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Abstract

:

In this paper, we examine the notion of (  ψ , ϕ  )-contractions by involving rational forms in the context of complete metric spaces. We note that some well-known fixed point theorems for rational forms can be deduced from our main results. We also consider some examples to indicate the validity of the presented results.
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1. Introduction and Preliminaries


Thousands of results have been published since Banach [1] proved the first fixed point theorem. Some of these results are equivalent to the results published previously, while others were understood to be a sub-result of the previous results. Therefore, recently, publications that collect and consolidate the results in the literature have started to appear.



Very recently, Proinov (2020) [2], to extend and unify many earlier results, proved that the fixed point theorem of Skof (1977) [3], in the setting of metric spaces, covers several existing results, including the attractive results of Wardowski (2012) [4] and Jleli-Samet (2014) [5]. He also proved that the analog of this observation holds true in the context of dislocated metric spaces.



On the other hand, starting from Das-Gupta (1975) [6] and Jaggi (1977) [7], rational expressions were used to prove fixed point theorems. Later, these approaches were modified for Boyd and Wong contractions,  ϕ -contractions, Geraghty contractions, Wardowski contractions, etc. We observe that the concerns of Proinov [2] are valid for fixed point theorems involving rational expression; that is, some published results are equivalent to earlier results or consequences.



In this paper, we prove that the analog of the fixed theorem of Skof [3] with rational expression unifies and extends several fixed point theorems in the literature.



To begin with, we recall the first main result of Proinov [2].



Theorem 1.

([2]). Let   ( X , d )   be a metric space and   T : X → X   be a mapping such that:


  ψ ( d ( T x , T y ) ) ≤ ϕ ( d ( x , y ) ) ,  








for all   x , y ∈ X   with   d ( T x , T y ) > 0 ,   where the functions   ψ , ϕ : ( 0 , ∞ ) → R   are such that the following conditions are satisfied:




	(1) 

	
ψ is nondecreasing;




	(2) 

	
  ϕ ( s ) < ψ ( s )   for any   s > 0  ;




	(3) 

	
     lim  sup   s →  s 0  +   ϕ  ( s )  < ψ  (  s 0  + )     for any    s 0  > 0 .  









Then,   T   admits a unique fixed point.





We also recall the main results in which some rational expressions were studied in a contraction condition.



Theorem 2.

([6]). Let   ( X , d )   be a complete metric space and   T : X → X   be a mapping such that there exist    𝓀 1  ,  𝓀 2  ∈  0 , 1   , with    𝓀 1  +  𝓀 2  < 1   such that:


  d  ( T x , T y )  ≤  𝓀 1  · d  ( y , T y )    1 + d ( x , T x )   1 + d ( x , y )   +  𝓀 2  · d  ( x , y )   



(1)




for all   x , y ∈ X  . Then,   T   has a unique fixed point   υ ∈ X  , and the sequence     T  n  x   converges to the fixed point υ for all   x ∈ X  .





Theorem 3.

([7]). Let   ( X , d )   be a complete metric space and   T : X → X   be a continuous mapping. If there exist    𝓀 1  ,  𝓀 2  ∈  0 , 1   , with    𝓀 1  +  𝓀 2  < 1   such that:


  d  ( T x , T y )  ≤  𝓀 1  ·   d ( x , T x ) d ( y , T y )   d ( x , y )   +  𝓀 2  · d  ( x , y )  ,  



(2)




for all distinct   x , y ∈ X  , then   T   possesses a unique fixed point in X.





We mention that over the last few years, many interesting and different generalizations for rational contractions have been provided (see, for example, [8,9,10,11,12]).



Finally, let us consider the next lemma (which can be found in many papers; see, e.g., [2]), which will be useful in the sequel.



Lemma 1.

([2]). Let    x n    be a sequence in a metric space   ( X , d )   such that   d (  x n  ,  x  n + 1   ) → 0   as   n → ∞  . If the sequence    x n    is not Cauchy, then there exist   ℯ > 0   and the subsequences    q k    and    r k    of positive integers such that:


       lim  k → ∞   d  (  x  q k   ,  x  r k   )  = ℯ ,   lim  k → ∞   d  (  x   q k  + 1   ,  x   r k  + 1   )       = ℯ + ,     



(3)










2. Main Results


Throughout this section, we will consider that   ϕ , ψ : ( 0 , ∞ ) → R   are two functions such that:




	  (  𝒻 0  )   

	
  ϕ ( s ) < ψ ( s ) ,   for all   s > 0 .  









Definition 1.

Let   ( X , d )   be a complete metric space. A mapping   T : X → X   is a   ( ψ , ϕ )  -rational contraction of Type 1 if for every distinct   x , y ∈ X   such that   d ( T x , T y ) > 0  , the following inequality:


   ψ  ( d  ( T x , T y )  )  ≤ ϕ  (  M 1   ( x , y )  )  ,   



(4)




holds, where   M 1   is defined by:


    M 1   ( x , y )  = max  d  ( x , y )  , d  ( x , T x )  , d  ( y , T y )  ,   d ( x , T x ) d ( y , T y )   d ( x , y )      



(5)









Theorem 4.

Let   ( X , d )   be a complete metric space and   T : X → X   be a continuous   ( ψ , ϕ )  -rational contraction of Type 1. Assume that:




	   (  𝒻 1  )   

	
    lim  s >  s 0    ψ  ( s )  > − ∞   , for any    s 0  > 0  ;




	   (  𝒻 2  )   

	
     lim  sup   s →  s 0    ϕ  ( s )  <   lim  inf   s →  s 0  +   ψ  ( s )    , for any    s 0  > 0  ;




	   (  𝒻 3  )   

	
𝒯 is continuous.









Then,   T   admits exactly one fixed point.





Proof. 

Starting with a point   x ∈ X  , we define the sequence    χ n    by:


   χ 1  = T x ,  χ 2  =   T  2  x , … ,  χ n  =   T  n  x ,  



(6)




with    χ n  ≠  χ  n + 1     for all   n ∈ N   (indeed, on the contrary, if there exists    j n  ∈ N   such that    χ  j n   =  χ   j n  + 1   = T  χ  j n    , we get that   χ  j n    is a fixed point of   T  ). Under this consideration, for   x =  χ  n − 1     and   y =  χ n   , we have:


      M 1   (  χ  n − 1   ,  χ n  )      = max      d  (  χ  n − 1   ,  χ n  )  , d  (  χ  n − 1   , T  χ  n − 1   )  , d  (  χ n  , T  χ n  )  ,        d  (  χ  n − 1   , T  χ  n − 1   )  d  (  χ n  , T  χ n  )    d (  χ  n − 1   ,  χ n  )              = max  d  (  χ  n − 1   ,  χ n  )  , d  (  χ n  ,  χ  n + 1   )  ,   d  (  χ n  ,  χ  n + 1   )  d  (  χ  n − 1   ,  χ n  )    d (  χ  n − 1   ,  χ n  )           = max  d  (  χ  n − 1   ,  χ n  )  , d  (  χ n  ,  χ  n + 1   )   .     








and by (4) (since   d  ( T  χ  n − 1   , T  χ n  )  = d  (  χ n  ,  χ  n + 1   )   > 0 )   , we get:


  ψ  ( d  (  χ n  ,  χ  n + 1   )  )  = ψ  ( d  ( T  χ  n − 1   , T  χ n  )  )  ≤ ϕ  (  M 1   (  χ  n − 1   ,  χ n  )  )  ,  








which is equivalent, denoting by    ς n  = d  (  χ  n − 1   ,  χ n  )   , to:


  ψ  (  ς  n + 1   )  ≤ ϕ  ( max   ς n  ,  ς  n + 1    )  .  



(7)







(Of course, we can assume that    ς n  > 0  , since on the contrary, we can find   l ∈ N   such that   d  (  χ  l − 1   ,  χ l  )  =  ς l  = 0  . Thus,    χ l  =  χ  l + 1   = T  χ l    and   χ l   is the fixed point of   T  .) If there exists   n ∈ N   such that   max   ς n  ,  ς  n + 1    =  ς  n + 1    , then   ψ  (  ς  n + 1   )  ≤ ϕ  (  ς  n + 1   )   , which contradicts the assumption (  𝒻 0  ). Therefore, for all   n > 0  , we have    ς n  >  ς  n + 1    , so that the sequence    ς n    is decreasing, and since it is strictly positive, there exists   ς ≥ 0   such that     lim  n → ∞    ς n  = ς    and    ς n  > ς   for all   n > 0  . Supposing that   ς > 0  , because    M 1   (  χ  n − 1   ,  χ n  )  =  ς n   , replacing in (4) and taking into account (  𝒻 0  ), we have,


  ψ  (  ς  n + 1   )  ≤ ϕ  (  ς n  )  < ψ  (  ς n  )  .  











It follows that the sequence   ψ (  ς n  )   is strictly decreasing, and since it is bounded (below) (because    ς n  > ς   and due to the assumption (  𝒻 1  )), we can conclude that   ψ (  ς n  )   is a convergent sequence. Moreover, from the above inequality, the sequence   ϕ (  ς n  )   is also convergent as the same limit. Thus, keeping in mind (  𝒻 2  ),


    lim  inf   s →  ς +    ψ  ( s )  ≤  lim  n → ∞   ψ  (  ς n  )  =  lim  n → ∞   ϕ  (  ς n  )  ≤   lim  sup   s → ς   ϕ  ( s )  <   lim  inf   s →  ς +    ψ  ( s )  ,  








which is a contradiction. Therefore,   ς = 0   and:


   lim  n → ∞    ς n  =  lim  n → ∞   d  (  χ  n − 1   ,  χ n  )  = 0 .  



(8)







We claim that    χ n    is a Cauchy sequence. Let us suppose by contradiction that the sequence    χ n    defined by (6) is not Cauchy. Then, by Lemma 1, there exist   ℯ > 0   and two sequences of positive real numbers   (  q k  )   and   (  r k  )   such that:


       lim  k → ∞   d  (  χ   q k  + 1   ,  χ   r k  + 1   )  = ℯ + ,   lim  k → ∞   d  (  χ  q k   ,  χ  r k   )  = ℯ .      



(9)







Furthermore, for all   k ≥ 1  , we have   d (  χ   q k  + 1   ,  χ   r k  + 1   ) > ℯ .   Replacing   x =  χ   q k  + 1     and   y =  χ   r k  + 1     in (4) and taking into account   (  𝒻 0  )  , we have:


  ψ  ( d  (  χ   q k  + 1   ,  χ   r k  + 1   )  )  ≤ ϕ  (  M 1   (  x  q k   ,  x  r k   )  )  ≤ ψ  (  M 1   (  χ  q k   ,  χ  r k   )  )  ,  








where:


      M 1   (  χ  q k   ,  χ  r k   )      = max      d  (  χ  q k   ,  χ  r k   )  , d  (  χ  q k   , T  χ  q k   )  , d  (  χ  r k   , T  χ  r k   )  ,        d  (  χ  q k   , T  χ  q k   )  d  (  χ  r k   , T  χ  r k   )    d (  χ  q k   ,  χ  r k   )              = max      d  (  χ  q k   ,  χ  r k   )  , d  (  χ  q k   ,  χ   q k  + 1   )  , d  (  χ  r k   ,  χ   r k  + 1   )  ,        d  (  χ  q k   ,  χ   q k  + 1   )  d  (  χ  r k   ,  χ   r k  + 1   )    d (  χ  q k   ,  χ  r k   )       .     











Now, by (8) and (9), we have     lim  k → ∞    M 1   (  χ  q k   ,  χ  r k   )  = e   , and it follows by (4) that:


    lim  inf   s →  ℯ +    ψ  ( s )  ≤   lim  inf   k → ∞   ψ  ( d  (  χ   q k  + 1   ,  χ   r k  + 1   )  )  ≤   lim  sup   k → ∞   ϕ  (  M 1   (  χ  q k   ,  χ  r k   )  )  ≤   lim  sup   s → ℯ   ϕ  ( s )  .  











This contradicts   (  𝒻 2  )  , and then,    χ n    is a Cauchy sequence on a complete metric space. Thus, the sequence converges to a point   υ ∈ X  , that is:


   lim  n → ∞   d  (  χ n  , υ )  = 0  



(10)




and since the mapping   T   is continuous, we have:


  υ =  lim  n → ∞    χ  n + 1   =  lim  n → ∞   T  χ n  = T  (  lim  n → ∞    χ n  )  = T υ  








which shows that  υ  is a fixed point of   T  .



If there exists another fixed point of   T  ,    υ ˜  ∈ X  , such that    υ ˜  ≠ υ  , since   d ( T  υ ˜  , T υ ) > 0 ,   from (4), we have:


     ψ ( d  (  υ ˜  , υ )  )     = ψ  ( d  ( T  υ ˜  , T υ )  )  ≤ ϕ  (  M 1   (  υ ˜  , υ )  )         = ϕ ( max  d  (  υ ˜  , υ )  , d  (  υ ˜  , T  υ ˜  )  , d  ( υ , T υ )  ,   d  (  υ ˜  , T  υ ˜  )  d  ( υ , T υ )    d (  υ ˜  , υ )    )        = ϕ ( d  (  υ ˜  , υ )  ) .     











Therefore, from the above inequality together with   (  𝒻 0  )  , we get:


  ψ  ( d  (  υ ˜  , υ )  )  ≤ ϕ  ( d  (  υ ˜  , υ )  )  < ψ  ( d  (  υ ˜  , υ )  )   








which is a contradiction. This closes the proof. □





Example 1.

Let the set   X = [ 0 , 2 ]   and   d : X → X   be the distance defined as   d  ( x , y )  =  x − y    for every   x , y ∈ X .   Let also   T : X → X   be a self-mapping with   T x =   −  x 2  + 2 x + 4  8    and two functions   ψ , ϕ : ( 0 , ∞ ) → R  ,   ψ  ( s )  =  s 2    and   ϕ  ( s )  =  s 4  .   Since the assumptions   (  𝒻 1  )  –  (  𝒻 3  )   are satisfied, it remains to check that   T   is a   ( ψ , ϕ )  -rational contraction of Type 1. We have:


   d  ( T x , T y )  =    −  x 2  + 2 x + 4  8  −   −  y 2  + 2 y + 4  8   =  1 8   ( x − y ) ( − x − y + 2 )  =  1 8   ( x − y )   ( − x − y + 2 )    








and since    ( − x − y + 2 )  < 4   for every   x , y ∈ [ 0 , 1 ]  , we have:


   ψ  ( d  ( T x , T y )  )  =  1 16   ( x − y )   ( − x − y + 2 )  ≤  1 4   ( x − y )  =  1 4  d  ( x , y )  ≤  1 4   M 1   ( x , y )  ,   








which shows us that   T   is a   ( ψ , ϕ )  -rational contraction of Type 1. Furthermore, by Theorem 4, we get that   T   has a unique fixed point in X, that is   x = 0.605551  .





Next, we show that the continuity condition of the operator   T   can be replaced by the assumption of the continuity of only some iterations of   T  .



Theorem 5.

If in Theorem 4 the statement   (  𝒻 3  )   is replaced by:




	   (  𝒻 3 ′  )   

	
   T  𝓂   is continuous for some integer   𝓂 > 1  ,









then   T   has a unique fixed point.





Proof. 

Let    χ n    be the sequence defined by (6). By the proof of Theorem 4, we know that this sequence is convergent to some point   υ ∈ X ,   which means that   d (  χ n  , υ ) = 0 .   Let    c  n ( j )     be a subsequence of    χ n   , where   n ( j ) = j · 𝓂   for all   j ∈  N 0    and   𝓂 > 1   fixed. Moreover, assuming that    T  0   is the identity map on x, we have    χ  n ( j )   =   T  𝓂   χ  n ( j ) − 𝓂    . Then, since    T  𝓂   is continuous,


  d  ( υ ,   T  𝓂  υ )  =  lim  j → ∞   d  ( υ ,   T  𝓂   χ  n ( j ) − 𝓂   )  =  lim  j → ∞   d  ( υ ,  χ  n ( j )   )  = d  ( υ , υ )  = 0 .  











This means that  ς  is a fixed point of     T  𝓂  .  



If we assume that   υ ≠ T υ  , we have for any   j = 0 , 1 , … , 𝓂 − 1   that     T   𝓂 − j − 1   υ ≠   T   𝓂 − j   υ  . By replacing x by     T   a 𝓂 − j − 1   υ   and y by     T   𝓂 − j   υ  , we have:


      M 1   (   T   𝓂 − j − 1   υ ,   T   𝓂 − j   υ )      = max      d  (   T   𝓂 − j − 1   υ ,   T   𝓂 − j   υ )  , d  (   T   𝓂 − j   υ ,   T   𝓂 − j + 1   υ )  ,        d  (   T   𝓂 − j − 1   υ ,   T   𝓂 − j   υ )  d  (   T   𝓂 − j   υ ,   T   𝓂 − j + 1   υ )    d (   T   𝓂 − j − 1   υ ,   T   𝓂 − j   υ )              = max  d  (   T   𝓂 − j − 1   υ ,   T   𝓂 − j   υ )  , d  (   T   𝓂 − j   υ ,   T   𝓂 − j + 1   υ )       



(11)




and (4) becomes,


     ψ ( d  (   T   𝓂 − j   υ ,   T   𝓂 − j + 1   υ )  )     ≤ ϕ (  M 1   (   T   𝓂 − j − 1   υ ,   T   𝓂 − j   υ )  )        = ϕ ( max  d  (   T   𝓂 − j − 1   υ ,   T   𝓂 − j   υ )  , d  (   T   𝓂 − j   υ ,   T   𝓂 − j + 1   υ )   ) .     



(12)







Taking into account   (  𝒻 0  )  , it follows that:


     ψ ( d  (   T   𝓂 − j   υ ,   T   𝓂 − j + 1   υ )  )     ≤ ϕ ( max  d  (   T   𝓂 − j − 1   υ ,   T   𝓂 − j   υ )  , d  (   T   𝓂 − j   υ ,   T   𝓂 − j + 1   υ )   )        < ψ ( max  d  (   T   𝓂 − j − 1   υ ,   T   𝓂 − j   υ )  , d  (   T   𝓂 − j   υ ,   T   𝓂 − j + 1   υ )   ) .     











Now, since the function  ψ  is nondecreasing, we get:


  d  (   T   𝓂 − j   υ ,   T   𝓂 − j + 1   υ )  < max  d  (   T   𝓂 − j − 1   υ ,   T   𝓂 − j   υ )  , d  (   T   𝓂 − j   υ ,   T   𝓂 − j + 1   υ )    











This leads us to:


  d  (   T   𝓂 − j   υ ,   T   𝓂 − j + 1   υ )  < d  (   T   𝓂 − k − 1   υ ,   T   𝓂 − k   υ )  ,  








for every   k = j , j + 1 , … , 𝓂 − 1 .   Taking in the above inequality   j = 0   and   k = 𝓂 − 1  , we get:


  d  ( υ , T υ )  = d  (   T  𝓂  υ ,   T   𝓂 + 1   υ )  < d  ( υ , T υ )  .  











This is a contradiction. Consequently,   T υ = υ  . □





Example 2.

Let the set   X = [ 0 , 2 ]   be endowed with the usual distance   d  ( x , y )  =  x − y    for every   x , y ∈ X .   Let the mapping   T : X → X   be defined by   T x =      0 ,     if   x ∈ [ 0 , 1 ]        1 4  ,     if   x ∈ ( 1 , 2 ] .        It is clear that the mapping   T   is not continuous and that Theorem 4 cannot be applied. However, we have that     T  2  x = 0   for any   x ∈ x  , so the assumption   (  𝒻 3 ′  )   holds. Choosing, for example, the functions   ψ , ϕ : ( 0 , ∞ ) → R  , where   ψ  ( s )  =  e s    and   ϕ  ( s )  = s +  3 4   , we have that the assumptions    (  𝒻 0  )  −  (  𝒻 2  )    are also satisfied, and we need to check if the inequality (4) holds for all distinct   x , y ∈ X   with   d ( T x , T y ) > 0 .  



Of course, since   ϕ ( s ) = s + 1   is an increasing function, for   x ∈ [ 0 , 1 ]   and   y ∈ ( 1 , 2 ]  , we have:


      ψ ( d ( T x , T y ) )     = ψ  (  1 4  )  =  e 4  < 1 +  1 2  < y +  1 2  = ϕ   y −  1 4    = ϕ  d ( y , T y )         ≤ ϕ   M 1   ( x , y )        








so that all the assumptions of Theorem 5 are satisfied.





Definition 2.

Let   ( X , d )   be a complete metric space. The mapping   T : X → X   is said to be a   ( ψ , ϕ )  -rational contraction of Type 2 if for all   x , y ∈ X   with   d ( T x , T y ) > 0  , the following condition is satisfied:


   ψ  ( d  ( T x , T y )  )  ≤ ϕ  (  M 2   ( x , y )  )  ,   



(13)




where   M 2   is defined by:


    M 2   ( x , y )  = max  d  ( x , y )  , d  ( x , T x )  , d  ( y , T y )  ,   d ( y , T y ) ( d ( x , T x ) + 1 )   1 + d ( x , y )    .   



(14)









Theorem 6.

Let   ( X , d )   be a complete metric space and   T : X → X   be a   ( ψ , ϕ )  -rational contraction of Type 2. Assume that:




	   (   𝒻  1 ′  )   

	
ψ is non-decreasing and lower semi-continuous;




	   (  𝒻 4  )   

	
     lim  sup   s →  s 0  +   ϕ  ( s )  < ψ  (  s 0  + )    ;









Then,   T   admits exactly one fixed point.





Proof. 

Let    χ n    be the sequence defined by (6). Thus, by similar reasoning, we have that    ς n  = d  (  χ  n − 1   ,  χ n  )  > 0   for every   n ∈ N  . Therefore, since   d ( T  χ  n − 1   , T  χ n  ) > 0 ,   for every   n ∈ N  , for   x =  χ  n − 1     and   y =  χ n   , we have:


      M 2   (  χ  n − 1   ,  χ n  )      = max      d  (  χ  n − 1   ,  χ n  )  , d  (  χ  n − 1   , T  χ  n − 1   )  , d  (  χ n  , T  χ n  )  ,        d  (  χ n  , T  x n  )   ( 1 + )  d  (  x n  , T  x n  )    1 + d (  x  n − 1   ,  x n  )              = max  d  (  x  n − 1   ,  x n  )  , d  (  x n  ,  x  n + 1   )  ,   d  (  x n  ,  x  n + 1   )   ( d  (  x  n − 1   ,  x n  )  + 1 )    1 + d (  x  n − 1   ,  x n  )           = max  d  (  x  n − 1   ,  x n  )  , d  (  x n  ,  x  n + 1   )          = max   ς n  ,  ς  n + 1    .     











Consequently, by (13), we have:


  ψ  ( d  ( T  χ  n − 1   , T  χ n  )  )  ≤ ϕ  (  M 2   (  χ  n − 1   ,  χ n  )  )  = ϕ  ( max   ς n  ,  ς  n + 1    )  ,  








which, keeping in mind   (  𝒻 0  )  , is equivalent to:


  ψ  (  ς  n + 1   )  ≤ ϕ  ( max   ς n  ,  ς  n + 1    )  < ψ  ( max   ς n  ,  ς  n + 1    )  .  



(15)







Thus, due to the monotony of the function  ψ ,    ς  n + 1   < max   ς n  ,  ς  n + 1     , so that   0 <  ς  n + 1   <  ς n   , for each   n ∈ N  , then there exists   ς ≥ 0   such that    ς n  ↘ ς .   We claim that   ς = 0 .   If we assume by contradiction that   ς > 0  , we have:


  ψ  ( ς )  ≤ ψ  (  ς  n + 1   )  ≤ ϕ  (  ς n  )  < ψ  (  ς n  )  .  











Taking the superior limit in the above inequality and keeping in mind   (  𝒻 4  )  , we get:


  ψ  ( ς + )  =  lim  n → ∞   ψ  (  ς  n + 1   )  ≤   lim  sup   n → ∞   ϕ  (  ς n  )  <   lim  sup   n → ∞   ψ  (  ς n  )  < ψ  ( ς + )   








which is a contradiction. Thus, we have:


  ς =  lim  n → ∞   d  (  χ n  ,  χ  n + 1   )  = 0 .  



(16)







Now, we claim that    χ n    is a Cauchy sequence. Again, arguing by contradiction, by Lemma (1), we have that there exist   ℯ > 0   and the sequences of positive real numbers   (  q k  )   and   (  r k  )   such that:


   lim  k → ∞   d  (  χ   q k  + 1   ,  χ   r k  + 1   )  = ℯ + and  lim  k → ∞   d  (  χ  q k   ,  χ  r k   )  = ℯ .  



(17)







Thus,   d  (  χ   q k  + 1   ,  χ   r k  + 1   )  = d  ( T  χ  q k   , T  χ  r k   )  > ℯ > 0   for all   k ≥ 1  , and from (13), together with   (  𝒻 0  )   we have:


  ψ  ( d  (  χ   q k  + 1   ,  χ   r k  + 1   )  )  ≤ ϕ  (  M 2   (  χ  q k   ,  χ  r k   )  )  < ψ  (  M 2   (  χ  q k   ,  χ  r k   )  )  .  



(18)







Since  ψ  is non-decreasing we get   d  (  χ   q k  + 1   ,  χ   r k  + 1   )  <  M 2   (  χ  q k   ,  χ  r k   )  ,   for each   k ≥ 1 ,   where:


   M 2   (  χ  q k   ,  χ  r k   )  = max      d  (  χ  q k   ,  χ  r k   )  , d  (  χ  q k   ,  χ   q k  + 1   )  , d  (  χ  r k   ,  χ   r k  + 1   )  ,        d  (  χ  r k   ,  χ   r k  + 1   )   ( 1 + d  (  χ  q k   ,  χ   q k  + 1   )  )    1 + d (  χ  q k   ,  χ  r k   )        



(19)




and taking into account (16) and (17):


   lim  k → ∞    M 2   (  χ  q k   ,  χ  r k   )  = ℯ + .  











In this case, letting   k → ∞   in (18), we have:


   ψ  ( ℯ + )  =  lim  k → ∞   ψ  ( d  (  χ   q k  + 1   ,  χ   r k  + 1   )  )  ≤   lim  sup   k → ∞   ϕ  (  M 2   (  χ  q k   ,  χ  r k   )  )  ≤   lim  sup   s → ℯ +   ϕ  ( s )  < ψ  ( ℯ + )  ,   








which is a contradiction. This shows that    χ n    is a Cauchy sequence. By the completeness of the space   ( x , d )  , the sequence    χ n    converges to a point  υ  in x, that is:


   lim  n → ∞   d  (  χ n  , υ )  = 0 .  



(20)







We claim that  υ  is a fixed point of   T .   Supposing by contradiction that   d ( T υ , υ ) > 0   and using the same arguments as in the previous theorem, we have that there exists    n 0  ∈ N   such that   d  ( T υ ,  χ  n + 1   )   =  d  ( T υ , T  χ n  )  > 0   for any   n ≥  n 0   . Now, by (13) we have:


  ψ  ( d  ( T υ , T  χ n  )  )  ≤ ϕ  (  M 2   ( υ ,  χ n  )  )  ,  



(21)




where:


   M 2   ( υ ,  χ n  )  = max  d  ( υ ,  χ n  )  , d  ( υ , T υ )  , d  (  χ n  ,  χ  n + 1   )  ,   d  (  χ n  ,  χ  n + 1   )   ( 1 + d  ( υ , T υ )  )    1 + d ( υ ,  χ n  )    .  











On the one hand, from (16) and (20), we get:


   M 2   ( υ ,  χ n  )  = d  ( υ , T υ )  ,  for   n   sufficiently   large  



(22)




and then:


  ψ  ( d  ( T υ , T  χ n  )  )  ≤ ϕ  ( d  ( υ , T υ )  )  < ψ  ( d  ( υ , T υ )  )  .  











On the other hand,     lim  n → ∞   d  ( T υ , T  χ n  )  =  lim  n → ∞   d  ( T υ ,  χ  n + 1   )  = d  ( T υ , υ )    . Therefore, taking the inferior limit in (21) when   n → ∞   and taking into account the lower semi-continuity of  ψ , we have:


     lim  inf   s → d ( T υ , υ )   ψ  ( s )  ≤  lim  n → ∞   ψ  ( T υ , T  χ n  )  ≤ ϕ  ( d  ( υ , T υ )  )  < ψ  ( d  ( υ , T υ )  )  <   lim  inf   s → d ( T υ , υ )   ψ  ( s )  ,   








which is a contradiction. Therefore, we have   T υ = υ  , and we claim that this is the unique fixed point of   T .   If we suppose that   υ ˜   is also a fixed point of   T   such that   d  ( T υ , T  υ ˜  )  = d  ( υ ,  υ ˜  )  > 0   and from (13), we have:


  ψ  ( d  ( T υ , T  υ ˜  )  )  ≤ ϕ  (  M 2   ( υ ,  υ ˜  )  )  ,  



(23)




with:


      M 2   ( υ ,  υ ˜  )      = max  d  ( υ ,  υ ˜  )  , d  ( υ , T υ )  , d  (  υ ˜  , T  υ ˜  )  ,   d  (  υ ˜  , T  υ ˜  )   ( 1 + d  ( υ , T υ )  )    1 + d ( υ ,  υ ˜  )           = d ( υ ,  υ ˜  ) .     











Thus, by (23),


  ψ  ( d  ( υ ,  υ ˜  )  )  = ψ  ( d  ( T υ , T  υ ˜  )  )  ≤ ϕ  (  M 2   ( υ ,  υ ˜  )  )  = ϕ  ( d  ( υ ,  υ ˜  )  )  < ψ  ( d  ( υ ,  υ ˜  )  )  ,  








which is a contradiction. □





Example 3.

Let   X =   ω 1  ,  ω 2  ,  ω 3  ,  ω 4     and   d : X × X → [ 0 , ∞ )   be a distance defined as follows:


      d ( x , y ) = d ( y , x ) ,   for   every   x , y ∈ X ;       d  (  ω 1  ,  ω 2  )  = 2 ,  d  (  ω 1  ,  ω 3  )  = 6 ,  d  (  ω 1  ,  ω 4  )  = 7 ;       d  (  ω 2  ,  ω 3  )  = 4 ,  d  (  ω 2  ,  ω 4  )  = 5 ,  d  (  ω 3  ,  ω 4  )  = 1 .      











Let the mapping   T : X → X  , with   T  ω 1  =  ω 4  ,  T  ω 2  = T  ω 3  = T  ω 4  =  ω 3  .   Letting   ψ , ϕ : ( 0 , ∞ ) → R  , where   ψ  ( s )  =  e s    and   ϕ ( s ) = 1 + ln ( 1 + s )  , we have that the assumptions   (  𝒻 0  )  ,   (   𝒻  1 ′  )  ,   (  𝒻 4  )   are satisfied. We have to consider the following cases:




	a. 

	
If   x =  ω 1   ,   y =  ω 2   , then   d  ( T  ω 1  , T  ω 2  )  = d  (  ω 4  ,  ω 3  )  = 1  ,   d (  ω 1  ,  ω 2  ) = 2  ,   d (  ω 1  , T  ω 1  ) = 7  ,   d (  ω 2  , T  ω 2  ) = 4  , and    M 2   (  ω 1  ,  ω 2  )  = max  2 , 7 , 4 ,  32 3   =  32 3   :


   ψ  ( d  ( T  ω 1  , T  ω 2  )  )  = ψ  ( 1 )  = e < 1 + ln  32 3  < ϕ  (  M 2   (  ω 1  ,  ω 2  )  )  .   












	b. 

	
If   x =  ω 1   ,   y =  ω 3   , then   d  ( T  ω 1  , T  ω 3  )  = d  (  ω 4  ,  ω 3  )  = 1  ,   d (  ω 1  ,  ω 3  ) = 6  ,   d (  ω 1  , T  ω 1  ) = 7  ,   d (  ω 3  , T  ω 3  ) = 0  , and    M 2   (  ω 1  ,  ω 3  )  = max  6 , 7 , 0 ,  7 3   = 7  :


   ψ  ( d  ( T  ω 1  , T  ω 3  )  )  = ψ  ( 1 )  = e < 1 + ln 7 < ϕ  (  M 2   (  ω 1  ,  ω 3  )  )  .   












	c. 

	
If   x =  ω 1   ,   y =  ω 4   , then   d  ( T  ω 1  , T  ω 4  )  = d  (  ω 4  ,  ω 3  )  = 1  ,   d (  ω 1  ,  ω 4  ) = 7  ,   d (  ω 1  , T  ω 1  ) = 7  ,   d (  ω 4  , T  ω 4  ) = 1  , and    M 2   (  ω 1  ,  ω 3  )  = max  7 , 7 , 1 ,  14 3   = 7  :


   ψ  ( d  ( T  ω 1  , T  ω 4  )  )  = ψ  ( 1 )  = e < 1 + ln 7 < ϕ  (  M 2   (  ω 1  ,  ω 4  )  )  .   

















Thus, all the assumptions of Theorem 6 hold, so that   T   has a unique fixed point.





Theorem 7.

A   ( ψ , ϕ )  -rational contraction of Type 2 on the complete metric space   ( X , d )   has a unique fixed point presuming that the following conditions are satisfied:




	   (  𝒻 1  )   

	
    lim  s >  s 0    ψ  ( s )  > − ∞   , for any    s 0  > 0 ;  




	   (  𝒻 2 ′  )   

	
      lim  sup   s →  s 0  +   ϕ  ( s )  <   lim  inf   s →   s 0    ψ  ( s )  ;    




	   (  𝒻 5  )   

	
   ϕ  (  s 0  )  <   lim  inf   s →  s 0    ψ  ( s )     for any    s 0  > 0  .











Proof. 

Following the lines and using the same notations as in the proof of Theorem 6, by (15), we have that   ψ  (  ς n  )  < ψ  ( max   ς n  ,  ς  n + 1    )  .   Since for   max   ς n  ,  ς  n + 1    =  ς  n + 1    , we get a contradiction. Therefore, we conclude that    ς n  >  ς  n + 1    . Consequently, on the one hand, we have that there exists a point   ς ≥ 0   such that    ς n  ↘ ς  . We claim that   ς = 0  . On the contrary, if we suppose that   ς > 0  , by (13) together with   𝒻 0  , we have:


  ψ  (  ς  n + 1   )  ≤ ϕ  (  ς n  )  < ψ  (  ς n  )  ,  








for all   n ∈ N  . Then, the sequence   ψ (  ς n  )   is decreasing and also bounded (because   (  𝒻 1  )   and    ς n  > ς  ). Therefore, the sequence   ψ (  ς n  )   is convergent, and moreover, by the above inequality, the sequence   ϕ (  ς n  )   is also convergent to the same limit. Thus, keeping in mind (  𝒻 2  ), we have:


     lim  inf   s → ς +   ψ  ( s )  ≤  lim  n → ∞   ψ  (  ς n  )  =  lim  n → ∞   ϕ  (  ς n  )  <   lim  sup   s → ς +   ϕ  ( s )  <   lim  inf   s → ς +   ψ  ( s )  ,   








which is a contradiction, so that,


   ς =  lim  n → ∞   d  (  x  n − 1   ,  x n  )  = 0 .   



(24)







We will show that    χ n    is a Cauchy sequence. In order to prove that, arguing by contradiction, by Lemma 1, there exist   ℯ > 0   and    (  q k  )  ,  (  r k  )    two sequences of positive integers such that (3) holds. Since     lim  k → ∞   d  (  χ   q k  + 1   ,  χ   r k  + 1   )  = ℯ +   , we have that   d  (  χ   q k  + 1   ,  χ   r k  + 1   )  = d  ( T  χ  q k   , T  χ  r k   )  > 0  , and replacing in (13), we get:


  ψ  ( d  (  χ   q k  + 1   ,  χ   r k  + 1   )  )  = ψ  ( d  ( T  χ  q k   , T  χ  r k   )  )  ≤ ϕ  (  M 2   (  χ  q k   ,  χ  r k   )  )  .  











On the other hand, from the above inequality and (  𝒻 2  ), we have:


    lim  inf   s → ℯ   ψ  ( s )  ≤   lim  inf   k → ∞   ψ  ( d  (  χ   q k  + 1   ,  χ   r k  + 1   )  )  ≤   lim  sup   k → ∞   ϕ  (  M 2  )  ≤   lim  sup   s → ℯ +   ϕ  ( s )  <   lim  inf   s → ℯ   ψ  ( s )  .  











This is a contradiction, so that    χ n    is a Cauchy sequence, so it is convergent to some point   υ ∈ X   (due to the completeness of the metric space   ( X , d )  ). If we suppose that   d ( T υ , υ ) > 0  , because   d  ( T υ , T  χ n  )  → d  ( T υ , υ )   , we have that there exists    n 0  ∈ N   such that   d ( T υ , T  χ n  ) > 0  , for   n ≥  n 0  .   Then, from (13),


     ψ ( d  ( T υ , T  χ n  )  )     ≤ ϕ (  M 2   ( υ ,  χ n  )  )        = ϕ  max  d  ( υ ,  χ n  )  , d  ( υ , T υ )  , d  (  χ n  , T  χ n  )  ,   d  (  χ n  ,  χ  n + 1   )   ( 1 + d  ( υ , T υ )  )    1 + d ( υ ,  χ n  )         








and moreover, taking into account (22):


  ψ  ( d  ( T υ , T  χ n  )  )  ≤ ϕ  ( d  ( υ , T υ )  )  .  











Taking the limit as inferior and using (  𝒻 5  ), we obtain:


    lim  inf   s → d ( T υ , υ )   ψ  ( s )  ≤   lim  inf   n → ∞   ψ  ( d  ( T υ ,  χ  n + 1   )  )  ≤ ϕ  ( d  ( υ , T υ )  )  <   lim  inf   s → d ( T υ , υ )   ψ  ( s )  .  











This is a contradiction. Therefore,   T υ = υ  , that is  υ  is a fixed point of   T  , and using the same arguments as in Theorem 6, we have that, in fact, this fixed point is unique. □





Example 4.

Let   X = [ 0 , ∞ )   and d be the usual distance on X. Let   T : X → X  , where   T x =  1 2  ln  (  x 2  + x + 2 )    and   ψ , ϕ : ( 0 , ∞ ) → R  , where   ψ  ( s )  =  e s    and   ϕ ( s ) = 1 + s  . We check that   T   is a   ( ψ , ϕ )  -rational contraction of Type 2. Indeed, if   x > y   (and it is analogues for the case   x < y  ), then:


   d  ( T x , T y )  =    ln  (  x 2  + x + 2 )  − ln  (  y 2  + y + 2 )   2   =  1 2  ln    x 2  + x + 2    y 2  + y + 2   = ln     x 2  + x + 2    y 2  + y + 2    .   











On the other hand, since:


       x 2  + x + 2    y 2  + y + 2    ≤ 1 + x − y ⇔    x 2  + x + 2    y 2  + y + 2   ≤   ( 1 + x − y )  2  ⇔  ( 1 +  y 2  )   ( x − y )  +  y 2  + x y + 3 ≥ 0 ,   








we obtain:


      ψ ( d ( T x , T y ) )     =     x 2  + x + 2    y 2  + y + 2    ≤ 1 + x − y = 1 + d  ( x , y )  ≤ 1 +  M 2   ( x , y )  = ϕ  (  M 2   ( x , y )  )  .      











Thus, (13) is satisfied, and by Theorem 7, we have that the mapping   T   has a fixed point.





Definition 3.

Let   ( X , d )   be a complete metric space. The mapping   T : X → X   is said to be a   ( ψ , ϕ )  -rational contraction of Type 3 if for all   x , y ∈ X  , when   max  d ( x , T y ) , d ( y , T x )  ≠ 0  , then   d ( T x , T y ) > 0  , and the following condition is satisfied:


   ψ  ( d  ( T x , T y )  )  ≤ ϕ    d ( x , T x ) d ( x , T y ) + d ( y , T y ) d ( y , T x )   max  d ( x , T y ) , d ( y , T x )     ;   



(25)




if   max  d ( x , T y ) , d ( y , T x )  = 0  , then   d ( T x , T y ) = 0  .





Theorem 8.

Let   ( X , d )   be a complete metric space and   T : X → X   be a   ( ψ , ϕ )  -rational contraction of Type 3. The mapping   T   admits exactly one fixed point provided that:




	   (   𝒻  1 ″  )   

	
ψ is non-decreasing and      lim  sup   s →  s 0  +   ϕ  ( s )  < ψ  (  s 0  + )    , for any    s 0  > 0  .











Proof. 

Let    χ n    be the sequence defined by (6). Thus, by similar reasoning, we have that    χ n  = d  (  x  n − 1   ,  x n  )  > 0   for every   n ∈ N  . Therefore, since   d ( T  x  n − 1   , T  χ n  ) > 0 ,   for every   n ∈ N  , for   x =  χ  n − 1     and   y =  χ n   , by (25), we have:


     ψ ( d  (  χ n  ,  χ  n + 1   )  )     = ψ ( d  ( T  χ  n − 1   , T  χ n  )  )        ≤ ϕ    d  (  χ  n − 1   , T  χ  n − 1   )  d  (  χ  n − 1   , T  χ n  )  + d  (  χ n  , T  χ n  )  d  (  χ n  , T  χ  n − 1   )    max  d  (  χ  n − 1   , T  χ n  )  , d  (  χ n  , T  χ  n − 1   )             = ϕ    d  (  χ  n − 1   ,  χ n  )  d  (  χ  n − 1   ,  χ  n + 1   )  + d  (  χ n  ,  χ  n + 1   )  d  (  χ n  ,  χ n  )    max  d  (  χ  n − 1   ,  χ  n + 1   )  , d  (  χ n  ,  χ n  )             = ϕ ( d  (  χ  n − 1   ,  χ n  )  ) ,     








which, keeping in mind   (  𝒻 0  )  , gives us:


  ψ  ( d  (  χ n  ,  χ  n + 1   )  )  ≤ ϕ  ( d  (  χ n  ,  χ  n + 1   )  )  < ψ  ( d  (  χ  n − 1   ,  χ n  )  )  .  



(26)







Thus, from   (  𝒻 1 ″  )  ,   0 < d  (  χ n  ,  χ  n + 1   )  < d  (  χ  n − 1   ,  χ n  )    for each   n ∈ N  , so the sequence   ( d  (  χ n  ,  χ  n + 1   )  )   is convergent to some   ς ≥ 0  . We claim that   ς = 0 .   In the case that   ς > 0  , from (25),


  ψ  ( d  (  χ n  ,  χ  n + 1   )  )  ≤ ϕ  ( d  (  χ  n − 1   ,  χ n  )  )  < ψ  ( d  (  χ  n − 1   ,  χ n  )  )   











Taking the limit as superior in the above inequality and keeping in mind   (  𝒻 1 ″  )  , we get:


  ψ  ( ς + )  =  lim  n → ∞   ψ  ( d  (  χ n  ,  χ  n + 1   )  )  ≤   lim  sup   n → ∞   ϕ  ( d  (  χ  n − 1   ,  χ n  )  )  <   lim  sup   n → ∞   ψ  ( d  (  χ  n − 1   ,  χ n  )  )  < ψ  ( ς + )  .  











This is a contradiction, and then, we have:


   lim  n → ∞   d  (  χ n  ,  χ  n + 1   )  = ς = 0 .  



(27)







Now, we claim that    χ n    is a Cauchy sequence. Again, arguing by contradiction, by Lemma (1), we have that there exist   ℯ > 0   and the sequences of positive real numbers   (  q k  )   and   (  r k  )   such that:


   lim  k → ∞   d  (  χ   q k  + 1   ,  χ   r k  + 1   )  = ℯ + and  lim  k → ∞   d  (  χ  q k   ,  χ  r k   )  = ℯ .  



(28)







Thus, it follows that   d  (  χ   q k  + 1   ,  χ   r k  + 1   )  = d  ( T  χ  q k   , T  χ  r k   )  > ℯ > 0   for all   k ≥ 1  , and from (25), together with   (  𝒻 0  )  , we have:


     ψ ( d  (  χ   q k  + 1   ,  χ   r k  + 1   )  )     ≤ ϕ    d  (  χ  q k   ,  χ   q k  + 1   )  d  (  χ  q k   ,  χ   r k  + 1   )  + d  (  χ  r k   ,  χ   r k  + 1   )  d  (  χ  r k   ,  χ   q k  + 1   )    max  d  (  χ  q k   ,  χ   r k  + 1   )  , d  (  χ  r k   ,  χ   q k  + 1   )             < ϕ    d  (  χ  q k   ,  χ   q k  + 1   )  d  (  χ  q k   ,  χ   r k  + 1   )  + d  (  χ  r k   ,  χ   r k  + 1   )  d  (  χ  r k   ,  χ   q k  + 1   )    max  d  (  χ  q k   ,  χ   r k  + 1   )  , d  (  χ  r k   ,  χ   q k  + 1   )             = ϕ    d  (  χ  q k   ,  χ   q k  + 1   )  d  (  χ  q k   ,  χ   r k  + 1   )    max  d  (  χ  q k   ,  χ   r k  + 1   )  , d  (  χ  r k   ,  χ   q k  + 1   )     +   d  (  χ  r k   ,  χ   r k  + 1   )  d  (  χ  r k   ,  χ   q k  + 1   )    max  d  (  χ  q k   ,  χ   r k  + 1   )  , d  (  χ  r k   ,  χ   q k  + 1   )             ≤ ϕ    d  (  χ  q k   ,  χ   q k  + 1   )  d  (  χ  q k   ,  χ   r k  + 1   )    d (  χ  q k   ,  χ   r k  + 1   )   +   d  (  χ  r k   ,  χ   r k  + 1   )  d  (  χ  r k   ,  χ   q k  + 1   )    d (  χ  r k   ,  χ   q k  + 1   )           = ϕ ( d  (  χ  q k   ,  χ   q k  + 1   )  + d  (  χ  r k   ,  χ   r k  + 1   )  )        < ψ ( d  (  χ  q k   ,  χ   q k  + 1   )  + d  (  χ  r k   ,  χ   r k  + 1   )  ) .     



(29)







Since  ψ  is non-decreasing, we get:


  d  (  χ   q k  + 1   ,  χ   r k  + 1   )  < d  (  χ  q k   ,  χ   q k  + 1   )  + d  (  χ  r k   ,  χ   r k  + 1   )  ,  








for each   k ≥ 1 .  



Taking into account (27) and (28):


   0 < ℯ =  lim  k → ∞   d  (  χ   q k  + 1   ,  χ   r k  + 1   )  <  lim  k → ∞    ( d  (  χ  q k   ,  χ   q k  + 1   )  + d  (  χ  r k   ,  χ   r k  + 1   )  )  = 0 .   











In this case, we get   ℯ = 0  , which shows us that    χ n    is a Cauchy sequence, and by the completeness of the space   ( X , d )  ,   (  χ n  )   converges to a point  υ  in x, that is:


   lim  n → ∞   d  (  χ n  , υ )  = 0 .  



(30)







We claim that  υ  is a fixed point of   T .   Supposing by contradiction that   d ( T υ , υ ) > 0   and using the same arguments as in the previous theorem, we have that there exists    n 0  ∈ N   such that   d  ( T υ ,  χ  n + 1   )  = d  ( T υ , T  χ n  )  > 0   for any   n ≥  n 0   . Now, by (25), we have:


     ψ ( d  ( T υ , T  χ n  )  )     ≤ ϕ    d  ( υ , T υ )  d  ( υ ,  χ  n + 1   )  + d  (  χ n  ,  χ  n + 1   )  d  (  χ n  , T υ )    max  d  ( υ , T  χ n  )  , d  (  χ n  , T υ )             < ψ    d  ( υ , T υ )  d  ( υ ,  χ  n + 1   )  + d  (  χ n  ,  χ  n + 1   )  d  (  χ n  , T υ )    max  d  ( υ , T  χ n  )  , d  (  χ n  , T υ )          



(31)







Now, from   (  𝒻 1 ″  )  , we have:


  0 < d  ( T υ , T  χ n  )  <   d  ( υ , T υ )  d  ( υ ,  χ  n + 1   )  + d  (  χ n  ,  χ  n + 1   )  d  (  χ n  , T υ )    max  d  ( υ , T  χ n  )  , d  (  χ n  , T υ )      








and letting   n → ∞  , we get    0 <  lim  n → ∞   d  ( T υ , T  χ n  )  < 0   , which is a contradiction. Therefore, we have   T υ = υ  . Finally, we claim that this is the unique fixed point of   T .   If we suppose that   υ ˜   is also a fixed point of   T   such that   d  ( T υ , T  υ ˜  )  = d  ( υ ,  υ ˜  )  > 0   and from (25): we have:


     ψ ( d  ( T υ , T  υ ˜  )  )     ≤ ϕ    d  ( υ , T υ )  d  ( υ , T  υ ˜  )  + d  (  υ ˜  , T  υ ˜  )  d  (  υ ˜  , T υ )    max  d  ( υ , T  υ ˜  )  , d  (  υ ˜  , T υ )             < ψ    d  ( υ , T υ )  d  ( υ , T  υ ˜  )  + d  (  υ ˜  , T  υ ˜  )  d  (  υ ˜  , T υ )    max  d  ( υ , T  υ ˜  )  , d  (  υ ˜  , T υ )      ,     



(32)







Thus, by   (  𝒻 1 ″  )  ,


  0 < d  ( υ ,  υ ˜  )   ) <    d  ( υ , T υ )  d  ( υ , T  υ ˜  )  + d  (  υ ˜  , T  υ ˜  )  d  (  υ ˜  , T υ )    max  d  ( υ , T  υ ˜  )  , d  (  υ ˜  , T υ )     = 0 ,  








which is a contradiction. □





We can state many corollaries from our main results. For example, choosing   ψ ( s ) = s   and   ϕ ( s ) = β ( s ) s   in Theorem 4, we have:



Corollary 1.

Let   ( X , d )   be a complete metric space and   β : ( 0 , ∞ ) → ( 0 , 1 )   be a function such that     lim  sup   s →  s 0  +   β  ( s )  < 1   for every    s 0  > 0 .   A continuous mapping   T : X → X   has a unique fixed point provided that:


   d  ( T x , T y )  ≤ β  (  M 1   ( x , y )  )   M 1   ( x , y )  , for   all   x , y ∈ X with   d  ( T x , T y )  > 0 .   













If in Theorem 7, we take   ϕ ( s ) = κ ψ ( s )  , we get the following corollary.



Corollary 2.

Let   ( X , d )   be a complete metric space and a self-mapping   T   on X such that for all   x , y ∈ X   with   d ( T x , T y ) > 0 ,  


   ψ  ( d  ( T x , T y )  )  ≤ κ ψ  (  M 2   ( x , y )  )  ,   








where   κ ∈ [ 0 , 1 )  ,   ψ : ( 0 , ∞ ) → ( 0 , ∞ )   is a nondecreasing and left-continuous function, and   M 2   is defined by (14). Then,   T   admits a unique fixed point.





Letting   ϕ ( s ) = ψ ( s ) − τ   in Theorem 8, we obtain an improvement of Theorem 3.1 in [12].



Corollary 3.

Let   ( X , d )   be a complete metric space and a mapping   T : X → X   such that there exist   τ > 0   and a nondecreasing and left-continuous function   ψ : ( 0 , ∞ ) → R   such that for all   x , y ∈ X   if   max  d ( x , T y ) , d ( T x , y )  ≠ 0  , then   d ( x , y ) > 0  :


   τ + ψ  ( d  ( T x , T y )  )  ≤ ψ    d ( x , T x ) d ( x , T y ) + d ( y , T y ) ( d ( y , T x ) )   max  d ( x , T y ) , d ( y , T x )       



(33)




and if   max  d ( x , T y ) , d ( T x , y )  ≠ 0  , then   d ( x , y ) = 0 .   Then,   T   has a unique fixed point.






3. Conclusions


In this paper, we were interested in finding some conditions on the functions  ψ  and  ϕ  that guarantee that T has a unique fixed point in terms of rational expression. Our main results offered improvements to known results by applying weaker conditions on the self-map of a complete metric space. Here we mentioned just one corollary for each type of   ( ψ , ϕ )  -rational contraction by choosing different functions  ψ  and  ϕ , but it is clear that many similar consequences can be listed, consequences that actually represent independent results.
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