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Abstract: In this study, the resultant forces and moments acting on infinite symmetric FGPs with
a triangular hole subject to uniaxial tensile load were examined via an analytical method using
the complex variable approach. The mechanical properties of graded plates are hypothesized to
vary throughout the thickness exponentially. The impact of various factors, namely hole orientation,
hole aspect ratio as well as the hole corner curve on stress distribution and moment resultants is
considered. In order to approve the credibility of the analytical approach, its outcomes are compared
to numerical results acquired from ABAQUS finite element modeling. This comparison showed a
favorable agreement level among the acquired analytical and numerical outcomes. Based on these
results, the mentioned factors entail a considerable effect on the distribution of resultant forces and
moments at the proximity of the hole and the load bearing tolerance of functional grated plates with
holes may be enhanced by suitable selection of the aforementioned parameters.

Keywords: triangular hole; analytical solution; FGP; complex variable method

1. Introduction

Openings and holes are vital sections of structural models, and control of their adverse effects
on the structure stability and failure probability around these geometric discontinuities is crucial
to design procedures. In order to reliably predict the behavior of a hole structure, designers must
cautiously examine stress distribution at the hole proximity and estimate stress distribution in order to
avoid the concentration of stress. Currently, structural models may be enhanced using functionally
graded materials (FGMs), where mechanical or thermal attributes vary gradually across one of the
fundamental sizes. Such materials may have a prominent impact on the structural members’ robustness
subjected to different loadings. In the past few decades, designers and engineers have focused on
FGMs which present great heat resistance at one part and substantial mechanical characteristics at
the opposing part. For present research, the effect of various factors on resultant forces and moments
distribution at the proximity of a triangular hole in FGPs (FGPs), is examined.

The initial function of the comprehensive variable approach to solve boundary value issues for
isotropic bodies is accredited to Muskhelishvili [1]. Savin [2] utilized this approach to examine infinite
isotropic and anisotropic plates with various holes. Subsequently, Muskhelishvili’s approach was
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extended to 2D issues related to anisotropic elastic materials by Lekhnitskii [3]. Lekhnitskii’s purpose
of this theory was to present an overall solution regarding infinite anisotropic plates consisting of
circular holes of varying sizes. For the sake of simplicity, he initially created a formulation specific to
orthotropic plates. Sharma [4,5] examined the factor for stress concentration at the proximity of various
holes. Rezaeepazhand and Jafari [6] used a mapping function derived from Lekhnitiskii’s theory to
get the stress concentration factor of different rectangular holes and curvature radii in anisotropic
plates. In this study, they managed to decrease stress concentration factor by adjusting the hole angle
orientation. Ukadgaonker and Rao [7] studied stress in asymmetrical laminated plates consisting of
various shaped holes which included squares and circles in addition to abnormal shapes. Jafari and
Byati [8] examined optimizing orthotropic infinite plate with quasi-triangular hole by utilizing the
dragonfly algorithm. Furthermore, by utilizing a genetic algorithm, Jafari et al. [9] acquired favorable
values of the factors that affect the stress distribution at the proximity of different holes in orthotropic
and laminated plates. Chen et al. [10] examined stress distribution within a FGP (with differing
characteristics across the radial direction) consisting of a circular hole. Regarding the research, the
outcomes were acquired by considering homogenous characteristics for every angle lamina of the
plate. These researchers studied the functionally graded infinite plates at the radial direction and
consisting of circular holes [11]. Sharma [12] obtained stress functions to determine stress distribution
at the proximity of special holes within infinitely laminated plates under arbitrary biaxial loading at
infinity by utilizing Muskhelishvili’s complex variable method. The impact of fiber orientation, loading
factor, stacking pattern, loading angle and hole geometry on stress distribution at the proximity of
holes in anisotropic/orthotropic plates was examined. Pan [13] presented a comprehensive solution for
FGPs consisting of a circular hole. Reid and Paskaramoorthy [14] implemented the classical theory to
develop a resolution for FGPs. Sharma and Dave [15] presented a solution for moments and stress
resultant at the proximity of elliptical and circular hole in infinite FGP with through thickness material
characteristic deviance. In this research, the complex variable approach was utilized to examine the
impact of factors, namely the dispersion of materials characteristics and the load angle of resultant
and of moments. Mohammadi and Dirang [16] obtained the stress concentration in FGPs containing a
circular hole for biaxial loading. They used an exponential function to model their plate in a radial
direction. Enab [17] studied the stress concentration evaluation on FGPs with elliptical holes acted by
biaxial loads, using finite element method to model their plate. Mehrparvar and Ghannadpour [18,19]
examined the post-buckling and nonlinear demeanors of perforated plates with circular, elliptic or
rectangular holes under in-plane compressive mode. Craciun et al. [20–22]—using a complex potential
method—studied the equilibrium states of the anisotropic elastic body containing an elliptic hole by
using conformal mappings and obtained solution in a closed, compact form.

Ashoori and Jafari [23] examined the impact of various factors on stress resultant and moments
distribution at the vicinity of non-circular cutouts within asymmetric laminates. Jafari et al. [24,25]
using complex potential method obtained the forces and moments per unit length in infinite FGPs
with rectangular cutout.

Most prior research on FGP with loads had a focus on circular and elliptically shaped holes and
did not pay attention to other factors, namely orientation angle and corner curvature of non-circular
holes, in spite of their possible effects on the structure strength. In this study, the impact of hole
orientation angle, hole corner curvature and aspect ratio on stress distribution in the neighborhood of
the triangular hole in FGPs is studied. The hole is not subjected to external loading and we consider
that the plate is greater than the hole.

2. Analytical Formulations

In order to further develop Lekhnitskii’s relation and to acquire forces and moments per unit
length distribution at the proximity of the quasi-triangular hole, as well as calculate Cauchy’s integral
in a simplistic manner amidst calculating the resultants, it is more favorable to turn the quasi-triangular
hole into a single circle. This study is conducted by considering the plane stress state without body
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forces. More, the plate is in its linear elastic domain. The dimension of the cutout is small in comparison
with the plate (infinite plate). By utilizing a mapping function, the quasi-triangular exterior area in the
physical coordinate of z may be converted to the exterior area of the unit circle in plane ζ. The utilized
mapping function, following [25], is given by:

Zp j =
1
2
(a jζ+

b j

ζ
+ c jωζ

n + (d jω)/ζn), j = 1, 2, 3, 4 (1)

with:
a j = (1− ics j) cos β+ (−ic− s j) sin β
b j = (1− ics j) cos β+ (ic− s j) sin β
c j = (1− is j) cos β+ (i + s j) sin β

d j = (1− is j) cos β+ (−i− s j) sin β.

(2)

Concerning the above equations, s j denote the roots of the properties equation of generally
orthotropic plate and will later be discussed; λ ascertains the hole size and is assumed as λ = 1; c is the
aspect ratio of the hole (determines hole elongation or compression along y-axis); n shows the hole
geometry (in this study, n = 2). As presented in Figure 1, the parameter ω (0 ≤ ω ≤ 0.5) represents the
curve of hole corner; a larger ω creates a sharper edge while a less ω creates a sleeker corner. At the
least value of ω (i.e., ω = 0), hole turns into a circle. The impact of this parameter on the evolution of
hole geometry from triangular toward circle is illustrated in Figure 1. The parameter β in the equations
above denotes the hole orientation angle.

Figure 1. The influence of ω,β on the hole geometry (λ = 1)

Regarding composite laminates, due to various orientations for every layer, the 2D stress–strain
relationship ascertained by the decreased stiffness matrix concerning the kth layer is:


σx

σy

τxy


k

=


Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


k

εx

εy

γxy


k

(3)

The matrix
[
Qi j

]
is symmetric and dependent on the fiber orientation and engineering constants

for every layer. The stress components of the kth layer as function of the mid surface curvatures (kx, ky

and kxy) and mid surface strain (ε0
x,ε0

y and γ0
xy) are in accordance with Equation (4) [19]:

Following [19], we have:


σx

σy

τxy


k

=


Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


k

ε0

x
ε0

y
γ0

xy

+ z


kx

ky

kxy


, (4)
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with (kx, ky, kxy) and ε0
x, ε0

y, ε0
xy are the kth layer mid surface curvatures and strains.

Forces and moments per unit length originating from subjected load may be calculated by stress
integration in every layer across the laminate thickness [19]:

Nx

Ny

Nxy

 =
∫ H

2

−
H
2


σx

σy

τxy

dz =
N∑

k=1

∫ Zk

Zk+1


σx

σy

τxy


k

dz (5)


Mx

My

Mxy

 =
∫ H

2

−
H
2


σx

σy

τxy

zdz =
N∑

k=1

∫ ZK

Zk+1


σx

σy

τxy


k

zdz, (6)

where, zk and zk−1 represent the space between upper and lower limits of the kth layer to to the middle
surface (Figure 2). Every layer has a fixed thickness tk. For a laminate that possesses N layers, the overall
thickness H is:

H = N × tk. (7)

Figure 2. Laminate with N layers.

Using Equations (4)–(6), we get forces and moments per unit length, [19]:
Nx

Ny

Nxy

 =


A11 A12 A16

A12 A22 A26

A16 A26 A66



ε0

x
ε0

y
γ0

xy

+


B11 B12 B16

B12 B22 B26

B16 B26 B66




kx

ky

kxy

 (8)


Mx

My

Mxy

 =


B11 B12 B16

B12 B22 B26

B16 B26 B66



ε0

x
ε0

y
γ0

xy

+


D11 D12 D16

D12 D22 D26

D16 D26 D66




kx

ky

kxy

 (9)

The extensional stiffness coefficients Ai j, the bending-extension coupling coefficients Bi j and the
is bending stiffness coefficients Di j, i, j = 1, 2, 6 are expressed, as follows [19]:

Ai j =
N∑

k=1

[
Qi j

]k
(zk − zk−1) ,Bi j =

1
2

N∑
k=1

[
Qi j

]k(
z2

k − z2
k−1

)
,Di j =

1
3

N∑
k=1

[
Qi j

]k(
z3

k − z3
k−1

)
. (10)
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Perforated FGPs considered in this study are exponential FGP, i.e., Young’s modulus, Poisson’s ratio
and shear modulus of the point residing at the distance z relative to the total thickness are provided
via the exponential function below:

MP(z) = Pteη(
1
2+

z
H ). (11)

Such that z is the gap from the X-Y plane at the plate center within the mid surface, M. P(z) is the
substance characteristic at distance z, η = ln Pb

Pt
, H is the total thickness, Pt is the material property in

the top layer of the FGP and Pb the material property in the bottom layer of the FGP, as in Figure 3.
In the present composite material, top and bottom laminates have a 90-degree and 0-degree fiber
angle, correspondingly.

Figure 3. FGP with a hole [15].

The forces and moments per unit length are obtained in terms of the stress function ϕ j as relations
(11) and (12), [19]:

Nx = 2Re
4∑

j=1
s2

jϕ
′

j(zp j)

Ny = 2Re
4∑

j=1
ϕ′ j(zp j)

Nxy = −2Re
4∑

j=1
s jϕ
′

j(zp j)

(12)

Mx = 2Re
4∑

j=1
f1 j(s j)ϕ

′
j(zp j)

My = 2Re
4∑

j=1
f2 j(s j)ϕ

′
j(zp j)

Mxy = 2Re
4∑

j=1
f3 j(s j)ϕ

′
j(zp j).

(13)

where Re [.] represents real part of [.]. In the above relations following [24] we get


f1 j
f2 j
f3 j

 =


−B∗11 −B∗12 −B∗16
−B∗12 −B∗22 −B∗26
−B∗16 −B∗26 −B∗66

D∗11 D∗12 D∗16
D∗12 D∗22 D∗26
D∗16 D∗26 D∗66

 =


s2
j

1
−s j
−µ j(s j)

−µ j(s j)s2
j

−2µ j(s j)s j


(14)
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where: [
B∗i j

]
3×3

= −
[
Ai j

]−1

3×3

[
Bi j

]
3×3[

D∗i j

]
=

[
Di j

]
3×3
−

[
Bi j

]
3×3

[
Ai j

]−1

3×3

[
Bi j

]
3×3

,
(15)

µ j being anisotropy factor [19].
The stress functions ϕ j may be computed using the superposition approach by aggregating the

stress functions in two conditions. For the initial condition, a complete plate is assumed (excluding a
hole) under a load on outer edges. Such load creates an internal load on the points on the hole limits.
Regarding the main issue, the hole boundary is not subjected to a load. For the second condition, it is
assumed that an opposing force to the hole boundary internal hole offsets its impact. When there is no
hole, the stress function corresponding to first condition has a constant complex value:

ϕ′1 j = A j. (16)

For the second state, the potential functions of the first state are used to compute the internal
forces fx and fy and the transverse force p(Γ) and the bending moment m(Γ) generated at the hole
boundary. Using the equilibrium equations in the and directions, the internal forces are related to the
resultants Nx, NY and NXY as follows [2]:

Following [2], in the second case, we have the following equations:

Nxdy−Nxydx = − fxdΓ (17)

Nxydy−Nydx = − fydΓ, (18)(
Mxy + p

)
dy−Mydx = mdx− f dy (19)

Mxdy−
(
Mxy − p

)
dx = −mdx− f dy, (20)

where fx, fy, p(Γ), m(Γ) and respectively Γ are internal forces, transverse force, bending moment, and arc
hole length to the current point, respectively.

Now using Equations (12,13) in (17)–(20) we get the boundary conditions:

∫ Γ

0
XndΓ = 2Re

4∑
j=1

Γ jϕ2 j
(
z j
)

(21)

−

∫ Γ

0
YndΓ = 2Re

4∑
j=1

ϕ2 j
(
z j
)

(22)

∫
(m dy + f dx) = 2Re

4∑
j=1

f1 j
(
s j
)

s j
ϕ2 j

(
z j
)

(23)

∫
(m dy− f dx) = 2Re

4∑
j=1

f2 j
(
s j
)
ϕ2 j

(
z j
)
. (24)

Due to the hole boundary being considered to be free from traction, regarding the second condition,
it is assumed that at the hole boundary, an opposing force to the internal load stemming from the
external load of the initial condition offsets its impact. Therefore, the boundary conditions are:

2Re
[
s jϕ2 j(zp j)

]
= 2Re

[
s jA jzp j

]
(25)

2Re
[
ϕ2 j(zp j)

]
= 2Re

[
A jzp j

]
(26)
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2Re
[ f1 j

s j
ϕ2 j(zp j)

]
= 2Re

[ f1 j

s j
A jzp j

]
(27)

2Re
[

f2 jϕ2 j(zp j)
]
= 2Re

[
f2 jA jzp j

]
(28)

Using the Schwartz formula concerning the holomorphic function ϕ j and the substitution of the
mapping function (1) in Equations (25) to (28) yields:

s jϕ2 j(ζ) =
1
2

s jA j(a jζ+
b j

ζ
+ c jωζ

n +
d jω

ζn ) + s jA j(a jζ+
b j

ζ
+ c jωζ

n +
d jω

ζn )

 (29)

ϕ2 j(ζ) =
1
2

A j(a jζ+
b j

ζ
+ c jωζ

n +
d jω

ζn ) + A j(a jζ+
b j

ζ
+ c jωζ

n +
d jω

ζn )

 (30)

H jϕ2 j(ζ) =
1
2

H jA j(a jζ+
b j

ζ
+ c jωζ

n +
d jω

ζn ) + H jA j(a jζ+
b j

ζ
+ c jωζ

n +
d jω

ζn )

 (31)

where

H j =
f1 j

s j
. (32)

From Equations (29)–(32) we get the solution ϕ′ j:

ϕ′ j(zp) = A j −
ϕ′2 j(ζ)

zp′ j(ζ)
. (33)

Such that zp′ is the initial derivative of the mapping function in regard to ζ. Ultimately,
by implementing Equation (33) in Equations (12) and (13), the forces and moments per unit length
are acquired.

3. Numerical Results

At first, to validate the used method, the results of presented analytical study are evaluated using
the finite element method (in ABAQUS). For that, the hole geometry was modeled with the following
values for the studied parameters: β = 0◦ (the orientation angle of the hole), c = 1(aspect ratio of the
hole) and ω = 0.125 (bluntness parameter). To simulate FGP, it is considered to include 100 layers with
marginally differing characteristics that altogether create the eventual variances in characteristics along
the thickness. The mechanical characteristics considered for FGM are provided in Table 1.

The implemented load was Nx = 1N/mm. For the purpose of obtaining optimal mesh grid
and enhancing the preciseness of FEM outcomes, the region at the hole’s proximity was modeled
using a smaller mesh compared to farther regions. Meshing took place using S8R elements in regard
to the physics and geometry of the issue at hand. Figure 4 provides a comparison of the stress
resultant Ny acquired from the provided analytical solution including one provided by the numerical
solution. Figure 5 presents a resembling comparison of the stress resultant Nxy. The angle α denotes
the points’ position on the hole boundary in regard to the horizontal axis. The mesh and loading
patterns are depicted in Figures 6 and 7, correspondingly. The maximum resultant forces’ ratio at
the hole corner to the implemented load is considered as the normalized stress resultant. Evidently,
when the implemented load is 1, i.e., (Nx = 1N/mm), hence the normalized stress resultant is the
resultant forces. Furthermore, the normalized moment resultants (mx, my and mxy) are defined as

( Mx∗1000
√

Q11NxH
,

My∗1000
√

Q11NxH
,

Mxy∗1000
√

Q11NxH
) correspondingly [25], such that H is the overall laminate thickness.
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Figure 4. Comparing the moments mx provided by the analytical approach and the numerical solution
(ω = 0.125).

Figure 5. Comparing the resultant force nx provided by the analytical approach and the numerical
solution (ω = 0.125).
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Figure 6. Mesh refinement for plate with quasi-triangular hole.

Figure 7. Loading situation in ABAQUS software.

Table 1. Mechanical properties.

Material E1(GPa) E2(GPa) G12(GPa) ν12

Graphite BMI 124 8.46 4.59 0.28

4. Results

In this section, we investigate the forces and moments per unit length of FGPs with quasi-triangular
hole. In Figure 8, the maximum resultant forces acquired around a triangular hole in asymmetric
laminate from modeling with 20 to 140 layers are presented. Evidently, as the number of laminate (N) is
increased, the stress resultant primarily increases, and subsequently decreases until gradually reaching
a constant value at N = 90. Consequently, every research outcome was calculated with N = 100 layer
number, which is accordance to dimensionless ply thickness of 0.01.
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Figure 8. Forces and moments per unit length.

Figure 9 presents the discrepancies of the normalized forces and moments per unit length with
the rotation angle of triangular hole (β) in various values of bluntness parameter (ω). Because the
difference of resultant forces with hole orientation are periodical, the outcomes are provided for β
values of up to 90 degrees. Based on this figure, for all values of ω, by decreasing the value of ω, the
forces and moments per unit length is reduced. In each value of ω, the minimum normalized resultant
forces (nx, ny, nxy) occur at approximately rotation angle of 45◦ and the rotation angle of 20◦ leads to the
maximum normalized resultant forces. For example, the normalized resultant forces (nxy) presented in
Figure 9.
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Figure 9. Discrepancies of the normalized forces and moments per unit length with the rotation angle
of triangular hole (β).

Moreover, for moments, the minimum value of mx happens at hole orientation of 55◦. The minimum
values of my and mxy occur at rotation angle of 20◦; my and mxy behave differently compared to
mx. The rotation angle of 50◦ leads to the maximum value of my and mxy. Due to the difference between
the three modes, all three charts of normalized moments are placed.

The aforementioned parameter c guides the hole’s aspect ratio and solely influences the outcomes
along the y-direction. The impact of this factor on the maximum resultant forces acquired with various
curvature factors at zero-degree orientation (β = 0) are shown by Figure 10. Evidently, as c is increased,
all resultants enhanced linearly. This is evident in all values of bluntness parameter. As shown in this
figure, the lowest values of forces and moments per unit length happen in ω = 0 which is equivalent to
a circular hole. Regarding the similarity of linear behavior in both cases, two samples of the vector (ny,

my) are selected excellently.
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Figure 10. The effect of c on the normalized forces and moments per unit length in different values of ω.

Figure 11 depicts the impact of bluntness parameter (ω) on the normalized resultant force at β = 0
and c = 1. This figure shows that as we increased ω to sharpen the hole corners, the maximum resultant
forces increased. The minimum value of normalized forces and moments per unit length occur at ω = 0.
As previously stated, ω = 0 is the equivalent of a circular hole. As illustrated in this figure, the rotation
angle of 45◦ compared to two other angles leads to the minimum values of normalized resultant forces.
The maximum values of nx and ny occur at rotation angle of 30◦ however, for ny this value occurs at
rotation angle of zero degrees. The rotation angle of 30◦ causes the minimum values of my and mxy,
however, the minimum value of mx occurs at rotation angle of zero degrees.
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Figure 11. The effect of ω on the normalized forces and moments per unit length.

5. Conclusions

This study provided an analytical approach on the basis of Lekhnitskii’s formalism and a conformal
mapping to assess the stress distribution of FGPs consisting of triangular holes. The impact of hole
geometry on forces and moments per unit length to be created at the proximity of the hole boundary
was examined. An overall assessment indicated that:
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(1) By comparing the provided analytical solution in addition to the numerical solution acquired via
finite element modeling, favorable compatibility was exhibited between these outcomes.

(2) When a perforated plate subjected to uniaxial loading along the x-direction, the normalized forces
and moments per unit length at the proximity of the holes of various aspect rations will be greater
at the loading direction compared to other directions.

(3) The hole corner’s curvature radius does not only determine the values of the forces and moments
per unit length, but also hole orientation and aspect ratio have substantial roles in this regard.
Therefore, cautious modifications of such parameters may substantially decrease the forces and
moments concerning every hole at all provided corner curvatures.

(4) Most forces and moments per unit length change linearly with aspect ratio of triangular hole (c).
(5) The lowest values of the normalized forces and moments occur in ω = 0 which is equivalent

to a circular hole this means that for a triangular hole, the values of the normalized forces and
moments are not less than the circular hole in any value of the parameters discussed.

(6) As bluntness parameter (ω) increases, the normalized forces and moments increase at different
rotation angles.
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and agreed to the published version of the manuscript.
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Nomenclature

Zp j Mapping function
ζ Complex variable
a j,b j, c j, d j Complex constants related to the roots of the characteristic equation
ω Bluntness
n Hole geometry
i Imaginary constant
j Counter
γxy Shear strain
k Layers counter
Qi j Reduced stiffness matrix
γ0

xy Mid-plate shear strain
z Thickness
H Total thickness
zk Distance to mid plane
tk Thickness of each layer
MP(z) Exponential function
Pt Material properties in the upper layers
Pb Material properties in the lower layers
e Napier number (2.718)
η Exponential function constant
Re Real part
ϕ j Potential function
c Hole aspect ratio
s j The roots of the characteristic equation
β Hole rotation angle
λ The hole size
σx,σy Normal stress
τxy Shear stress
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εx,εy Longitudinal strain
ε0

x,ε0
y Midline longitudinal strains

kx,ky, kxy Intra-curvature curvature
Nx,Ny, Nxy Resultant forces
Mx, My, Mxy Moments resultants
N Number of layers
Ai j Tensile stiffness matrix
Bi j Coupling matrix
Di j Bending stiffness matrix
f1 j, f2 j, f3 j Complex constant in calculating force and moments
µ j Anisotropy factor
fx , fy Components of internal force
f Force at the boundary of hole
m Normal bending at the boundary of hole
p Transverse force at the boundary of hole
Γ length of the hole arc
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