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Abstract: We report a new class of building blocks for Dynamic Combinatorial Chemistry (DCC) based
on the pyrroloindole scaffold. The attachment of l-cysteine on the α, α′ positions of the core makes
the molecule suitable for disulfide exchange in aqueous dynamic combinatorial libraries (DCLs).
The synthesis of the core follows a modified version of the Knoevenagel–Hemetsberger approach.
The new building block (l-PI) is fluorescent (Φ = 48%) and relatively stable towards thermal and
photodegradation. The chirality of the cysteine is transferred to the electron-rich pyrroloindole core.
Homo- and heterochiral DCLs of l-PI with electron-deficient l- and d-naphthalenediimide (NDI) lead
to similar library distributions regardless of the enantiomer used. When no salt is present, the major
component is a dimer, while dimers and tetramers are obtained at increased ionic strength.
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1. Introduction

Dynamic combinatorial chemistry (DCC) has emerged in the last decades as a powerful tool in
the development of (bio)sensors [1–3], self-replicating materials [4–7], receptors [8–11], etc. It is also a
well-established approach in making interlocked molecular architectures (e.g., catenanes and knots)
using simple precursors [12–31]. DCC involves reactions under thermodynamic control in which
starting molecules (building blocks) combine to generate a complex mixture of species called dynamic
combinatorial library (DCL) [1,32,33]. The building blocks have moieties that allow for reversible
exchanges until the equilibrium is reached and the precursors are completely consumed. Representative
examples [1,34] of reversible reactions include ester [35–37], imine [21,23,26], hydrazone [38,39],
hydrogen-bond [40–42], acetal [43] and disulfide exchanges [15,44,45]. Among these, disulfide exchange
is of particular interest as it is prevalent in biological systems (e.g., cystines) [46–48]. The reaction works
close to the physiological conditions (aqueous media and pH 8), and it stops when all the thiolate anions
are consumed (Scheme 1).
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Scheme 1. General mechanism of disulfide exchange. Scheme 1. General mechanism of disulfide exchange.
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Disulfide exchange reactions for DCC have been largely explored by Sanders and Pantos,
groups [12,13,15,16,45,49]. Their work has mainly focused on naphthalenediimide (NDI) and
dialkoxynaphthalene (DN) derivatives to synthesizing interlocked molecules. Other building blocks
with thiol groups allowed for the synthesis of receptors and replicators [4–6,8].

The present work expands this pool by introducing a new electron-rich building block with thiol
linkages. Its behaviour as a partner for electron-deficient NDIs in DCLs is studied. The role played by
chirality on the outcome of DCLs (mixtures of L and L vs. L and D enantiomers) is also explored.

2. Materials and Methods

All reagents were purchased from commercial suppliers: Acros Organics, Alfa Aesar, Fluorochem,
Merck, TCI Europe and used without further purification. 1H and 13C NMR spectra were recorded on
500 MHz Agilent Propulse or 500 MHz Bruker Avance II+ (1H NMR spectra at 500 MHz, 13C NMR
spectra at 125 MHz) instruments. Chemical shifts (δ) are reported in parts per million (ppm). Coupling
constants are reported in Hertz (Hz), and signal multiplicity is denoted as singlet (s), doublet (d),
doublet of doublets (dd), doublet of doublets of doublets (ddd), triplet (t), quartet (q), dt (doublet
of triplets), td (triplet of doublets), multiplet (m) and broad (br). All spectra were acquired at 25 ◦C,
unless otherwise stated, and were referenced to the solvent residual peaks. The common solvent
impurities present in small amounts in 1H and 13C NMR spectra were water, acetone, CH2Cl2 or DMF.
The microwave reactions were carried out in either CEM Discover or CEM Explorer 12 instruments.
LC-MS studies were carried out on a Thermo Surveyor PDA Plus LC and LCQ classic ESI MS. LC-MS
data were processed using the XCalibur software. The HRMS spectra were either acquired at the
National Mass Spectrometry Facility at Swansea University. The HRMS and MS/MS spectra for the
library components were done on a Bruker MaXis HD ESI-QTOF mass spectrometer for high mass
accuracy, coupled to a Thermo Scientific Dionex Ultra High Performance Liquid Chromatography
(UPLC) unit. Circular dichroism (CD), absorption and fluorescence data were acquired on an Applied
Photophysics Chirascan spectrophotometer equipped with a Peltier temperature controller.

DCL set-up: 5 mM total concentrations (the total volume of each library was 1 mL; single
component libraries contained 5 × 10−6 moles; two-component libraries contained 2.5 × 10−6 moles
per component) libraries were prepared by dissolving the building blocks in 10 mM aqueous NaOH,
followed by titration with 100 mM NaOH/100 mM HCl (aqueous solutions) to adjust the pH to 8.
The DCL solutions were stirred in closed-capped vials for at least three days at room temperature.

LC-MS settings for ESI-MS spectra (Thermo Surveyor PDA Plus LC and LCQ classic ESI MS;
negative ion) were acquired with a drying temperature of 250 ◦C, spray current 0.5 µA, sheath gas
flow of 40 arb, spray voltage 4.5 kV, capillary voltage 13 V and tube lens −15.0 V. The mass range
was set from m/z 150–2000, the number of microscans in scan time was 5, and the maximum injection
time was 150.0 ms. The HPLC (High Performance Liquid Chromatography) method is reported in
Supplementary Materials Section 3.

LC-MS settings for HRMS data (Bruker MaXis HD ESI-QTOF): ESI-MS spectra (negative ion)
were acquired with drying temperature of 320 ◦C, collision energy −4 eV and dry gas 12 L/min.
The mass range was set from m/z 350–3500.

MS/MS settings for HRMS data (Bruker MaXis HD ESI-QTOF): parent Mass (m/z): dependant
on the species, ionisation width (m/z): 20.0, collision energy: 20 eV, drying temperature 240 ◦C and dry
gas 12 L/min.

CD and absorbance settings: experiments were performed in a 10 mm pathlength quartz cuvette,
wavelength range: 250–450 nm, scan mode: 1 point/nm, time-per-point: 1 sec, bandwidth: 2 nm and
temperature 23 ◦C. Settings for variable temperature (VT) studies: temperature range: 5–55 ◦C and
return ramp, increment: 10 ◦C and setting time 45 sec.

Fluorescence settings: fluorescence spectra were collected for samples with an absorbance below
0.1 AU. Experiments were performed in a 10 mm pathlength quartz cuvette. Emission spectra:
wavelength range: 250–450 nm, scan mode: 1 point/nm, time-per-point: 1 sec, excitation wavelength:



Symmetry 2020, 12, 726 3 of 11

340 nm, bandwidth 8 nm, PMU: 1000 V and SEM: 2 × 4.65 nm. Excitation spectra: wavelength range:
250–400 nm, scan mode: 1 point/nm, time-per-point: 1 s, emission wavelength: 393 nm, bandwidth
6 nm, PMU: 1000 V and SEM: 1.29 × 4.65 nm.

Computational studies. Geometry optimisation was performed using Avogadro [50] (Force field:
UFF, Algorithm: Conjugate gradients). This was followed by MOPAC 2016 [51] (Version 18.117 M)
PM7 semiempirical optimisation using the COSMO water model with a 1 convergence factor,
and Gabedit 2.5.0 [52] as interface. Qzz calculations were performed with GAMESS at MP2 level.

3. Results and Discussion

3.1. Building Block Design and Properties

3.1.1. Synthesis

The pyrrolo[2,3-f ]indole scaffold consists of a pyrrole ring condensed with the benzene ring
of an indole. This is the so-called “type I pyrroloindole” found in many natural alkaloids and also
widely used in medicinal chemistry research [53,54]. It is aromatic (14 π electrons) and bears cysteine
appendages on the α, α’ positions that confer it water solubility and ability to be involved in disulfide
exchange (Figure 1).
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Figure 1. Structural features of the new building block designed in this work.

The initial synthesis of the core followed a previously published procedure [55]. The first step
involved the formation of ethyl azidoacetate 2, which was used in a Knoevenagel-type condensation
with terephthaldehyde to yield compound 4. The next step was the Hemetsberger reaction, giving the
pyrroloindole 5. This was obtained in low yield because most of the product polymerised—a common
issue in pyrrole and pyrroloindole chemistry. Other substrates (1,4-thiophene-dialdehyde and
1,4-dimethoxy-terephthaldehyde) were used, but the Knoevenagel step worked in low yields (products
11 and 13; further information in Supplementary Materials Section 1 and Schemes S1 and S2).

The synthetic protocol was then optimised (Scheme 2) and the Hemetsberger step carried out
in more diluted conditions to prevent polymerization. Pyrrole chemistry shows that the free -NH
units lead to extensive polymerization [56]. Thus, the -NH groups were alkylated, which allowed
the synthesis of pure pyrroloindole 6. The next steps included hydrolysis of the ester group to give
7, followed by NHS activation, and S-trityl-L-cysteine attachment and deprotection via previously
reported methods [45]. The final building block l-PI was obtained in 8 steps, none of which required
laborious purification (experimental details in Supplementary Materials Section 1).
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Scheme 2. Optimised protocol for the synthesis of the new building block l-PI. The reagents and
conditions used for each step as well as the yields are indicated on the reaction arrows.

3.1.2. Optoelectronic and structural properties

The trityl-protected pyrroloindole, compound 9, is soluble in common organic solvents, which
allowed us to carry out spectroscopic studies in chloroform; the main properties are summarised in
Table 1 (for molar extinction coefficient ε calculation, see Figure S14).

Table 1. Summary of the main optical properties of trityl-cysteine pyrroloindole 9 in chloroform.

Absorbance & CD Emission

λmax
(nm) ε (L ×mol−1 × cm−1) Molar Ellipticity

(deg × cm2
× dmol−1)

λmax
(nm) Φ (%)

327 21,600 ± 1.8 2.11 × 104 394 48

The optoelectronic and structural properties of the trityl-protected cysteine pyrroloindole 9 were
assessed by UV-vis and fluorescence spectroscopy. The absorbance spectrum shows two bands centered
at 280 nm and 327 nm (with a small shoulder at 345 nm), which correspond to the pyrroloindole core.
The emission spectrum is characterised by a broad, intense band centered at 394 nm, with a large
Stokes shift of 67 nm. The spectral features of 9 in the excitation mode are similar to those displayed
by UV-vis. The quantum yield (Φ) of 9 is 48%, and has been calculated using anthracene as standard
(Φ of anthracene in chloroform = 11% [57]).

The presence of the cysteine moiety allows us to explore an important feature: chirality.
The pyrroloindole unit is intrinsically achiral, but the chiral information is transferred from the
cysteine onto the core. We have used circular dichroism (CD) spectroscopy to analyze the chirality of
the new building block precursor. The CD spectrum shown in Figure 2a displays a bisignate Cotton
effect with relatively large response for a small molecule. This chirality transfer observed is not a result
of aggregation as indicated by a linear Lambert–Beer plot shown in Figure S14.

The thermal stability and photodegradation of 9 over 5–55 ◦C temperature range and return
ramp were assessed by variable temperature (VT) CD, UV-vis and fluorescence studies (Figure 2).
The VT CD and UV-vis spectra show minor changes, indicating a weak temperature dependence of the
chirality transfer. The CD melting profile exhibits isosbestic points, indicating a monophasic transition
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across the temperature range. The VT emission and excitation spectra display irreversible thermal and
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The first indication of an electron-rich aromatic core for l-PI comes from its 1H NMR spectrum
(Figure S13), which shows peaks in the aromatic region at relatively low chemical shifts (δ 7.35 ppm).
The electronic nature of organic molecules can be determined from the quadrupole moment on the z
axis (Qzz) calculations. The lower the number in the negative regime, the more electron-rich a molecule
is. The reverse applies to electron-deficient molecules. The calculated Qzz for the pyrroloindole core is
−22.7 B (Buckinghams), meaning it is an electron-rich molecule. To put this number in perspective, it
should be compared with the Qzz of other building blocks previously used for disulfide DCC. The Qzz

of one of the electron-rich building blocks extensively used in DCC (2,6-DN) is −15.1 B, while the
electron-deficient NDI has a Qzz of 14.2 (Figure 3).
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3.2. Behaviour of l-PI in DCLs

3.2.1. DCLs of l-PI

One of the driving forces behind DCLs in aqueous systems is the hydrophobic effect [58].
This refers to reorganization of water molecules around a hydrophobic unit formed within the system.
The hydrophobic effect is generally enhanced by adding inorganic salts [15]. Previous work in the field
shows that changing either the cation (Li+, Na+, K+ and Cs+) or anion (NO3

−, SO4
2−, Br− and Cl−) has

led to similar DCLs distribution, which is due to an increasing in medium polarity with minimum
template contribution [15,45]. DCLs of l-PI with and without 1 M NaNO3 (added to enhance the
hydrophobic effect) were prepared according to the method described in Section 2. Once equilibrated,
the libraries have been analyzed by HPLC, MS and MS/MS; the chromatograms are shown in Figure 4
(cartoon representations are used for clarity). The distribution of both libraries shows one major species
identified as l-PI homodimer by MS and MS/MS analyzes (Figures S15–S17).
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Figure 4. Reverse-phase HPLC analysis of l-PI (5 mM total concentration) libraries without salt (top)
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not ionise and could not be identified.

3.2.2. Homochiral DCLs of l-PI and l-NDI

Another driving force behind DCLs is the donor–acceptor (D–A) interaction between electron-rich
and electron-deficient aromatic cores. A representative example of an electron-deficient building block
widely used in disulfide DCC is the cysteine-functionalised NDI. Homochiral libraries (i.e., same
chirality of each component) of l-PI and l-NDI in 1:1 molar ratio without and with 1 M NaNO3 have
been prepared (Figure 5). The library with no salt contains the homochiral heterodimer (l-PI and
l-NDI) as dominant species and a homochiral heterotrimer. The distribution of the DCL with 1 M
NaNO3 is more diverse, showing the formation of a homochiral heterotetramer at the expense of the
other components. This can be due to more favorable donor–acceptor interactions between the PI and
NDI cores in the structure of the tetramer while in media with high salt concentration. The sequence of
tetramer (i.e., DADA or DDAA) could not be determined based on the obtained MS/MS fragmentation
(Figures S26 and S27); however, this was assessed using computational studies. Complete MS and
MS/MS analyses are given in Figures S18–S27.
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3.2.3. Heterochiral DCLs of l-PI and d-NDI

The chirality influence on the library distribution was explored by setting up heterochiral DCLs.
The D enantiomer of NDI [59] was synthesised using the reported microwave-assisted method for
l-NDI [60,61]. The l-PI:d-NDI mixture mainly leads to the heterochiral heterodimer when no salt is
present (Figure 6). The addition of salt changes the library distribution in a similar trend to that of the
homochiral DCL with NaNO3: a heterochiral heterotetramer is formed (all MS and MS/MS spectra are
provided in Figures S28–S32). The 1:1 molar ratio PI:NDI system does not show any chiral recognition,
producing similar outcomes regardless of whether homo- or heterochiral mixture of building blocks is
used. Literature reports just one example of homo- and heterochiral DCLs based on disulfide exchange,
but no chiral recognition is observed either [13].
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The formation of macrocycles rather than interlocked molecules in pyrroloindole-based DCLs is
supported by computational models. We have calculated the heat of formation of different PI-NDI
cyclic oligomers (homochiral heterodimer, DDAA and DADA tetramers, and DAAD [2]catenane).
These have indicated that the DDAA tetramer arrangement is the most stable among the tetrameric
and catenated species.

4. Conclusions

This work reports the design and characterisation of a new building block for disulfide DCC. It is
a pyrroloindole core functionalised with L-cysteine, and it respects all criteria for DCC in aqueous
systems. The synthetic route is straightforward and does not require any column purification. A key
step during the synthesis is the alkylation of the free -NH groups, which are prone to polymerization.
The attachment of cysteine allows the chiral information to be transferred onto the otherwise achiral
core, as proved by CD studies. The trityl-protected cysteine version of l-PI is relatively stable towards
thermal and photodegradation. The new building block is also fluorescent, with a quantum yield of
48%, thus expanding its potential applications to (bio)sensing area.

Quadrupole moment calculations for the pyrroloindole core have identified it as a more
electron-rich aromatic than DN (−22.7 B vs. −15.1 B). Homo- and heterochiral DCLs of l-PI and l- and
d-NDIs have showed similar library distributions: homo- and heterodimers. The increase of ionic
strength in the system by adding NaNO3 has led to the formation of tetramers besides dimers.

The pyrroloindole core is versatile as α, β positions on the pyrrole ring and NH groups can be
further functionalised to make new building blocks. The use of templates and other partners in DCLs
can also led to different library distributions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/12/5/726/s1,
Scheme S1: The reaction of 11, Scheme S2: The reaction of 13, Figure S1: The 1H NMR spectrum of 11, Figure S2:
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Figure S5: The 1H NMR spectrum of 6, Figure S6: The 13C NMR spectrum of 6, Figure S7: The 1H NMR spectrum
of 7, Figure S8: The 13C NMR spectrum of 7, Figure S9: The 1H NMR spectrum of 8, Figure S10: The 13C NMR
spectrum of 8, Figure S11: The 1H NMR spectrum of 9, Figure S12: The 13C NMR spectrum of 9, Figure S13: The 1H
NMR spectrum of l-PI, Figure S14: Plot of the absorbance data versus concentration used for molar extinction
coefficient (ε) calculation. The data were fitted to a linear equation, Figure S15: MS (-ve) of l-PI homodimer,
Figure S16: Isotope pattern of l-PI homodimer (top) and its calculated isotope pattern (bottom), Figure S17: MS/MS
(-ve) of l-PI homodimer, Figure S18: MS (-ve) of homochiral heterodimer, Figure S19: Isotope pattern of homochiral
heterodimer (top) and its calculated isotope pattern (bottom), Figure S20: MS/MS (-ve) of homochiral heterodimer,
Figure S21: MS (-ve) of homochiral heterotrimer, Figure S22: Isotope pattern of homochiral heterotrimer (top) and
its calculated isotope pattern (bottom), Figure S23: MS/MS (-ve) of homochiral heterotrimer, Figure S24: MS (-ve)
of homochiral heterotetramer, Figure S25: Isotope pattern of homochiral heterotetramer (top) and its calculated
isotope pattern (bottom), Figure S26: MS/MS (-ve) of homochiral heterotetramer, Figure S27: Expansion of region
MS/MS (-ve) of homochiral heterotetramer, Figure S28: MS/MS (-ve) of heterochiral heterodimer, Figure S29:
Isotope pattern of heterochiral heterodimer (top) and its calculated isotope pattern (bottom), Figure S30: MS/MS
(-ve) of heterochiral heterodimer, Figure S31: MS (-ve) of heterochiral heterotetramer, Figure S32: Isotope pattern
of heterochiral heterotetramer (top) and its calculated isotope pattern (bottom), Figure S33: Simulated structure of
homochiral heterodimer, Figure S34: Simulated structure of DAAD heterotetramer, Figure S35: Different views
of simulated structure of DADA heterotetramer, Figure S36: Different views of simulated structure of DAAD
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