples

In this section, we apply the POD-DEIM model reduction method introduced in the previous
section to kinetic models for different examples of biological systems. In particular, we consider the
simple metabolic-genetic network example of [26], a large-scale kinetic model of the yeast metabolic
network taken from [30], and a large-scale kinetic model of the Escherichia coli metabolic network
introduced in [31]. All results presented in the following sections were computed with MATLAB
(R2017a) on a GNU Linux system (openSUSE Leap 15.0).

3.1. Kinetic Model of the Metabolic-Genetic Network

In this example, we consider the model of the simple metabolic-genetic network studied in [26];
see Figure 1. The network contains 20 reactions and 19 dynamic states: 7 external metabolites
(C1, C2, Fext, Oext, Dext, Eext, Hext), 11 internal metabolites (A, B, C, D, E, F, G, H, ATP, NADH, O2),
and biomass. This sample metabolic network models the dynamic growth of a cell while seven
of the reactions are regulated by four temporary regulatory constraints, and it can be used to illustrate
several insightful scenarios (e.g., preferential carbon source uptake/catabolite repression, anaerobic
growth, amino acid biosynthesis pathway repression, or transcriptional regulation to maintain the
concentration levels of important metabolites; see [26]). For this metabolic network example, we
introduced a kinetic model describing the dynamics of external metabolites, internal metabolites, and
regulatory rules for the network; see the Appendix.

In particular, the change of the external metabolite concentrations in the cell medium generates
different scenarios. Here, we will discuss the two scenarios called the diauxic-switch and
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aerobic/anaerobic-diauxie scenarios, which were also studied in [26]. First, we apply MOR methods
to the kinetic model of the metabolic genetic network (A2) in the diauxic-switch scenario.

Biomass

A ATP

B F

Fext

Tc2 Tc1 Tf

2 ATP, 3 NADH 2ATP, 3NADH

C2 C1

R1

R3

R2a

R2b

ATP

Oext

O2

NADH

TO2

Rres

Rgrowth

10ATP

2NADH, 0.8C
2 ATP

Td

Te

R5a, b C

G
H

3E Eext

Hext

R8a, b

1ATP, 2NADH

4 NADH

3D DextR6

R7
R4

Th

Figure 1. A network of chemical reactions of the core carbon metabolic network [26].

3.1.1. Application of POD-DEIM to the Diauxic-Switch Scenario

In the case of the diauxic-switch scenario, there are two sources of carbon that are introduced to
the cell. During the first phase, the cells prefer to metabolize the sugar on which they can grow faster
(e.g., C1). When the first sugar has been exhausted, the cells switch to the second source of carbon
(e.g., C2); see [32,33].

We use the MATLAB function ode23s with tolerances RTOL = ATOL = 10−6 to compute a
numerical solution of the ODE system (A2) with parameters as given in Table A2 in the time interval
[0, 5] hr using a non-equidistant output time-grid. The initial concentrations of internal metabolites
are assumed to be (A, B, C, D, E, F, G, H, ATP, NADH, O2) = (0, 1, 0, 0, 0, 0.2, 0, 0.03, 6, 5, 0). The initial
concentrations of external metabolites are taken from [26] for the different scenarios. This numerical
solution yields the snapshot matrix X and the nonlinear snapshot matrix F. We used the MATLAB
function svd to calculate the singular value decomposition of X and F. The singular values are depicted
in Figure 2.

For X, we could observe gradually decaying singular values with a strong decay for the smallest
ones, indicating that neglecting these values would not result in any considerable loss of information
in the reduced order model. A similar behavior could be observed for F. The original model had a
dimension of m = 19. We computed reduced order models of different dimensions, once using the
POD approach and once using the POD-DEIM approach. In the first scenario, we used k = ` = 16
for both approaches. The simulation results of the reduced order system in comparison with the
simulation results of the original system are depicted in Figure 3 for some selected components of the
state vector. We could observe that the main features of the dynamical behavior of the original model
states were preserved in both reduced order models.
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Figure 2. Singular values of snapshot matrix X (left) and nonlinear snapshot matrix F (right) for the
simple metabolic-genetic network example of [26].
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Figure 3. Comparison of some of the model components in the original model and the reduced order
models (proper orthogonal decomposition (POD) and POD-discrete empirical interpolation method
(DEIM)) of dimension k = 16, ` = 16.

In a second scenario, we reduced the dimension to k = 15, ` = 16. The results are depicted in
Figure 4.
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Figure 4. Comparison of some of the model components in the original model and the reduced order
models (POD and POD-DEIM) of dimension k = 15, ` = 16.

In a third scenario, we reduced the dimension to k = 14, ` = 16. The results are depicted in
Figure 5.
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Figure 5. Comparison of some of the model components in the original model and the reduced order
models (POD and POD-DEIM) of dimension k = 14, ` = 16.
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We can observe that some curves still matched well with the original model, while the solutions
moved off, after t = 4 hr in the second scenario and after t = 3 hr in the third scenario. The behavior of
C1, Oext, and G still fit well for all reduced models.

Since biomass expresses the growth of the cell, it is an important component of the network that
should also be preserved. We could observe that the reduced model preserved the biomass behavior
quite well, such that we obtained approximately the same growth.

In the fourth scenario, we used k = 14 and ` = 13. The results are depicted in Figure 6.
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Figure 6. Comparison of some of the model components in the original model and the reduced order
models (POD and POD-DEIM) of dimension k = 14, ` = 13.

We could observe that the trajectories of C1 and Oext still fit well, but deviations occurred for the
other components. In particular, differences between the POD and the POD-DEIM models could be
observed that suggested that information captured by the truncated SVDs was not sufficient to predict
the original behavior. We also compared the time costs for the simulations; see Table 1. For evaluating
the computing times, we used the MATLAB function timeit.

Table 1. Comparison of the computing times for the four different scenarios.

Original Model POD ROM POD-DEIM ROM

Scenario 1 (k = 16, ` = 16) 0.3 s 1.4 s 0.7 s
Scenario 2 (k = 15, ` = 16) 0.3 s 1.4 s 0.6 s
Scenario 3 (k = 14, ` = 16) 0.3 s 1.9 s 0.9 s
Scenario 4 (k = 14, ` = 13) 0.3 s 1.9 s 0.9 s

We could see that the calculation of the reduced order models required some additional
computational effort, in particular the projections with VT

k and Vk. If the reduced order model
captured the features of the original model well, the computational effort for POD-DEIM model was
about half of the effort for the POD model. This example was at a small scale, and the payoff in terms
of computational time is shown in the later examples.
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3.2. Kinetic Model of the Yeast Metabolic Network

In [30], a workflow for converting metabolic reconstructions into large-scale kinetic models of
yeast metabolism was developed. Its purpose was to take available datasets, perform a thorough
analysis of the parameter constraints, and then, produce the kinetic model using large data integration.
In this example, the generated kinetic model contained 281 metabolites. Here, we applied the order
reduction method to the large-scale yeast model as described in [30]. The ODE model equations were
taken from the BioModels database (http://identifiers.org/biomodels.db/BIOMD0000000496). Here,
we used only some representative metabolites in order to compare the behavior of the original and the
reduced order models. The snapshot matrix X was obtained from a simulation of the ODE model over
the time interval [0, 3000 ] s using the MATLAB solver ode23tb with the default setting and initial
values taken from the database model. The behavior of the singular values of the snapshot matrix
is depicted in Figure 7. We could observe a fast decay in the singular values with a large number of
values of magnitude 10−12 indicating that neglecting these values would not result in any considerable
loss of information in the reduced order model.
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Figure 7. Singular values of snapshot matrix X.

The original ODE system was of dimension m = 281, and we reduced it to k = 45 (Scenario 1)
and k = 40 (Scenario 2). The results of the simulations are given in Figures 8 and 9. A comparison of
the computing times is given in Table 2.

Table 2. Comparison of the computing times for the two different scenarios.

Original Model POD ROM

Scenario 1 (k = 45) 0.28 s 0.20 s
Scenario 2 (k = 40) 0.28 s 0.46 s

We could see that in Scenario 1, the metabolites showed the same behavior in both models.
We selected here the same metabolites as were presented in the Supplementary Information of [30].
In Scenario 2, the behavior of the metabolites was still well preserved, although we could see that some
of the curves started to oscillate. The beginning oscillations suggested that the reduced order system
was unstable, while the original system was stable. The problem of the instability of the reduced order
model was addressed, e.g., in [34] or [35] and could be circumvented by taking additional measures.
These oscillations increased if we further decreased the dimension of the reduced order model until
the numerical simulation became unstable. The time cost of the simulation could be lowered by a
factor of by approximately 3/4 in Scenario 1, whereas the oscillations led to a higher computational
effort in Scenario 2.

http://identifiers.org/biomodels.db/BIOMD0000000496
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Figure 8. Comparison of the behavior of some metabolites in the yeast model for the original and the
POD reduced model (Scenario 1).
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Figure 9. Comparison of the behavior of some metabolites in the yeast model for the original and the
POD reduced model (Scenario 2).

For this example, we only applied the POD approach, since we could not gain any improvement
in the computational efforts using the DEIM approach. The reason here was that the selection of the
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equation required in the DEIM method could not be achieved for the model equations provided by the
BioModels database.

3.3. Kinetic Model of the E. coli Metabolic Network

A method for the generation of genome-scale kinetic models of the E. coli organism from
reconstruction data was proposed in [31]. Building a kinetic model requires kinetic parameters,
fluxes, and rate laws. In [31], a small kinetic model was used with the presence of experimental data,
which was then extended using typical estimates in cases where experimental data were not available.

We applied the POD method to the generated kinetic model of E. coli as presented in [31]
containing m = 402 state variables, and we compared the original and reduced model for some
of the metabolites’ behavior. The ODE model equations were taken from the BioModels database
(http://identifiers.org/biomodels.db/BIOMD0000000469).

The snapshot matrix X was obtained from a simulation of the ODE model over the time interval
[0, 300 ] s using the MATLAB solver ode23tb setting ATOL = 10−3 and the initial values taken from
the database model. The behavior of the singular values of the snapshot matrix is depicted in Figure 10.
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Figure 10. Singular values of snapshot matrix X for the kinetic model of the E. coli metabolic network
of [31].

Again, we could observe a fast decay in the singular values with a large number of values of
magnitude 10−13 indicating that neglecting these values would not result in any considerable loss of
information in the reduced order model. The original ODE system was of dimension m = 402, and we
reduced it to k = 45. The results of the simulations of some chosen metabolites are given in Figures 11
and 12.

Here, we selected random metabolites for the comparison. We could observe that the metabolites
showed the same behavior in both models. The time cost of the simulation in the reduced model could
be lower by a factor of by approximately 1/7 compared to the original model, see Table 3.

Table 3. Computing times for the POD method.

Original Model POD ROM

Scenario (k = 45) 0.10 s 0.014 s

http://identifiers.org/biomodels.db/BIOMD0000000469
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Figure 11. Comparison of the behavior of some metabolites in the yeast model for the original and the
POD reduced model.
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Figure 12. Comparison of the behavior of some metabolites in the yeast model for the original and the
POD reduced model.

From the previous discussions, we could conclude that the additional time cost required for
the computation of the projection in the reduced order model in the POD approach was negligible
for large-scale systems and was greatly exceeded by a gain in efficiency and computational speed.
Naturally, the POD method was more effective and of more use in large-scale models.
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4. POD for Kinetic Models With Different Initial Conditions

In this section, we study the POD method for a dynamical system with different initial conditions.
In a kinetic system model, different initial conditions can be used to describe different scenarios
or different modes of a biological system. We followed the same steps of the POD approach as in
Section 2. At first, we computed the snapshot matrix X = [x(t1), x(t2), . . . , x(tns)] ∈ Rm×ns by solving
the system of ODEs (1) with the initial condition x0. Then, we computed another snapshot matrix
Y = [x(t1), x(t2), . . . , x(tns)] ∈ Rm×ns with a different initial condition y0. We combined the two
snapshot matrices X, Y in a snapshot matrix Z given in the following form:

Z = [X Y] ∈ Rm×nŝ , nŝ = 2ns.

Then, by applying the singular value decomposition, we obtained:

Z = U

[
Σr 0
0 0

]
VT ,

where U ∈ Rnm×nm and VT ∈ Rnŝ×nŝ are unitary matrices with orthonormal columns. The term
Σr = diag(σ1, σ2, ..., σr) ∈ Rr×r is a matrix with real, non-negative entries on the diagonal and zeros off
the diagonal, and r = rank(Z). By truncating the least dominant singular vectors and projecting the
original system onto the lower-dimensional subspace, we obtain a reduced order model.

Application to the Kinetic Model of a Metabolic-Genetic Network

In the following, we apply the idea described above to the kinetic model of the metabolic-genetic
network from [26] with model equations given in (A2) for different scenarios. The scenarios were
the diauxic switch scenario and the aerobic/anaerobic-diauxie scenario, and both scenarios could be
predicted using the kinetic model by prescribing specific initial values.

The model in the diauxic-switch scenario was already introduced in Section 3.1. We used the
MATLAB function ode23s with tolerances RTOL = ATOL = 10−6 and initial conditions

x0 = [10, 10, 0, 50, 0, 0, 0, 0.003, 0, 1, 0, 0, 0, 0.2, 0, 0.03, 6, 5, 0]

to compute a numerical solution of the ODE system (A2) with parameters in the time interval [0, 5] h
using a non-equidistant output time-grid. This numerical solution yielded the snapshot matrix X.

In the aerobic/anaerobic-diauxic scenario of transcriptional regulatory modeling, there was only
one source of carbon (i.e., C2 > 0 and C1 = 0) and oxygen supplied to the culture. After some time,
oxygen was removed [26]. We used the MATLAB function ode23s with tolerances RTOL = ATOL =

10−6 and initial conditions

y0 = [0, 10, 0, 2, 0, 0, 0, 0.0008, 0, 1, 0, 0, 0, 0.2, 0, 0.03, 6, 5, 0]

to compute a numerical solution of the ODE system (A2) with parameters in the time interval [0, 5] hr
using a non-equidistant output time-grid. This numerical solution yielded the snapshot matrix Y.

We used the MATLAB function svd to calculate the singular value decompositions of Z = [X Y].
The singular values are depicted in Figure 13.

The original model had a dimension of m = 19. We computed a reduced order model of dimension
k = 17 using the POD approach. The results of a simulation of the reduced order system in comparison
with the simulation results of the original system are depicted in Figures 14 and 15 for the two different
scenarios, diauxic switch and aerobic/anaerobic-diauxie, respectively.
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Figure 13. Singular values of snapshot matrix Z for the simple metabolic-genetic network example
of [26].
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Figure 14. Comparison of the behavior of some metabolites in the diauxic switch scenario for the
original and the POD reduced model.

We could observe that the main features of the dynamical behavior of the original model states
were preserved for both scenarios using the same reduced order model. This was an important result,
as it showed that as long as the snapshot matrix provided the essential information, a reduced order
model had to be computed only once and could then be used to predict the dynamical behavior of the
system for very different scenarios. The magnitude by which the system could be reduced depended
on the decay of the singular values. Singular values of magnitude 10−15 could be neglected, while
singular values of order 10−4 still contained important information. For large-scale networks as in
Sections 3.2 and 3.3, the difference in the dimension of the reduced and the original model could be
assumed to be much larger.
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Figure 15. Comparison of the behavior of some metabolites in the aerobic/anaerobic-diauxie scenario
for the original and the POD reduced model.

5. Conclusions

In this paper, we discussed the model reduction for kinetic models of biological networks using
the POD and the POD-DEIM approach. Since kinetic models of chemical networks can be very large,
the possibility to obtain a reduced order model that replicates the desired dynamical behavior is of vital
importance. We applied the model reduction techniques to several examples. It has to be noted that
the computation of a reduced order model requires some additional computational effort. However,
the computation of the snapshots and the SVD usually has to be computed only once (often, this is
called the offline phase), while the simulations of the reduced order models are run several times,
e.g., within an optimization process (in the so-called online phase). Thus, the effort for setting up a
reduced order model will pay off if we can reduce a large-scale model to a much smaller dimension
and run simulations of the reduced order model for a long time. Furthermore, the efficiency of the
model order reduction strongly depends on the decay of the singular values of the snapshot matrix.
How far the model can be reduced also depends on the application and on what components of the
solution one is interested. In addition, we showed that the dynamical behavior of a biological network
can be predicted for very different scenarios (diauxic switch and aerobic/anaerobic-diauxie) using the
same reduced order model.
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Appendix A

Appendix A.1. Derivation of Kinetic Model Equations

The simple metabolic-genetic network (see Figure 1) was presented in [26] via a discrete model of
the regulatory flux balance analysis (rFBA). The rFBA model is based on steady-state assumptions and
can be used to predict the time profile of the external metabolites and of the biomass concentration.
Here, we derive a kinetic model of the metabolic-genetic network that mimics the discrete rFBA model,
but allows describing the full dynamical behavior of the network.

The network has four regulatory rules that are expressed by Boolean logic in the rFBA model,
defined in Table A1; see [26]. For instance, the presence of the metabolite C1 will activate the regulatory
protein RPc1, and the activation of RPc1 (on) inhibits the transcriptional regulation tTc2 (off).

Table A1. Regulatory rules for the metabolic network Figure 1.

Regulatory Proteins Transcriptional Regulation

RPc1 IF (C1) tTc2 IF NOT ( RPc1)
RPh IF (νTh > 0) tR8a IF NOT ( RPh )
RPb IF (νR2b > 0) tR2a, tR7 IF NOT ( RPb )
RPO2 IF Not (Oext) tRres, tR5a IF NOT (RPO2)

In order to introduce a kinetic model for the network in Figure 1, the differential equations of a
metabolic network can be given as follows:

dMext

dt
= SextvX,

dMint
dt

= Sintv,

dX
dt

= µX, with µ =
nb

∑
i=1

ωiνi,

(A1)

where Mext and Mint are the vectors of external and internal metabolite concentrations, respectively,

S =

[
Sext

Sint

]
is the stoichiometric matrix [5] split into external and internal parts, v is the vector of

reaction flux, and X denotes the biomass in the kinetic model. The factor µ describes the growth
rate and is composed of the reaction fluxes νi, for all reactions i = 1, . . . nb, which produces biomass,
multiplied by the corresponding yield coefficients ωi. The yield coefficients are expressed as the mass
of cells or product formed per unit mass of substrate consumed. Notice that in our model, nb = 1.
The regulatory proteins are expressed in our kinetic model by the Hill kinetics [36,37], yielding the
following relations for the regulatory rules defined in Table A1:

tTc2 =
ζh

ζh + Ch
1

, tR2a = tR7 =
Bh

γh + Bh ,

tR5a = tRres =
Oh

ext

βh + Oh
ext

, tR5b =
βh

βh + Oh
ext

, tR8a =
αh

αh + Hh ,

where h is the Hill coefficient and ζ, γ, β, and α are thresholds. We use the Michaelis–Menten kinetics [3]
to model the reaction rates for the external metabolites, since the reactions are considered enzymatic
reactions such that the enzyme active sites become saturated, yielding:
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vTc1 = vmaxc1 · C1/(Kmc1 + C1),

vTc2 = vmaxc2 · C2/(Kmc2 + C2),

vT f = vmax f · Fext/(Km f + Fext),

vTo2 = vmaxo2 ·Oext/(Kmo2 + Oext),

vTd = vmaxd · D/(Kmd + D),

vTe = vmaxe · E/(Kme + E),

vTh = vmaxh · Hext/(Kmh + Hext),

where vmaxi, Kmi, i = c1, c2, f , o2, d, e, h are the maximum transport rates and Michaelis–Menten
constants, respectively. We use vmaxc1 = vmaxc2 = 10.5, vmax f = vmaxh = 5, vmaxd = vmaxe = 12, and
vmaxo2 = 15, all in mmol/(gDWh); see [26]. Furthermore, we use mass action kinetics [38] to model the
reaction rates for internal metabolites, for the sake of simplicity and to reduce the number of kinetic
parameters in comparison to the Michaelis–Menten kinetics, yielding:

vbio = k̃1 · F · H · C · ATP,

vR1 = k̃2 · A · ATP,

vR2a = k̃3 · B,

vR2b = k̃4 · ATP · NADH · C,

vR3 = k̃5 · B,

vR4 = k̃6 · C,

vR5a = k̃7 · G,

vR5b = k̃8 · G,

vR6 = k̃9 · C,

vR7 = k̃10 · C · NADH,

vR8a = k̃11 · G · ATP · NADH,

vR8b = k̃12 · H,

vRres = k̃13 ·O2 · NADH,

where k̃1, ..., k̃13 are the constant rates. Altogether, the differential equations to model the dynamical
behavior of the simplified metabolic-genetic network are given by:
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dC1
dt

= −vTc1 · X

dC2
dt

= −vTc2 · tTc2 · X

dFext
dt

= −vT f · X

dOext
dt

= −vTo2 · X

dDext
dt

= vTd · X

dEext
dt

= vTe · X

dHext
dt

= −vTh · X

dA
dt

= vTc1 + vTc2 · tTc2 − vR1

dB
dt

= vR1 − vR2a · tR2a− vR3 + vR2b

dC
dt

= vR2a · tR2a− vR2b − vR4 − vR7 · tR7− vR6 + 0.8 · vR5a · tR5a + 0.8 · vR5b · tR5b− vbio

dD
dt

= 3 · vR6 − vTd

dE
dt

= 3 · vR7 · tR7− vTe

dF
dt

= vT f + vR3 − vbio

dG
dt

= vR4 − vR8a · tR8a + vR8b − vR5a · tR5a− vR5b · tR5b

dH
dt

= vTh + vR8a · tR8a− vR8b − vbio

dATP
dt

= −vR1 + 2 · vR2a · tR2a− 2 · vR2b + 2 · vR6 + vR8b − vR8a · tR8a + vRres · tRres− 10 · vbio

dNADH
dt

= 2 · vR2a · tR2a− 2 · vR2b − 4 · vR7 · tR7 + 2 · vR5a · tR5a + 2 · vR5b · tR5b−

2 · vR8a · tR8a + 2 · vR8b − vRres · tRres

dO2
dt

= vTo2 − vRres · tRres

dX
dt

= ω · vbio · X

(A2)

Appendix A.2. Model Fitting

The kinetic model we introduced contains unknown parameters (constant rates). In order to
find the parameter values, we performed a model fitting process to best fit to the given datasets,
i.e., the simulation results of the rFBA model and in particular the biomass and external metabolite
concentrations over discrete time steps; see [26]. For the model fitting, the DataToDynamics (D2D)
toolbox was used that is based on a maximum likelihood estimation [39,40]. We assumed that the
kinetic model Equation (A1) was given by an ODE:

dx(t)
dt

= f (x(t), θ), (A3)
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where x(t) denotes the concentration vector and θ ∈ Rnθ is a vector of parameters (the kinetic
parameters and the thresholds in the Hill functions). In order to calibrate the kinetic model (A3) to a
given dataset, the dynamic states x are linked to measurements via:

y(ti) = g(x(ti), θ) + ε(ti),

where y is the simulation result of rFBA of external metabolites and biomass at some time point ti
and g is the observation function involving the parameter θ. In our model, the observation function g
is the dynamical state x(t) of external metabolites and biomass. The measurement noise ε is assumed
to be normally distributed with mean 0 and variance σ2 such that ε ∼ N(0, σ2); see [39].

The model was fitted to two different datasets for the diauxic switch and
aerobic/anaerobic-diauxie scenarios of the cell, which were mentioned in [26], with the initial
conditions of external metabolites (C1, C2, Fext, Oext, Dext, Eext, Hext, X) = (10, 10, 0, 50, 0, 0, 0, 0.003)
and (C1, C2, Fext, Oext, Dext, Eext, Hext, X) = (0, 10, 0, 2, 0, 0, 0, 0.0008), respectively. The estimated
parameters are given in Table A2.

Table A2. The set of all parameters of the model that are estimated of two datasets of the diauxic switch
and aerobic/anaerobic-diauxie scenarios using the D2D toolbox.

Constant Rates Value Unit

Kmc1 0.38 mM estimated
Kmc2 0.38 mM estimated
Km f 6.2 mM estimated
Kmo2 5.6 · 10−5 mM estimated
Kmd 1.1 · 10−4 mmol/gDW estimated
Kme 10−5 mmol/gDW estimated
Kmh 41 mM estimated
k̃1 980 mmol3/gDW3 · h−1 estimated
k̃2 1000 mmol2/gDW2· h−1 estimated
k̃3 300 mmol/gDW · h−1 estimated
k̃4 140 mmol3/gDW3· h−1 estimated
k̃5 23 mmol/gDW · h−1 estimated
k̃6 25 mmol/gDW · h−1 estimated
k̃7 1.6 mmol/gDW· h−1 estimated
k̃8 1000 mmol/gDW· h−1 estimated
k̃9 13 mmol/gDW· h−1 estimated
k̃10 2.9 mmol2/gDW2· h−1 estimated
k̃11 150 mmol3/gDW3· h−1 estimated
k̃12 7.9 · 10−5 mmol/gDW· h−1 estimated
k̃13 170 mmol2/gDW2· h−1 estimated
ζ 10−5 mM estimated
γ 0.024 mmol/gDW estimated
β 0.11 mM estimated
α 290 mmol/gDW estimated
ω 1 gDW/mmol assumed
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