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Abstract: The aim of this study was to examine the asymptotic properties and oscillation of the
even-order neutral differential equations. The results obtained are based on the Riccati transformation
and the theory of comparison with first- and second-order delay equations. Our results improve and
complement some well-known results. We obtain Hille and Nehari type oscillation criteria to ensure
the oscillation of the solutions of the equation. One example is provided to illustrate these results.
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1. Introduction

During the past years, research activity has focused on the oscillatory behavior of solutions to
different classes of neutral differential equations. In a related field, the asymptotic behavior of the
solutions to delay and neutral delay differential equations was discussed in many works, awith fruitful
achievements [1–28]. One of the main reasons for this lies in delay differential equations arising in
many applied problems in natural sciences, technology, and automatic control [25].

This paper is concerned with oscillation of the even-order nonlinear neutral differential equation
of the form (

r (ς)
(

u(n−1) (ς)
)γ)′

+ p (ς)
(

u(n−1) (ς)
)γ

+ q (ς) yγ (δ (ς)) = 0, (1)

where ς ≥ ς0, n ≥ 4 is an even natural number and

u (ς) := y (ς) + c (ς) y (g (ς)) . (2)

Throughout this paper, we assume that the following conditions are satisfied:

(C1) γ is a quotient of odd natural numbers;
(C2) r ∈ C1 ([ς0, ∞)) , r (ς) > 0, r′ (ς) ≥ 0;
(C3) c, p, q ∈ C ([ς0, ∞)) , p (ς) > 0, q (ς) > 0, 0 ≤ c (ς) < c0 < 1, q is not identically zero for large ς;

and
(C4) g ∈ C1 ([ς0, ∞)) , δ ∈ C ([ς0, ∞)) , g′ (ς) > 0, g (ς) ≤ ς and limς→∞ g (ς) = limς→∞ δ (ς) = ∞.

Definition 1. A function y ∈ Cn−1[ςy, ∞), ςy ≥ ς0, is called a solution of Equation (1), if r
(

y(n−1)
)γ
∈

C1 ([ςy, ∞)
)

, and y satisfies (1) on [ςy, ∞).
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If a solution of Equation (1) has arbitrarily large zeros on [ςy, ∞), then it is called oscillatory,
and otherwise is called nonoscillatory. Equation (1) is called oscillatory if all its solutions are oscillatory.

In the following, we present some background details that motivated our research.

Theorem 1. (See [17]) If there exists function ρ ∈ C1 ([ς0, ∞) , (0, ∞)) and M > 1, θ ∈ (0, 1), such that

lim sup
ς→∞

1
H (ς, ς1)

∫ ς

ς1

(
H (ς, s) ρ (s) q (s)−

(
hγ+1 (ς, s)

p

)p
ρ (s) r (s)

(H (ς, s) G (s))p−1

)
ds = ∞,

where G (s) = θMgn−2 (s) g′ (s), then the equation

L′y + p (ς)
∣∣∣(y(n−1) (ς)

)∣∣∣p−2
y(n−1) (ς) + q (ς) |(y (g (ς)))|p−2 y (g (ς)) = 0, (3)

where Ly = r (ς)
∣∣∣(y(n−1) (ς)

)∣∣∣p−2
y(n−1) (ς) , p is a real number satisfying p > 1.

As a special case of Equation (1), when p (ς) = 0. Zafer [26] and Zhang and Yan [27] studied
the equation

u(n) (ς) + q (ς) y (δ (ς)) = 0 (4)

and established some new sufficient conditions for oscillation.

Theorem 2. (See [26]) Let n ≥ 2 such that

lim sup
ς→∞

∫ ς

δ(ς)
π (s)ds > (n− 1) 2(n−1)(n−2), δ′ (ς) ≥ 0

or

lim inf
ς→∞

∫ ς

δ(ς)
π (s)ds >

(n− 1) 2(n−1)(n−2)

e
(5)

where π (ς) := δn−1 (ς) (1− p (δ (ς))) q (ς), then every solution of Equation (4) is oscillatory.

Theorem 3. (See [27]) Let 0 ≤ p (ς) < p0 < 1 and n ≥ 2 such that

lim inf
ς→∞

∫ ς

δ(ς)
π (s)ds >

(n− 1)!
e

(6)

or
lim sup

ς→∞

∫ ς

δ(ς)
π (s)ds > (n− 1)!, δ (ς) ≥ 0

where π (ς) := δn−1 (ς) (1− p (δ (ς))) q (ς), then every solution of Equation (4) is oscillatory.

To prove this, we apply the previous results to the equation(
y (ς) +

1
2

y
(

1
2

ς

))(4)
+

q0

ς4 y
(

9
10

ς

)
= 0, ς ≥ 1, (7)

then we find that Equation (7) is oscillatory if

The condition Equation (5) Equation (6)
The criterion q0 > 1839.2 q0 > 59.5

Hence, [27] improved the results in [26].
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In this paper, using the theory of comparison with first- and second-order delay equations,
new oscillatory criteria are established of Equation (1). We improve the results in [26,27]. An example
is provided to illustrate the criteria.

Here, we define the next notation:

ης0 (ς) : = exp
(∫ ς

ς0

p (u)
r (u)

du
)

,

η̃0 (ς) : =

(
1

ης1 (ς) r (ς)

∫ ∞

ς
q (s) ης1 (s) cγ

2 (δ (s))ds
)1/γ

η̃k (ς) : =
∫ ∞

ς
η̃k−1 (s)ds, k = 1, 2, ..., n− 2

and

cm (ς) :=
1

c (g−1 (ς))

(
1−

(
g−1 (g−1 (ς)

))m−1

(g−1 (ς))
m−1 c (g−1 (g−1 (ς)))

)
, m = 2, n.

We establish the oscillatory behavior of Equation (1) under the conditions

δ (ς) < g (ς) , δ′ (ς) ≥ 0 and
(

g−1 (ς)
)′

> 0 (8)

and ∫ ∞

ς0

(
1

r (s)
exp

(
−
∫ s

ς0

p (u)
r (u)

du
))1/γ

ds = ∞. (9)

2. Some Auxiliary Lemmas

We employ the following lemmas:

Lemma 1. [15] If the function y satisfies y(i) (ς) > 0, i = 0, 1, ..., n, and y(n+1) (ς) < 0, then

y (ς)
ςn/n!

≥ y′ (ς)
ςn−1/ (n− 1)!

.

Lemma 2. ([1] (Lemma 2.2.3)) Let y ∈ Cn ([ς0, ∞) , (0, ∞)) . Assume that y(n) (ς) is of fixed sign and not
identically zero on [ς0, ∞) and that there exists a ς1 ≥ ς0, such that y(n−1) (ς) y(n) (ς) ≤ 0 for all ς ≥ ς1.
If limς→∞ y (ς) 6= 0, then for every µ ∈ (0, 1) , there exists ςµ ≥ ς1 such that

y (ς) ≥ µ

(n− 1)!
ςn−1

∣∣∣y(n−1) (ς)
∣∣∣ for ς ≥ ςµ.

Lemma 3. ([21] (Lemma 1.2)) Assume that Equation (9) holds and y is an eventually positive solution of
Equation (1). Then, there exist two possible cases:

(I1) : u (ς) > 0, u′ (ς) > 0, u′′ (ς) > 0, u(n−1) (ς) > 0 and u(n) (ς) < 0,
(I2) : u (ς) > 0, u(j)(ς) > 0, u(j+1)(ς) < 0 for all odd integer

j ∈ {1, 2, ..., n− 3}, u(n−1)(ς) > 0 and u(n)(ς) < 0,

for ς ≥ ς1, where ς1 ≥ ς0 is sufficiently large.

Lemma 4. Assume that Equation (9) holds and y is an eventually positive solution of (1). Then(
ης0 (ς) r (ς)

(
u(n−1) (ς)

)γ)′
+ ης0 (ς) q (ς) (1− c (δ (ς)))γ uγ (δ (ς)) ≤ 0, for c0 < 1 (10)
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and (
ης0 (ς) r (ς)

(
u(n−1) (ς)

)γ)′
+

ης0 q (ς)
cγ (g−1 (δ (ς)))

(
u
(

g−1 (δ (ς))
)
−

u
(

g−1 (g−1 (δ (ς))
))

c (g−1 (g−1 (δ (ς))))

)γ

≤ 0, (11)

for ς ≥ ς1, where ς1 ≥ ς0 is sufficiently large.

Proof. Let y be an eventually positive solution of Equation (1). It is not difficult to see that

1
ης0 (ς)

d
dς

(
ης0 (ς) r (ς)

(
u(n−1) (ς)

)γ)
=

1
ης0 (ς)

(
ης0 (ς)

(
r (ς)

(
u(n−1) (ς)

)γ)′
+ η′ς0

(ς) r (ς)
(

u(n−1) (ς)
)γ
)

=
(

r (ς)
(

u(n−1) (ς)
)γ)′

+
η′ς0

(ς)

ης0 (ς)
r (ς)

(
u(n−1) (ς)

)γ

=
(

r (ς)
(

u(n−1) (ς)
)γ)′

+ p (ς)
(

u(n−1) (ς)
)γ

. (12)

Considering Equation (2) and u′ (ς) > 0, we determine that y (ς) ≥ (1− c (ς)) u (ς) . Thus,
from Equations (1) and (12), we have that Equation (10) holds.

From Equation (2), we obtain

c
(

g−1 (ς)
)

y (ς) = u
(

g−1 (ς)
)
− y

(
g−1 (ς)

)
= u

(
g−1 (ς)

)
−
(

u
(

g−1 (g−1 (ς)
))

c (g−1 (g−1 (ς)))
−

y
(

g−1 (g−1 (ς)
))

c (g−1 (g−1 (ς)))

)

≥ u
(

g−1 (ς)
)
− 1

c (g−1 (g−1 (ς)))
u
(

g−1
(

g−1 (ς)
))

, (13)

which, with Equations (1), (12), and (13), gives Equation (11). The proof is complete.

3. Comparison Theorems with First-Order Equations

In this section, we compare the oscillatory behavior of Equation (1) with the first-order
differential equations.

Theorem 4. Assume that c0 < 1 and Equation (9) hold. If the differential equation

v′ (ς) + (1− c (δ (ς)))γ q (ς)
ης0 (ς)

ης0 (δ (ς))

(
µδn−1 (ς)

(n− 1)!r1/γ (δ (ς))

)γ

v (δ (ς)) = 0 (14)

is oscillatory, then every solution of Equation (1) is oscillatory.

Proof. Assume the contrary that y is a positive solution of Equation (1). Then, we suppose that y (ς) ,
y (g (ς)) , and y (δ (ς)) are positive for all ς ≥ ς1 that are sufficiently large. From Lemma 4, we obtain
that Equation (10) holds. Using Lemma 2, we obtain that

u (ς) ≥ µ

(n− 1)!
ςn−1u(n−1) (ς) , (15)
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for some µ ∈ (0, 1). From Equations (1), (10), and (15), we see that

(
ης0 (ς) r (ς)

(
u(n−1) (ς)

)γ)′
+ ης0 (ς) q (ς) (1− c (δ (ς)))γ

(
µδn−1 (ς)

(n− 1)!

)γ (
u(n−1) (δ (ς))

)γ
≤ 0.

Then, if we set v (ς) = ης0 (ς) r (ς)
(

u(n−1) (ς)
)γ

, then we have that v > 0 is a solution of the
delay inequality:

v′ (ς) + (1− c (δ (ς)))γ q (ς)
ης0 (ς)

ης0 (δ (ς))

(
µδn−1 (ς)

(n− 1)!r1/γ (δ (ς))

)γ

v (δ (ς)) ≤ 0.

It is well known ([24] (Theorem 1)) that the corresponding Equation (14) also has a positive
solution, which is a contradiction. The proof is complete.

Theorem 5. Assume that Equations (8) and (9) hold. If the differential equations

w′ (ς) + q (ς)
ης0 (ς)

ης0 (g−1 (δ (ς)))

(
µ
(

g−1 (δ (ς))
)n−1 cn (δ (ς))

(n− 1)!r1/γ (g−1 (δ (ς)))

)γ

w
(

g−1 (δ (ς))
)
= 0 (16)

and
ω′ (ς) + g−1 (δ (ς)) η̃n−3 (ς)ω

(
g−1 (δ (ς))

)
= 0 (17)

are oscillatory, then every solution of Equation (1) is oscillatory.

Proof. Assume the contrary that y is a positive solution of (1). Then, we suppose that y (ς) , y (g (ς)) ,
and y (δ (ς)) are positive for all ς ≥ ς1 that are sufficiently large. From Lemma 3, we have two possible
cases (I1) and (I2).

In the case where (I1) holds, from Lemma 1, we obtain u (ς) ≥ 1
(n−1) ςu′ (ς) and then(

ς1−nu (ς)
)′ ≤ 0. Thus, we obtain

u
(

g−1
(

g−1 (ς)
))
≤
(

g−1 (g−1 (ς)
))n−1

(g−1 (ς))
n−1 u

(
g−1 (ς)

)
. (18)

Using Lemma 4, we have that Equation (11), given by Equation (18):(
ης1 (ς) r (ς)

(
u(n−1) (ς)

)γ)′
+ ης1 (ς) q (ς) cγ

n (δ (ς)) uγ
(

g−1 (δ (ς))
)
≤ 0. (19)

From Lemma 2, we obtain Equation (15). Therefore, from Equation (19), we obtain:

(
ης1 (ς) r (ς)

(
u(n−1) (ς)

)γ)′
+ ης1 (ς) q (ς)

(
µcn(δ(ς))
(n−1)!

(
g−1 (δ (ς))

)n−1
)γ (

u(n−1) (g−1 (δ (ς))
))γ
≤ 0. (20)

Then, if we set w (ς) = ης0 (ς) r (ς)
(

u(n−1) (ς)
)γ

, then we have that w > 0 is a solution of the
delay inequality:

w′ (ς) + q (ς)
ης1 (ς)

ης1 (g−1 (δ (ς)))

(
µ
(

g−1 (δ (ς))
)n−1 cn (δ (ς))

(n− 1)!r1/γ (g−1 (δ (ς)))

)γ

w
(

g−1 (δ (ς))
)
≤ 0.

It is well known ([24] (Theorem 1)) that the corresponding Equation (16) also has a positive
solution, which is a contradiction.



Symmetry 2020, 12, 764 6 of 11

In the case where (I2) holds, from Lemma 1, we obtain:

u (ς) ≥ ςu′ (ς) (21)

and then
(
ς−1u (ς)

)′ ≤ 0. Hence, since g−1 (ς) ≤ g−1 (g−1 (ς)
)
, we get:

u
(

g−1
(

g−1 (ς)
))
≤

g−1 (g−1 (ς)
)

g−1 (ς)
u
(

g−1 (ς)
)

, (22)

which, with Equation (11), yields:(
ης1 (ς) r (ς)

(
u(n−1) (ς)

)γ)′
+ q (ς) ης1 (ς) cγ

2 (δ (ς)) uγ
(

g−1 (δ (ς))
)
≤ 0. (23)

Integrating Equation (23) from ς to ∞, we obtain:

−u(n−1) (ς) ≤ −
(

1
ης1 (ς) r (ς)

∫ ∞

ς
q (s) ης1 (s) cγ

2 (δ (s)) uγ
(

g−1 (δ (s))
)

ds
)1/γ

≤ −η̃0 (ς) u
(

g−1 (δ (ς))
)

.

Integrating this inequality n− 3 times from ς to ∞, we obtain:

u′′ (ς) + η̃n−3 (ς) u
(

g−1 (δ (ς))
)
≤ 0, (24)

which, with Equation (21), gives:

u′′ (ς) + g−1 (δ (ς)) η̃n−3 (ς) u′
(

g−1 (δ (ς))
)
≤ 0.

Thus, if we set ω (ς) := u′ (ς), then we conclude that ω > 0 is a solution of:

ω′ (ς) + g−1 (δ (ς)) η̃n−3 (ς)ω
(

g−1 (δ (ς))
)
≤ 0. (25)

It is well known ([24] (Theorem 1)) that the corresponding Equation (17) also has a positive
solution, which is a contradiction. The proof is complete.

4. Comparison Theorems with Second-Order Equations

In this section, we compare the oscillatory behavior of Equation (1) with the second-order
differential equations.

It is well known [2] that the differential equation[
a (ς)

(
y′ (ς)

)γ
]′
+ q (ς) yγ (g (ς)) = 0‚ ς ≥ ς0, (26)

where γ > 0 is the ratio of odd positive integers, a, q ∈ C[ς0, ∞), is nonoscillatory if and only if there
exists a number ς ≥ ς0, and a function υ ∈ C1[ς, ∞), satisfying the inequality:

υ′ (ς) + γa
−1
γ (ς) (υ (ς))(1+γ)/γ + q (ς) ≤ 0‚ on [ς, ∞).

In what follows, we compare the oscillatory behavior of Equation (1) with the second-order
half-linear equations of the type in Equation (26).
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Theorem 6. Assume that Equations (8) and (9) hold. If the differential equations(
((n− 2)!)γ γης1 (δ (ς)) r (δ (ς))

(µ1δ′ (ς) δn−2 (ς))
γ

(
y′ (ς)

)γ
)′

+ ης1 (ς) cγ
n (δ (ς)) q (ς) yγ (ς) = 0 (27)

and
1

δ′ (ς)
y′′ (ς) + η̃n−3 (ς) y (ς) = 0 (28)

are oscillatory for some constant µ1 ∈ (0, 1) , then every solution of Equation (1) is oscillatory.

Proof. Assume the contrary that y is a positive solution of Equation (1). Then, we can suppose that
y (ς) , y (g (ς)) and y (δ (ς)) are positive for all ς ≥ ς1 that are sufficiently large. From Lemma 3,
we have two possible cases: (I1) and (I2).

In the case where (I1) holds, as in the proof of Theorem 5, we arrive at Equation (19). Now,
we define a function φ by

φ (ς) = ης1 (ς) r (ς)

(
u(n−1) (ς)

)γ

uγ (δ (ς))
.

Then, φ (ς) > 0, for all ς ≥ ς1. Differentiating φ and using Equation (19), we get:

φ′ (ς) ≤ −ης1 (ς) q (ς) cγ
n (δ (ς))

uγ(g−1(δ(ς)))
uγ(δ(ς))

− ης1 (ς)r(ς)(u(n−1)(ς))
γ

u2γ(δ(ς))
γuγ−1 (δ (ς)) u′ (δ (ς)) δ′ (ς) . (29)

From Lemma 2, we have:

u′ (δ (ς)) ≥ µ

(n− 2)!
δn−2 (ς) u(n−1) (δ (ς)) . (30)

Since ης1 (ς) r (ς)
(

u(n−1) (ς)
)γ

is decreasing, we have:

ης1 (ς) r (ς)
(

u(n−1) (ς)
)γ
≤ ης1 (δ (ς)) r (δ (ς))

(
u(n−1) (δ (ς))

)γ
, for all ς ≥ δ (ς) , (31)

that is,
1

η
1/γ
ς1 (δ (ς)) r1/γ (δ (ς))

(ης1 (ς) r (ς))1/γ u(n−1) (ς) ≤ u(n−1) (δ (ς)) , (32)

from Equations (30) and (32), we have:

u′ (δ (ς)) ≥ µ

(n− 2)!
δn−2 (ς)

η
1/γ
ς1 (δ (ς)) r1/γ (δ (ς))

(ης1 (ς) r (ς))1/γ u(n−1) (ς) . (33)

Since g−1 (ς) > ς and u′ (ς) > 0, we have u
(

g−1 (ς)
)
> u (ς) and so

u
(

g−1 (δ (ς))
)

u (δ (ς))
> 1. (34)

By using Equations (34) and (33) in Equation (29), we have:

φ′ (ς) ≤ −ης1 (ς) q (ς) cγ
n (δ (ς))− ης1 (ς)r(ς)(u(n−1)(ς))

γ+1

uγ+1(δ(ς))
γ

µδ′(ς)δn−2(ς)
(n−2)!

(
ης1 (ς)r(ς)

ης1 (δ(ς))r(δ(ς))

)1/γ
, (35)

From the definition of φ, we have:

φ′ (ς) ≤ −ης1 (ς) q (ς) cγ
n (δ (ς))− γµδ′ (ς) δn−2 (ς)

(n− 2)! (ης1 (δ (ς)) r (δ (ς)))1/γ
φ(γ+1)/γ (ς) ,
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that is,

φ′ (ς) +
γµδ′ (ς) δn−2 (ς)

(n− 2)! (ης1 (δ (ς)) r (δ (ς)))1/γ
φ(γ+1)/γ (ς) + ης1 (ς) cγ

n (δ (ς)) q (ς) ≤ 0. (36)

Thus, we conclude that Equation (36) is nonoscillatory for every constant µ ∈ (0, 1) . From [2],
we see that Equation (27) is nonoscillatory for every constant µ1 ∈ (0, 1) , which is a contradiction.

In the case where (I2) holds, as in the proof of Theorem 5, we arrive at Equation (24). Now,
we define a function ϕ by:

ϕ (ς) =
u′ (ς)

u (δ (ς))
.

Then φ (ς) > 0, for all ς ≥ ς1. Differentiating φ, we obtain:

ϕ′ (ς) =
u′′ (ς)

u (δ (ς))
− u′ (ς)

u2 (δ (ς))
u′ (δ (ς)) δ′ (ς) ,

since u′′ (ς) < 0, we have u′ (δ (ς)) > u′ (ς) for all ς ≥ δ (ς) . Thus

ϕ′ (ς) ≤ u′′ (ς)
u (δ (ς))

−
(

u′ (ς)
u (δ (ς))

)2

δ′ (ς) . (37)

From Equation (24), we obtain:

ϕ′ (ς) ≤ −
η̃n−3 (ς) u

(
g−1 (δ (ς))

)
u (δ (ς))

−
(

u′ (ς)
u (δ (ς))

)2

δ′ (ς) .

Since g−1 (ς) > ς and u′ (ς) > 0, we have u
(

g−1 (ς)
)
> u (ς) , and so:

ϕ′ (ς) ≤ −η̃n−3 (ς)−
(

u′ (ς)
u (δ (ς))

)2

δ′ (ς) , (38)

From the definition of ϕ, we have

ϕ′ (ς) ≤ −η̃n−3 (ς)− δ′ (ς) ϕ2 (ς) ,

that is,
ϕ′ (ς) + δ′ (ς) ϕ2 (ς) + η̃n−3 (ς) ≤ 0. (39)

Thus, we conclude that Equation (39) is nonoscillatory. From [2] we see that Equation (28) is
nonoscillatory, which is a contradiction. Thus, the proof is complete.

Corollary 1. Assume that c0 < 1 and Equation (9) hold. If

lim inf
ς→∞

∫ ς

δ(ς)
(1− c (δ (s)))γ q (s)

ης0 (s)
ης0 (δ (s))

(
µδn−1 (s)

r1/γ (δ (s))

)γ

ds >
((n− 1)!)γ

e
(40)

is oscillatory, then every solution of Equation (1) is oscillatory.

Corollary 2. Assume that Equations (8) and (9) hold. If

lim inf
ς→∞

∫ ς

g−1(δ(ς))
q (s)

ης0 (s)
ης0 (g−1 (δ (s)))

(
µ
(

g−1 (δ (s))
)n−1 cn (δ (s))

r1/γ (g−1 (δ (s)))

)γ

ds >
((n− 1)!)γ

e
(41)
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and
lim inf

ς→∞

∫ ς

g−1(δ(ς))
g−1 (δ (s)) η̃n−3 (s)ds >

1
e

(42)

are oscillatory, then every solution of Equation (1) is oscillatory.

It is well known [23] that if∫ ∞

ς0

1
a (ς)

dς = ∞, and lim inf
ς→∞

(∫ ς

ς0

1
a (s)

ds
) ∫ ∞

ς
q (s)ds >

1
4

,

then Equation (26) with γ = 1 is oscillatory.
Based on the above results and Corollary (3), we easily obtain the following Hille and Nehari type

oscillation criteria for Equation (1) with γ = 1.

Corollary 3. Let γ = 1. Assume that Equations (8) and (9) hold. If

∫ ∞

ς0

µ1δ′ (ς) δn−2 (ς)

(n− 2)!ης1 (δ (ς)) r (δ (ς))
dς = ∞

and

lim inf
ς→∞

(∫ ς

ς0

µ1δ′ (s) δn−2 (s)
(n− 2)!ης1 (δ (s)) r (δ (s))

ds
) ∫ ∞

ς
q (s) ης1 (s) cγ

n (δ (s))ds >
1
4

,

also, if ∫ ∞

ς0

δ′ (ς)dς = ∞

and

lim inf
ς→∞

(∫ ς

ς0

∫ ∞

ς0

δ′ (s)ds
) ∫ ∞

ς
η̃n−3 (s)ds >

1
4

,

are oscillatory for some constant µ1 ∈ (0, 1), then every solution of Equation (1) is oscillatory.

Example 1. For ς ≥ 1, consider the equation

u(4) (ς) +
1
ς

u(3) (ς) +
q0

ς4 y
( ς

2

)
= 0, (43)

where u (ς) = y (ς) + 1
2 y
( ς

3
)

and q0 > 0 is a constant. Note that γ = 1, n = 4, r (ς) = 1, p (ς) =

1/ς, q (ς) = q0/ς4, δ (ς) = ς/2, g−1 (ς) = (3/2) ς and g (ς) = ς/3.So, we obtain:

ης0 (ς) = ς, ης0 (δ (ς)) = ς/2.

Thus, we find:

lim inf
ς→∞

∫ ς

δ(ς)
(1− c (δ (s)))γ q (s)

ης0 (s)
ης0 (δ (s))

(
µδn−1 (s)

r1/γ (δ (s))

)γ

ds

= lim inf
ς→∞

∫ ς

ς/2

q0

ς4

(
ς3

8

)
ds =

q0

8
ln 2.

Hence, the condition becomes:

q0 >
48

e ln2
. (44)

Therefore, by Corollary 1, all solutions of Equation (43) are oscillatory if q0 > 25.5.
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Remark 1. Consider Equation (7) by Corollary 1; all solutions of Equation (7) are oscillatory if q0 > 57.5,
whereas the criterion obtained from the results of [26,27] are q0 > 1839.2 and q0 > 59.5, respectively. Hence,
our results improve the results in [26].

Remark 2. The results obtained in [26,27] are a special case of the results obtained in this study.

Remark 3. The results in this paper can be extended to the more general equation of the form(
r (ς)

(
u(n−1) (ς)

)γ)′
+ p (ς)

(
u(n−1) (ς)

)γ
+ q (ς) f (y (δ (ς))) = 0,

where f (y) ≥ kyβ > 0. The statement and the formulation of the results are left to the interested reader.

5. Conclusions

This paper is concerned with the oscillatory behavior of solutions of Equation (1).
Using comparison with first- and second-order delay equations, a new asymptotic criterion for
Equation (1) is presented. We obtained Hille and Nehari type oscillation criteria to ensure oscillation
of the solutions of Equation (1). In future work, we obtain some Philos type oscillation criteria of
Equation (1).
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