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Abstract: Diagnosis is one of the most important processes in the medical field. Since the knowledge
domains of clinical specialties are expanding rapidly in terms of complexity and volume of data,
clinicians have, in many cases, difficulties to make an accurate diagnosis. Therefore, intelligent and
quantitative support for diagnostic tasks can be effectively exploited for improving the effectiveness
of the process and reduce misdiagnosis. In this respect, Multi-Classifier Systems represent one of
the most promising approaches within Machine Learning methodologies. This paper proposes a
Multi-Classifier Systems framework for supporting diagnostic activities with the aim of improving
diagnostic accuracy. The framework uses and combines several classification algorithms by
dynamically selecting the most competent classifier according to the test sample and its location in the
feature space. Here, we extend our previous research. The new experimental results, compared with
several multi classifier techniques, based on dynamic classifier selection, on classification datasets,
show that the performance of the proposed framework exceeds the state-of-the-art dynamic classifier
selection techniques.

Keywords: Multi-Classifier Systems; dynamic classifier selection; machine learning; Clinical Decision
Support Systems; Diagnostic Processes

1. Introduction

The diagnosis process has a remarkable impact within the medical sector, due to the wide scope
and complexity of clinical knowledge domains. In general, diagnosis is a dynamic process in which
clinicians have to process various types of data, e.g., signs and symptoms, vital parameters that vary
over time, biomedical and clinical data, results of instrumental and laboratory tests, results of imaging
devices, in order to accurately detect a specific disease. Since the amount of data and information to be
processed is typically rather high, computerized systems based on Machine Learning (ML) classification
techniques can be effectively exploited for improving the effectiveness of diagnosis processes and
reduce misdiagnosis. With ML, the diagnostic process (basically a classification task) is represented
and analysed on the basis of retrospective observed data by exploiting an inductive approach.

Generally speaking, classification is the process of predicting the category of given data points.
A classifier is a function that can perform classification task.

In detail, let D = {x1, x2, . . . , xn} be a dataset with n instances denoted by xi, i = 1, 2, . . . , n.
Each instance xi = {a1, a2, . . . , am, yk} consists of m attributes and a class label yk from a finite set of
disjoint labels y = {y1, y2, . . . , yk}. Let x∗i be a test instance; a classifier returns the class label predicted
for x∗i .

A Multi-Classifier System (MCS) is a system that uses different classifiers with the aim to obtain
better results in a classification task by exploiting the single classifier competences [1,2].
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The development of an MCS involves three phases: generation, selection and integration. In the
generation phase, a pool of several classifiers, which are called base classifiers, is trained using a
training set. The classifiers in the pool must be characterized by different performance, since it does not
make sense to combine classifiers that provide the same accuracy in the prediction. Different strategies
have been proposed in the literature to generate a diverse pool of classifiers: classifier of different
types, different architectures, different features, different training sets, different parameters for each
classifier [3]. In the selection phase one or a subset of the base classifiers is selected based on an
appropriate selection criterion. Dynamic Ensemble Selection (DES) techniques select more classifiers
for the classification of each test instance [4,5] whereas Dynamic Classifier Selection (DCS) techniques
select a single classifier [2]. Finally, in the integration phase a decision is made based on the predictions
of the selected classifiers.

Two approaches of classifier selections have been proposed in the literature: static and dynamic [6].
MCS based on a static classifiers selection exploits the same classifier to classify any test instances.
MCS based on dynamic selection instead, selects a specific classifier to classify each test instance, due to
the assumption that each base classifier is an expert in a different local region. The local region consists
of labelled instances located near to a given test instance and the most appropriate classifier in the local
region is selected according to a given competence criterion. The key issues in Dynamic Selection (DS)
are (1) how to define the local region and (2) how to estimate the competence of the base classifiers.

In many DS approaches, the local region is constructed using the k-Nearest Neighbour (k-NN)
algorithm where k is a static parameter [7–10] defined through computational experiments. With a
static value of k the local region has the same size for each test instance. Several versions of the
k-NN algorithm have been proposed to improve the construction of these regions where k is a static
parameter for the algorithm as reported in the survey presented in [3]. Some works proposed the use
of adaptive region that changes according to the test instance. In [11] the k parameter of the k-NN
algorithm is selected according to the output of the classifier. For a given classifier Cj and a given
k, if there is no instance in the local region belonging to the same class assigned to the test instance,
the value of k is increased.

However, these approaches does not take into account where the instances are located and
therefore how far they are from the test instance.

Several criteria are used for estimating the competence level of the base classifiers mainly based
on accuracy [9], ranking of classifiers [12], probabilistic information [7], classifier’s behaviour [8],
oracle-based measures [13], diversity measures [14], ambiguity-based measures [15].

In this paper, we propose a general MCS framework based on DCS in order to improve the
accuracy of diagnostic process. The novelty of the proposed approach is based on: (1) the local
region of each test instance is defined dynamically; (2) the most competent classifier is selected by a
procedure based on performance indexes evaluated on both local region and a specific set of instances.
We further extend the preliminary results appeared in [16]. By computational experiments carried out
on clinical datasets, we compared the proposed MCS framework with state-of-the-art DCS techniques,
namely Overall Local Accuracy (OLA) and Local Class Accuracy (LCA) [3,6,9]. A statistical analysis
was performed using the Wilcoxon signed rank test.

Among the DCS techniques, OLA and LCA display the best performances [3]. OLA evaluates
the accuracy of each base classifier as the percentage of correct labelled instances in the local region.
The classifier that gets the highest accuracy is considered the most competent. LCA evaluates the
accuracy of each base classifier of a single class. In this case, the accuracy is defined as the percentage
of correct labelled instances in the local region belonging to the class assigned by the classifier to
a given test instance. Even in this case, the classifier that gets the highest accuracy is considered the
most competent. In both cases the local region is defined during the testing phase by the static k-NN
algorithm and only one classifier is selected to perform the classification task.

The paper is organized as follows. In Section 2, we describe and motivate the proposed MCS
framework. Experimental results and relevant discussion are detailed in Section 3, by considering
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representative clinical diagnosis decision-making problems. Some conclusions are sketched in
Section 4.

2. Proposed MCS Framework

The proposed MCS framework follows the general pattern of a supervised classification process
(i.e., the class label of data is known).

A dataset is split into three disjunctive sets, i.e., training set, validation set, and test set, which are
denoted by TR, VS, and TS, respectively. The training set is used to train classifiers; the validation set
is used to estimate classifiers’ ability to recognize new instances; finally, a test set contains instances
that have to be labelled by the trained classifiers and it is used to estimate the classifier accuracy.
Let BC = {c1, c2, . . . , ck}, be a pool of k base classifiers, which are denoted by cj, j = 1, . . . , k. Let x∗i , be
a test instance. The MCS framework consists of three main phases:

Generation The pool of base classifiers BC is generated and they are thus trained on instances of TR.
As we show in Section 3, a pool contains diverse classification ML algorithms in order to provide
a broad coverage of problem space variability and improve thus performance

Definition of the local region The local region LRx∗i
of a test instance x∗i ∈ TS is constructed as set of

neighbours in VS of x∗i . An adaptive k-NN algorithm selects a given number of neighbours in
VS by considering a hypersphere centered in x∗i and with radius R that is defined in Equation (1).
The Euclidean norm is used for the distance between x∗i and instances in VS.

R =

{
Rmax−Rmin

2 i f Rmax > 3Rmin

Rmin otherwise
(1)

where Rmax and Rmin are the maximum and the minimum distance, respectively, between x∗i and
all other instances in the validation set.

The radius R of the hypersphere is set to Rmax−Rmin
2 if Rmax−Rmin

2 > Rmin, from which Rmax > 3Rmin.

Therefore the radius of the hypersphere is set as Rmax−Rmin
2 i f Rmax > 3Rmin otherwise, the radius

would be less than Rmin and the local region would be empty. For this reason we set R = Rmin
when the condition is not verified, that is, when Rmax ≤ 3Rmin.

Depending on Equation (1), the radius of the smallest hypersphere is Rmin whereas that one of
the biggest hypersphere is Rmax

2 , which occurs when Rmin is close to zero.

The idea behind the adaptive k-NN algorithm is to consider only instances that are really close
to x∗i in the original features space. If R = Rmin, the local region could contain only one instance.
When the local region is made up of only one instance, x∗i can be found in a low-density region.

Dynamic Selection The most competent classifier C∗ for each x∗i ∈ TS is selected. This phase selects
locally the most competent classifier for a given test instance x∗i . The overall selection process is
based on performance indexes evaluated both on a local region and a specific set of instances.
The selection procedure consists of two stages: Firstly, classifiers’ competence is evaluated on
local region LRx∗i

. In order to select the most competent classifier, those ones that misclassify
instances in LRx∗i

are removed. The subset of remaining classifiers is denoted by SBC ⊆ BC.
Then, the classifiers are assessed using different data sets according to the current situation.

Figure 1 show the steps of the selection phase based on the cardinality of the set SBC. The three
possible cases are detailed in the following.

case 1 : |SBC| = ∅, that is, all base classifiers misclassify instances in LRx∗i
. The most competent

classifier is thus selected among the base classifiers in the original pool BC.
case 2 : |SBC| = 1, only one base classifier remains in SBC and it is used to classify x∗i .
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case 3 : |SBC| > 1, that is, more than one base classifier remain and the most competent classifier
is selected among them.

Figure 1. Main steps of the selection phase.

Case 2 is the simplest because there is only one classifier. For Case 1 and Case 3, it is necessary to
choose a competence criterion and a strategy to resolve the indeterminacy, as described in the
following. We design two criteria based on recall and accuracy, respectively, and two strategies
based on training and validation results, and only on validation results, respectively. We remind
that Recall is the percentage of instances belonging to a given class and correctly classified;
Accuracy is defined as the percentage of instances correctly classified.

Criterion based on recall Let yk, be the class of majority instances in LRx∗i
. The recall of the

classifiers is evaluated on instances of the class yk; thus, classifier with the highest recall is
selected

Criterion based on accuracy The classifier with the highest accuracy is selected. In this case,
we do not consider a specific class

Strategy 1 (validation and training results): one of the two above defined criteria is chosen.
The criterion is thus firstly applied to evaluate classifiers on the validation set. If there is
indeterminacy because more classifiers have the same performance index value, the criterion
is applied on the training set. More specifically, the criterion is applied on the training set
only for the classifiers with the same performance. If there is indeterminacy again, the mean
absolute error (MAE) on the training set is evaluated and the classifier with the minimum
MAE is selected. The MAE is calculated on all training instances.

Strategy 2 (validation results): one of the two above defined criteria is chosen. The criterion is
firstly applied to evaluate classifiers on the validation set. If there is indeterminacy, the MAE
of each classifier is evaluated on the validation set and the classifier with the minimum
MAE is selected. In this case, the MAE is computed on all VS instances

An overview of the MCS framework is depicted in Figure 2.
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Figure 2. Overview of the proposed Multi-Classifier System (MCS) framework.

3. Computational Experiments

In order to evaluate the proposed MCS framework, we designed three algorithms. Algorithm 1 is
based on Strategy 1; Algorithm 2 is based on Strategy 2, and Algorithm 3 is a hybrid version of the two
previous ones. Observe that Algorithm 3 is reduced to Algorithm 1 when the removal step leads to
Case 1, and to Algorithm 2 when the removal step leads to Case 3.

3.1. Datasets Description

We tested the three algorithms with both selection strategies on six datasets available at the
UCI Machine Learning Repository [17]. These datasets have been widely used for academic research
and are related to some important diagnostic problems.

Cleveland database is used to diagnoses the presence of heart disease. Wisconsin Diagnosis
Breast Cancer (WDBC), Wisconsin Breast Cancer (WBC) and Mammographic mass datasets are used
to diagnose the severity (benign or malignant) of a breast mass. Diabetic retinopathy dataset is used
to predict whether a diagnostic image contains signs of diabetic retinopathy. Dermatology dataset
is used for differential diagnosis of erythemato-squamous diseases: psoriasis, seboreic dermatitis,
lichen planus, pityriasis rosea, cronic dermatitis, and pityriasis rubra pilaris. Table 1 summarizes
the main characteristics of these datasets in terms of number of instances, number of attributes and
number of classes.

Table 1. Description of the used datasets.

Dataset Num. Instances Num. Attributes Num. Classes

Cleveland 303 14 2
WDBC 569 31 2
Dermatology 366 35 6
Diabetic retinopathy 1151 20 2
WBC 699 10 2
Mammographic mass 961 6 2

3.2. Pool of Base Classifiers

Among the several machine learning algorithms, we choose Support Vector Machines (SVM) [18],
Multi-Layer Perceptron (MLP) [19], Naive Bayes (NB) [20], Decision Tree (DT) [21], and k-NN [22],
as they are widely used in different classification problems. For each classifier, we used the related
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algorithm implemented in Weka [23]. For this reason, in the next tables we refer to SVM as SMO
(Sequential Minimal Optimization), and to k-NN as Ibk (Instance-based method with parameter k).

For SVM, we used polynomial kernel and Gaussian kernel. The MLP contains one input layer,
one hidden layer, and one output layer; the number of neurons in each layer is specified by I, H and O,
respectively. All of the nodes use a standard sigmoid activation function. The MLP was trained using
error back-propagation algorithm, with a learning rate L, a momentum M, a training time (epochs)
of 500, and a back size of 100. Moreover, for DT we used the J48 classifier that implements the C4.5
algorithm. The tuning of specific classifier parameters was carried out on each dataset in order to find
the best parameter values. These used best values are in Table 2.

Table 2. Parameter tuning.

Dataset SMO MLP Naive Bayes J48 IBk

C E G L M I H O K D C N K A Dist

Cleveland 1 - 0.08 1.0 0.6 13 7 2 - set 0.1 - 6 Lin Euc
WDBC 5 - 0.08 0.8 0.8 30 17 2 - - - 4 8 Lin Euc
Dermatology 3.5 1 - 0.2 0.1 34 20 2 - - - 3 3 Lin Euc
Diabetic retinopathy 1 1 - 0.3 0.2 19 10 2 - set 0.15 - 7 Lin Man
WBC 1 - 0.5 0.1 0.1 9 5 2 set - 0.1 - 5 Lin Man
Mammographic mass 10 2 - 0.5 0.4 5 3 2 - set - 3 9 Lin Man

Legend: SMO. C: regularization parameter, E: parameter for polynomial kernel, G: gamma parameter
for Gaussian kernel. MLP. L: learning rate, M: momentum rate, I: Number of neurons in Input Layers,
H: Number of neurons in Hidden Layer, O: Number of neurons in Output Layer. Naive Bayes.
K: kernel density estimator, D: supervised discretization to process numeric attributes. “set” marker specifies
if the parameter is used or not. J48. C: pruning confidence, N: number of folds for reduced error pruning.
Ibk. K: number of nearest neighbours, A: nearest neighbour search algorithm, Dist: distance measure
(Euc = Euclidean; Man = Manhattan).

As the performance of the proposed framework depends on the base classifiers in the pool,
we have combined and then tested pools with two, three and four base classifiers. The overall number
of pools is 25. The proposed MCS framework was implemented in Java.

3.3. Performance Evaluation

The results that we details in the following tables were found by employing the stratified ten-fold
cross validation (10-fold CV) method . A dataset is randomly partitioned into ten subsets and then one
subset is selected for validation and testing and the remaining nine subsets for training. The whole
process is repeated ten times to avoid the possible bias during dataset partitioning for cross-validation.
The final results in terms of mean classification accuracy were computed by averaging the ten results.
The classification accuracy is computed as reported in Equation (2), where Ncorr is the number of
instances correctly classified by a given approach and N is the total number of instances.

Accuracy =
Ncorr

N
× 100 (2)

Each dataset was then divided by a stratified 10-fold CV (1-fold for testing and validation,
9-fold for training) followed by a stratified 2-fold CV (the test fold was divided into 1 fold for validation
and 1 fold for test). All data were normalized and no attribute selection was performed.

The proposed MCS approaches are compared with OLA and LCA techniques. For a fair
comparison, we used local regions as defined in Section 2 even for these two techniques.

3.4. Results and Discussion

The aim of the carried out computational experiments is to evaluate the proposed MCS framework
and assess whether the proposed approaches improve the classification task compared to other
techniques in the literature. To this end, we have considered the three algorithms above introduced,
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namely, Algorithm 1, Algorithm 2 and Algorithm 3. We discuss then the gain in terms of accuracy of
these approaches.

Tables A1–A6 list the average accuracy evaluated by a 10-fold CV on the six datasets for every
algorithm. There are thus 25 × 9 accuracy values in each table. The relevant implementation for each
algorithm is even specified, that is, if the selection criterion is based on recall (CR) or accuracy (CA).
The tables also show the accuracy of OLA and LCA techniques. The best results for every pool of base
classifiers are in bold in each row and standard deviation is shown in parenthesis. The algorithms that
exceed OLA and LCA appears with a “*” marker.

We can observe that the performance of a pool is problem dependent and that our approaches
outperform OLA and LCA techniques in most cases. On Cleveland dataset, for instance, the accuracy
of our approaches is better than that one found with OLA and LCA in 15 pools, and that Algorithm 1
and Algorithm 3 achieve the best performance with a mean accuracy of 85.15 %. On WDBC they exceed
the OLA and LCA techniques in the majority of pools (21 pools out of 25). On the Dermatology dataset,
the highest classification accuracy is 99.18 % that is achieved by several pools and the classification
accuracy of both OLA and LCA techniques in 15 pools and with Algorithm 2 and Algorithm 3.
These two approaches have the same performance on this dataset. We investigated this aspect and we
found that the removal step produced Case 3 always (see Section 2).

Table 3 reports the best accuracy value per each dataset and specifies the corresponding pool by
which this value was found.

Table 3. Best accuracy values.

Dataset Best Accuracy Pools

Cleveland 85.48 SMO-IbK-NB
WDBC 98.24 NB-SMO (MLP-SMO IbK-SMO SMO-IbK-MLP

SMO-MLP-NB SMO-Ibk-NB-MLP)
Dermatology 99.18 MLP-NB (SMO-MLP-NB J48-NB-IbK

MLP-NB-IbK SMO-Ibk-NB-MLP )
Diabetic 72.11 MLP-IbK
WBC 97.71 SMO-IbK-NB
Mammographic mass 82.73 NB-Ibk

For WDBC and Dermatology dataset there is a set of pools that found the same best value,
i.e., six pools on WDBC dataset, and five pools on Dermatology dataset. The accuracy values found by
the five pools on Dermatology dataset with all algorithms are compared in Figure 3.

Figure 3. Comparison of the best pools on Dermatology dataset.

More details can be found in Tables A1–A6, where the best couple pool-algorithm is in grey colour.
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In order to compare the algorithm among them, we compute the average mean accuracy on the
six datasets for every algorithm and evaluated on all pools, as shown in Table 4. The best results for
each dataset are highlighted in bold. Based on these results, we can see that the proposed algorithms
achieved the best average accuracy on all datasets.

The computational experiments show that the proposed approaches are more inclined to select
the best classifier in the pool compared to OLA and LCA techniques when the same technique is used
to generate the local region. Under this respect, we remark that considering the same local region,
the proposed approaches outperform the OLA and LCA techniques in many cases in all datasets.

3.5. Statistical Analysis

To compare performances of the pools we perform a statistical comparison [24]. More specifically,
we compare the pools accuracies using the Wilcoxon signed-ranks test [25] with α = 0.05. We are trying
to reject the null-hypothesis that both pools of base classifiers perform equally well. To simplify the
interpretation of the results, we refer to a given pool by its position as they are listed in the first column
of the tables of results, in the Appendix section. Moreover, we choose to analyse the performance of
the pool with high accuracy and lower number of base classifiers. This statistical analysis has been
carried out per each dataset and it is detailed and summarised in Table 5, where we report per each
dataset the chosen pool of base classifier, the p-value range that attests a significant difference with all
other pools except to those listed in the last column of the table. Analysing, for instance, the accuracy
values related to the Cleveland dataset, we found that the pool IbK-SMO, which has the best accuracy
value if we do not consider SMO-Ibk-NB with OLA technique (i.e., pool 11), is significantly better
than all other pools of base classifiers except to the pools {1, 10, 11, 12} because there are no significant
differences. The found p-value range of the pools with significant difference is 0.007–0.042. A similar
significance have the other data reported in Table 5.

For a better comparison of the proposed algorithms with OLA and LCA techniques, we conducted
a pairwise test using the Wilcoxon Sign Test with a significance level of with α = 0.05. We compare the
classification accuracies of the pools for every method per each dataset. The results of the performed
Wilcoxon Sign test can be summarised as follows:

• Algorithms vs. LCA

1. All the proposed algorithms significantly exceed LCA on Dermatology, Diabetic retinopathy
and WDBC datasets with a p-value between 0.0002 and 0.01935.

2. Algorithm 2 (CR and CA versions) significantly outperforms LCA on WBC dataset with a
p-value of 0.01168 and 0.00196, respectively

• Algorithms vs. OLA

1. The proposed algorithms are statistically equivalent to OLA on Cleveland, WBC and
Dermatology datasets

2. Algorithm 1-CA and Algorithm 3-CA instead, significantly exceed OLA on Diabetic
retinopathy dataset with a p-value of 0.04218 and 0.00120 respectively. Algorithm 2-CR
instead, outperforms significantly OLA on Mammographic mass dataset with a p-value
of 0.00112

3. All proposed algorithms significantly outperform OLA on WDBC dataset

This suggests that the proposed approaches with respect to LCA guarantee in most cases the
choosing of the correct classifier on the six considered datasets.
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Table 4. Mean classification accuracy and standard deviation for the all DCS techniques on the
used datasets.

Dataset
Algorithm 1 Algorithm 2 Algorithm 3 OLA LCA

CR CA CR CA CR CA

Cleveland 82.5 (1.54) 82.56 (1.07) 82.63 (1.04) 82.83 (0.94) 82.72 (0.94) 83.02 (1.04) 82.62 (1.63) 82.69 (1.38)
WDBC 97.14 (0.70) 97.14 (0.68) 97.14 (0.88) 97.18 (0.86) 97.16 (0.97) 97.24 (0.89) 96.65 (0.97) 96.65 (0.97)
Dermatology 98.21 (0.43) 97.95 (0.54) 97.9 (1.04) 97.83 (1.02) 97.9 (1.04) 97.83 (1.02) 98.14 (0.57) 97.15 (0.51)
Diabetic retinopathy 66.94 (2.21) 68.57 (2.74) 66.92 (2.20) 68.5 (2.70) 67.08 (1.86) 68.8 (2.76) 68.15 (2.94) 65.21 (2.32)
WBC 96.73 (0.29) 96.84 (0.56) 96.85 (0.39) 97.05 (0.52) 97.06 (0.28) 97.07 (0.42) 97.02 (0.45) 96.7 (0.30)
Mammographic mass 82.01 (0.39) 81.1 (0.47) 82.02 (0.41) 81.21 (0.36) 81.65 (0.45) 81.08 (0.47) 81.62 (0.34) 81.88 (0.26)

Table 5. Wilcoxon test on pools.

Dataset Pool p-Value Pools with no Significant Difference

Cleveland 4 (IbK-SMO) 0.007–0.042 1, 10, 11, 12
WDBC 1 (NB-SMO) 0.010–0.041 2,3,4,7,11,12,13,14,16,20,21,23,24
Dermatology 5 (MLP-NB) 0.012–0.049 7,16,17,20,21,25
Diabetic 7 (MLP-Ibk) 0.007–0.014 2,5,6,12,14,16,17,18,23,24
WBC 10 (NB-Ibk) 0.014–0.035 1,5,8,15,16,19,20,21,22,25
Mammographic mass 10 (NB-Ibk) 0.007-0.046 1,5,6,11,16,21

4. Conclusions

In this paper, we proposed a MCS framework based on a dynamic classifier selection technique,
whose novelty lies in its use on a local region dynamically computed for each test instance
and a selection criterion based on both misclassified instances and information about classifier’s
performance in a two-step process. In order to select the best classifier, we define three different
algorithms depending on the set of instances used for compute the classifier’s performance:
Algorithm 1 uses both classifier results on training and validation sets; Algorithm 2 uses only validation
results; Algorithm 3 is a hybrid of the previous ones. An experimental protocol based on six datasets
was performed. The computational experiments carried out with several pools of base classifiers
indicate that the proposed MCS framework allows an improvement of the classification accuracy with
respect to other MCS approaches.

Future works could follow two main directions. First, we could look at tuning the pools of
base classifiers by evaluating different similarity metrics and different optimization parameters.
Secondly, we could investigate other ML measures in order to better describe a local region.
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Appendix A. Tables of Results

Table A1. Classification accuracy (%) on Cleveland dataset.

Pool of Base
Classifiers

Algorithm 1 Algorithm 2 Algorithm 3
OLA LCA

CR CA CR CA CR CA

1 NB-SMO 83.17 (6.82) 83.5 (6.85) 83.17 (6.37) 83.5 (6.85) 83.17 (6.56) 83.5 (6.9) 84.16 (6.54) 84.49 (5.82)
2 MLP-SMO 82.51 (6.11) 83.17 (5.69) * 82.51 (5.88) 83.5 (5.47)* 83.17 (6.11) * 83.5 (5.92)* 82.18 (5.68) 82.84 (5.35)
3 J48-SMO 80.2 (6.61) 81.52 (6.78) * 83.17 (6.24)* 82.84 (6.79)* 83.83 (6.55) * 82.84 (6.86)* 79.87 (5.76) 80.53 (5.1)
4 Ibk-SMO 85.15 (6.38) * 84.49 (6.53) * 84.82 (5.91) * 84.82 (6.53) * 84.49 (6.23) * 85.15 (6.55) * 83.17 (5.43) 83.5 (4.97)
5 MLP-NB 81.52 (6.29) 81.52 (6.86) 81.52 (6.08) 82.18 (6.86) 82.18 (6.31) 82.51 (6.89) 82.18 (5.45) 83.17 (5.07)
6 MLP-J48 81.19 (6.32) * 80.53 (6.93) * 81.19 (6.1) * 80.53 (6.94) * 80.86 (6.37) * 80.53 (6.97) * 78.88 (5.81) 79.21 (5.43)
7 MLP-Ibk 83.83 (6.15) * 83.5 (6.6) * 83.5 (5.97) * 83.83 (6.66) * 83.5 (6.18) * 83.83 (6.69) * 81.19 (5.68) 81.85 (5.43)
8 J48-NB 80.2 (6.21) 80.86 (6.7) 81.85 (6) * 81.85 (6.68) * 82.51 (6.19) * 81.85 (6.66) * 80.2 (5.85) 81.52 (5.52)
9 J48-Ibk 82.51 (6.35) * 82.18 (6.76) * 82.51 (6.22) * 81.85 (6.72) * 82.51 (6.39) * 81.85 (6.71) * 79.54 (5.97) 79.87 (5.65)
10 NB-Ibk 83.17 (6.37) 83.5 (6.71) 83.83 (6.26) 83.5 (6.73) 84.16 (6.47) 84.49 (6.72) 84.49 (5.9) 84.16 (5.63)
11 SMO-Ibk-NB 83.83 (6.54) 83.5 (6.25) 83.17 (6.01) 83.83 (6.67) 82.84 (6.26) 84.16 (6.83) 85.48 (5.95) 84.82 (5.66)
12 SMO-Ibk-MLP 85.15 (6.1) * 84.16 (5.9) * 83.83 (5.67) 84.16 (6.16) * 83.5 (6.22) 84.16 (6.6) * 83.83 (5.92) 83.83 (5.69)
13 SMO-Ibk-J48 83.17 (6.52) 83.17 (6.18) 83.17 (5.99) 83.5 (6.62) 82.84 (6.35) 83.83 (6.81) * 83.5 (5.94) 83.5 (5.69)
14 SMO-J48-MLP 81.52 (6.63) 82.84 (6.49) 81.52 (6.27) 82.18 (6.72) 81.85 (6.74) 82.51 (7.15) 83.17 (6.01) 83.17 (5.71)
15 SMO-J48-NB 79.54 (6.37) 80.2 (6.08) 81.52 (5.79) 82.51 (6.42) 82.18 (6.33) 82.51 (6.68) 82.84 (6.03) 83.5 (5.76)
16 SMO-MLP-NB 81.52 (5.95) 82.18 (6.18) 80.86 (6.01) 82.51 (6.5) 81.52 (6.7) 82.51 (6.92) 83.83 (6.01) 83.83 (5.77)
17 J48-MLP-NB 81.52 (6.6) 81.85 (6.19) 83.17 (6.13) 81.52 (6.62) 83.17 (6.26) 81.52 (6.84) 83.5 (6.09) 83.17 (5.82)
18 J48-MLP-Ibk 83.17 (6.51) 82.51 (6.33) 82.51 (6.08) 82.51 (6.78) 82.51 (6.21) 82.51 (6.98) 82.18 (6.09) 82.51 (5.81)
19 J48-NB-Ibk 81.85 (6.65) 82.51 (6.5) 83.5 (6.12) * 82.51 (6.8) 83.83 (6.23) * 83.5 (6.97) * 83.17 (6.19) 82.51 (5.94)
20 MLP-NB-Ibk 83.83 (6.53) 82.84 (6.33) 83.5 (6.03) 83.17 (6.76) 83.17 (6.15) 83.83 (6.94) 84.16 (6.15) 83.17 (5.91)
21 SMO-Ibk-NB-MLP 84.49 (6.42) 83.17 (6.14) 81.52 (5.84) 83.17 (6.22) 80.86 (6.69) 83.17 (6.81) 83.83 (6.17) 83.83 (5.9)
22 SMO-Ibk-NB-J48 81.85 (6.7) 82.84 (6.05) 82.18 (6.02) 83.17 (6.41) 82.18 (6.68) 83.5 (6.84) * 83.17 (6.18) 82.51 (5.91)
23 SMO-J48-MLP-NB 80.53 (6.01) 81.85 (5.71) 80.86 (6.3) 82.18 (5.69) 81.52 (7.03) 82.18 (6.6) 82.51 (6.19) 82.18 (5.93)
24 SMO-J48-MLP-Ibk 83.83 (6.56) 83.17 (6.29)* 83.17 (6.13) * 83.17 (6.23) * 82.84 (6.75) * 83.17 (6.88) * 82.51 (6.19) 82.18 (5.95)
25 J48-MLP-NB-Ibk 83.17 (6.87) * 82.51 (6.04) * 83.17 (6.1) * 82.18 (6.46) * 82.84 (6.61) * 82.51 (6.92) * 81.85 (6.22) 81.52 (5.95)
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Table A2. Classification accuracy (%) WDBC Dataset.

Pool of Base
Classifiers

Algorithm 1 Algorithm 2 Algorithm 3
OLA LCA

CR CA CR CA CR CA

1 NB-SMO 98.24 (1.48) * 98.24 (1.82) * 98.24 (1.87) * 98.24 (1.87) * 98.24 (1.85) * 98.24 (1.85) * 96.49 (2.6) 96.13 (2.46)
2 MLP-SMO 97.36 (1.17) 97.36 (1.17) 98.07 (1.46) * 98.07 (1.46) * 98.24 (1.36) * 98.24 (1.36) * 97.54 (2.18) 97.36 (2.14)
3 J48-SMO 97.89 (1.5) * 97.54 (1.96) * 97.54 (2.07) * 97.54 (2.07) * 97.54 (2.05) * 97.54 (2.05) * 96.66 (2.35) 96.66 (2.19)
4 Ibk-SMO 97.54 (1.66) 97.54 (1.9) 97.89 (1.84) 97.72 (1.89) 98.24 (1.75) * 98.07 (1.81) * 97.72 (2.31) 97.72 (2.13)
5 MLP-NB 97.36 (1.73) * 97.36 (1.88) * 97.54 (1.88) * 97.54 (1.91) * 97.54 (1.84) * 97.54 (1.87) * 94.9 (2.58) 94.9 (2.35)
6 MLP-J48 96.84 (1.82) * 96.84 (1.99) * 96.84 (1.96) * 96.84 (2) * 96.84 (1.91) * 96.84 (1.95) * 95.25 (2.55) 95.08 (2.43)
7 MLP-Ibk 97.54 (1.79) * 97.36 (1.94) * 97.36 (1.82) * 97.01 (1.91) 97.19 (1.76) 97.01 (1.85) 97.19 (2.49) 96.66 (2.37)
8 J48-NB 94.38 (2.36) * 94.38 (2.43) * 94.9 (2.32) * 94.38 (2.47) * 94.55 (2.29) * 94.55 (2.43) * 94.2 (2.69) 94.2 (2.61)
9 J48-Ibk 97.19 (2.39) * 97.01 (2.48) * 95.96 (2.4) 95.96 (2.53) 95.96 (2.39) 95.96 (2.5) 96.13 (2.7) 96.49 (2.58)

10 NB-Ibk 97.19 (2.43) * 97.72 (2.44) * 97.01 (2.44) * 97.01 (2.55) * 97.01 (2.46) * 97.01 (2.52) * 95.78 (2.74) 95.61 (2.61)
11 SMO-Ibk-NB 97.54 (2.09) 97.54 (2.21) 97.54 (2.36) 97.72 (2.22) 97.89 (2.35) * 98.07 (2.14) * 97.72 (2.7) 97.19 (2.59)
12 SMO-Ibk-MLP 97.54 (1.9) 97.54 (1.9) 98.07 (1.89) * 97.72 (2.02) 98.24 (1.87) * 98.07 (1.93) * 97.72 (2.7) 97.72 (2.56)
13 SMO-Ibk-J48 97.01 (2.08) 97.01 (2.22) 97.36 (2.38) 97.19 (2.27) 97.54 (2.37) 97.36 (2.22) 97.54 (2.49) 97.89 (2.53)
14 SMO-J48-MLP 96.84 (2.19) 96.84 (2.19) 97.54 (2.51) * 97.54 (2.51) * 97.54 (2.51) * 97.54 (2.51) * 97.19 (2.63) 97.19 (2.48)
15 SMO-J48-NB 97.72 (1.88) * 97.54 (2.07) * 96.66 (2.34) 97.54 (2.16) * 96.66 (2.34) 97.54 (2.09) * 96.66 (2.63) 96.13 (2.5)
16 SMO-MLP-NB 97.36 (1.78) 97.36 (1.78) 98.07 (2.07) * 98.07 (2.07) * 98.24 (2.07) * 98.24 (2.05) * 97.54 (2.58) 97.36 (2.48)
17 J48-MLP-NB 96.84 (2.11) * 96.84 (2.21) * 95.61 (2.7) 97.01 (2.25) * 95.61 (2.79) 97.01 (2.19) * 95.43 (2.62) 95.61 (2.48)
18 J48-MLP-Ibk 96.84 (2.21) 96.84 (2.3) 96.66 (2.65) 96.49 (2.29) 96.49 (2.73) 96.49 (2.25) 97.01 (2.59) 97.36 (2.45)
19 J48-NB-Ibk 96.66 (2.33) * 97.01 (2.35) * 95.78 (2.65) 95.61 (2.38) 95.78 (2.71) 95.61 (2.35) 96.31 (2.6) 96.13 (2.47)
20 MLP-NB-Ibk 97.54 (2.2) * 97.36 (2.29) 97.19 (2.6) 97.19 (2.25) 97.01 (2.66) 97.19 (2.2) 97.36 (2.57) 97.01 (2.46)
21 SMO-Ibk-NB-MLP 97.54 (2.41) * 97.54 (2.37) * 98.24 (2.23) * 98.07 (2.38) * 98.24 (2.23) * 98.07 (2.32) * 97.36 (2.55) 97.36 (2.45)
22 SMO-Ibk-NB-J48 97.01 (2.49) * 97.01 (2.47) * 97.01 (2.45) 97.36 (2.45) * 97.01 (2.44) * 97.36 (2.41) * 96.84 (2.57) 96.84 (2.45)
23 SMO-J48-MLP-NB 96.84 (2.19) 96.84 (2.19) 97.54 (2.51) * 97.54 (2.51) * 97.54 (2.51) * 97.54 (2.51) * 96.31 (2.58) 97.01 (2.45)
24 SMO-J48-MLP-Ibk 96.84 (2.52) 97.01 (2.47) 97.54 (2.51) 97.36 (2.57) 97.54 (2.51) 97.36 (2.57) 97.54 (2.56) 97.72 (2.43)
25 J48-MLP-NB-Ibk 96.84 (2.56) 96.84 (2.54) 96.31 (2.56) 96.66 (2.49) 96.31 (2.54) 96.66 (2.46) 95.96 (2.57) 96.84 (2.43)
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Table A3. Classification accuracy (%) on Dermatology dataset.

Pool of Base
Classifiers

Algorithm 1 Algorithm 2 Algorithm 3
OLA LCA

CR CA CR CA CR CA

1 NB-SMO 98.36 (2.49) * 98.09 (2.2) 98.09 (2.21) 97.81 (2.33) 98.09 (2.21) 97.81 (2.33) 98.09 (2.11) 97.27 (2.09)
2 MLP-SMO 98.36 (1.34) 98.36 (1.34) 98.36 (1.34) 98.36 (1.34) 98.36 (1.34) 98.36 (1.34) 98.36 (1.8) 97.27 (2)
3 J48-SMO 96.99 (2.87) 97.54 (2.24) * 95.9 (2.34) 95.63 (2.41) 95.9 (2.34) 95.63 (2.41) 96.99 (2.07) 96.17 (2.14)
4 Ibk-SMO 98.09 (2.4) 98.09 (2.18) 96.99 (2.14) 97.27 (2.27) 96.99 (2.31) 97.27 (2.27) 98.09 (2.08) 97.27 (2.13)
5 MLP-NB 98.36 (2.12) 98.36 (2) 99.18 (2.04) * 99.18 (2.19) * 99.18 (2.17) * 99.18 (2.19) * 98.36 (1.98) 97.81 (2.13)
6 MLP-J48 98.36 (2.24) * 98.09 (2.1) * 97.81 (2.05) * 97.54 (2.2) * 97.81 (2.2) * 97.54 (2.2) * 96.99 (1.95) 96.99 (2.1)
7 MLP-Ibk 98.36 (2.02) 98.36 (1.92) 98.63 (1.97) * 98.63 (2.12) * 98.63 (2.1) * 98.63 (2.12) * 98.36 (1.89) 98.09 (2.12)
8 J48-NB 98.63 (2.01) * 97.54 (2.03) 97.27 (2.1) 97.27 (2.21) 97.27 (2.2) 97.27 (2.21) 97.54 (1.9) 97.27 (2.21)
9 J48-Ibk 98.09 (2.06) * 96.45 (2.21) 95.9 (2.27) 95.9 (2.35) 95.9 (2.35) 95.9 (2.35) 96.99 (1.97) 95.63 (2.39)

10 NB-Ibk 96.99 (2.21) 96.72 (2.35) 97.54 (2.38) 97.54 (2.45) 97.54 (2.37) 97.54 (2.38) 97.27 (2.13) 97.54 (2.4)
11 SMO-Ibk-NB 98.36 (1.9) 98.09 (2.1) 97.54 (2.28) 97.81 (2.35) 97.54 (2.4) 97.81 (2.35) 98.36 (2.11) 97.27 (2.43)
12 SMO-Ibk-MLP 98.36 (1.32) 98.36 (1.49) 98.63 (1.53) * 98.63 (1.67) * 98.63 (1.53) * 98.63 (1.67) * 98.36 (2.1) 97.54 (2.42)
13 SMO-Ibk-J48 97.81 (1.99) 97.54 (2.1) 95.9 (2.36) 95.9 (2.4) 95.9 (2.36) 95.9 (2.4) 98.36 (2.13) 96.99 (2.43)
14 SMO-J48-MLP 98.36 (1.34) * 98.09 (1.74) 97.81 (1.63) 97.54 (1.9) 97.81 (1.63) 97.54 (1.9) 98.09 (2.12) 97.27 (2.45)
15 SMO-J48-NB 98.09 (1.67) 97.81 (1.86) 97.27 (1.99) 97.27 (2.06) 97.27 (1.99) 97.27 (2.06) 98.63 (2.11) 97.27 (2.45)
16 SMO-MLP-NB 98.09 (1.3) 98.36 (1.56) 99.18 (1.6) * 99.18 (1.8) * 99.18 (1.6) * 99.18 (1.8) * 98.63 (2.1) 97.54 (2.44)
17 J48-MLP-NB 98.63 (1.84) 98.36 (2.01) 98.91 (2.2) 98.63 (2.3) 98.91 (2.31) 98.63 (2.3) 98.91 (2.08) 97.27 (2.42)
18 J48-MLP-Ibk 98.09 (1.77) 98.09 (1.98) 98.09 (2.15) 97.81 (2.27) 98.09 (2.25) 97.81 (2.27) 98.36 (2.06) 96.99 (2.41)
19 J48-NB-Ibk 98.63 (1.75) 96.99 (2.03) 96.99 (2.25) 97.27 (2.29) 96.99 (2.33) 97.27 (2.29) 99.18 (2.06) 96.99 (2.44)
20 MLP-NB-Ibk 98.63 (1.74) * 98.36 (1.92) 99.18 (2.1) * 99.18 (2.22) * 99.18 (2.2) * 99.18 (2.22) * 98.36 (2.05) 97.54 (2.45)
21 SMO-Ibk-NB-MLP 98.09 (1.32) 98.36 (1.49) 99.18 (1.53) * 99.18 (1.82) * 99.18 (1.53) * 99.18 (1.82) * 98.63 (2.04) 97.54 (2.44)
22 SMO-Ibk-NB-J48 98.09 (1.67) 97.81 (1.86) 97.27 (2.01) 97.27 (2.16) 97.27 (2.01) 97.27 (2.16) 98.09 (2.06) 96.45 (2.47)
23 SMO-J48-MLP-NB 98.36 (1.34) * 98.36 (1.34) * 98.91 (1.34) * 98.63 (1.82)* 98.91 (1.34) * 98.63 (1.82) * 98.09 (2.08) 96.99 (2.48)
24 SMO-J48-MLP-Ibk 98.36 (1.34) * 98.09 (1.56) 98.09 (1.61) 97.81 (1.97) 98.09 (1.61) 97.81 (1.97) 98.09 (2.1) 96.99 (2.49)
25 J48-MLP-NB-Ibk 98.63 (1.62) * 98.36 (1.77) 98.91 (1.91) * 98.63 (2.11) * 98.91 (1.91) * 98.63 (2.11) * 98.36 (2.12) 96.72 (2.49)
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Table A4. Classification accuracy (%) on Diabetic Retinopathy dataset.

Pool of Base
Classifiers

Algorithm 1 Algorithm 2 Algorithm 3
OLA LCA

CR CA CR CA CR CA

1 NB-SMO 66.38 (5.4) * 67.16 (6.27) * 66.38 (5.41) * 67.16 (6.27) * 67.16 (5.04) * 67.16 (6.14) * 65.07 (4.85) 62.9 (4.35)
2 MLP-SMO 70.63 (5.54) 71.07 (6.69) * 70.55 (5.62) 71.16 (6.69) * 69.77 (6.65) 70.81 (6.75) * 70.72 (6.13) 69.94 (5.46)
3 J48-SMO 66.46 (5.65) * 66.9 (6.3) * 66.46 (5.67) * 66.99 (6.3) * 66.99 (5.67) * 67.59 (6.09) * 66.2 (6.26) 64.64 (5.57)
4 iBK-SMO 65.94 (5.74) 66.72 (6.16) 65.86 (5.72) 66.72 (6.14) 65.16 (5.36) 67.59 (6.14) * 66.9 (5.79) 65.77 (5.24)
5 MLP-NB 68.98 (5.83) 70.98 (6.74) * 68.9 (5.8) 70.98 (6.74) * 69.5 (5.63) 70.98 (6.65) * 69.94 (6.08) 66.9 (5.29)
6 MLP-J48 70.29 (5.94) 70.29 (6.53) 70.37 (5.92) 70.2 (6.53) 68.72 (5.47) 71.33 (6.45) 71.33 (6.32) 67.94 (5.18)
7 MLP-Ibk 67.51 (6) 72.11 (6.71) * 67.51 (5.97) 72.11 (6.71) * 68.2 (5.85) 72.11 (6.61) * 71.16 (6.35) 69.07 (5.49)
8 J48-NB 63.51 (5.92) * 64.99 (6.58) * 63.6 (5.89) * 64.99 (6.57) * 64.03 (5.92) * 65.33 (6.49) * 63.16 (6.37) 61.95 (5.56)
9 J48-Ibk 63.34 (5.9) 63.08 (6.57) 63.34 (5.87) 63.08 (6.57) 64.21 (5.84) 63.08 (6.53) 64.64 (6.31) 63.25 (5.48)
10 NB-Ibk 63.94 (5.91) * 62.73 (6.66) 63.94 (5.89) * 62.73 (6.66) 63.94 (5.72) * 62.47 (6.66) 62.64 (6.32) 62.81 (5.41)
11 SMO-IbK-NB 64.55 (5.42) 67.77 (6.49) * 64.55 (5.41) 68.38 (6.21) * 65.07 (5.88) 67.68 (6.37) * 65.86 (6.14) 63.16 (5.33)
12 SMO-IbK-mlp 68.55 (5.49) 70.81 (6.9) * 68.55 (5.47) 70.89 (6.88) * 68.38 (6.5) 70.55 (6.86) 70.55 (6.23) 68.38 (5.36)
13 SMO-Ibk-J48 65.94 (5.2) 66.81 (6.52) * 65.86 (5.2) 66.55 (6.44) * 64.99 (6) 67.42 (6.39) * 66.29 (6.2) 64.47 (5.33)
14 SMO-J48-MLP 69.68 (4.95) 70.63 (6.75) 69.68 (4.95) 70.72 (6.69) 69.07 (6.14) 70.98 (6.57) 71.33 (6.29) 66.9 (5.32)
15 SMO-J48-NB 65.51 (5.29) 67.33 (6.64) * 65.51 (5.27) 67.42 (6.64) * 67.07 (5.94) * 67.42 (6.61) * 65.68 (6.25) 62.55 (5.29)
16 SMO-MLP-NB 68.9 (5.2) 70.81 (6.93) * 68.72 (5.18) 70.81 (6.9) * 68.81 (6.05) 70.81 (6.84) * 70.63 (6.29) 67.07 (5.23)
17 J48-MLP-NB 68.29 (5.41) 70.11 (6.75) 68.2 (5.38) 69.59 (6.49) 68.46 (5.8) 70.63 (6.61) * 70.55 (6.34) 65.16 (5.17)
18 J48-MLP-Ibk 68.03 (5.56) 70.2 (6.86) 68.03 (5.54) 69.94 (6.65) 67.77 (5.9) 71.24 (6.69) * 70.98 (6.39) 66.2 (5.16)
19 J48-NB-Ibk 63.34 (5.54) 63.86 (6.87) 63.34 (5.52) 63.86 (6.71) 64.64 (5.9) * 64.21 (6.74) * 63.94 (6.35) 61.86 (5.17)
20 MLP-NB-Ibk 67.16 (5.56) 70.72 (6.93) * 67.16 (5.54) 70.72 (6.74) * 67.77 (5.95) 70.72 (6.78) * 70.63 (6.36) 66.46 (5.17)
21 SMO-Ibk-NB-MLP 66.99 (4.96) 70.46 (7.01) * 66.99 (4.92) 70.46 (6.95) * 68.03 (6.11) 70.46 (6.95) * 70.03 (6.38) 65.94 (5.14)
22 SMO-Ibk-NB-J48 64.47 (4.88) 67.42 (6.73) * 64.38 (4.88) 67.16 (6.59) * 64.9 (6.07) 67.42 (6.67) * 65.42 (6.36) 61.86 (5.12)
23 SMO-J48-MLP-NB 68.9 (4.4) 70.89 (6.96) * 68.81 (4.31) 70.46 (6.84) * 68.55 (5.22) 70.89 (6.96) * 70.03 (6.37) 64.99 (5.07)
24 SMO-J48-MLP-Ibk 68.98 (4.57) 70.37 (6.92) 68.98 (4.52) 70.29 (6.83) 68.29 (5.98) 70.72 (6.84) * 70.46 (6.38) 65.77 (5.05)
25 J48-MLP-NB-Ibk 67.25 (4.9) 69.94 (7) * 67.25 (4.89) 69.24 (6.86) 67.51 (6.03) 70.46 (6.9) * 69.5 (6.4) 64.21 (5.01)
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Table A5. Classification accuracy (%) on WBC Dataset.

Pool of Base
Classifiers

Algorithm 1 Algorithm 2 Algorithm 3
OLA LCA

CR CA CR CA CR CA

1 NB-SMO 97.28 (1.91) 97.57 (2.16) * 97.42 (2.04) 97.57 (2.11) * 97.28 (1.9) 97.42 (1.88) 97.28 (1.75) 97.42 (1.67)
2 MLP-SMO 96.85 (1.9) 96.85 (1.9) 97.28 (1.75) * 97.28 (1.75) * 97.28 (1.75) * 97.28 (1.75) * 96.85 (1.84) 96.85 (1.81)
3 J48-SMO 96.71 (1.97) * 96.28 (2.28) 96.57 (2.14) * 96.42 (2.25) 97 (1.97) * 97 (1.97) * 96.42 (2.26) 96.28 (2.29)
4 iBK-SMO 96.71 (1.92) 96.71 (2.18) 96.57 (2.13) 96.71 (2.14) 97.14 (1.88) * 96.71 (1.99) 96.57 (2.24) 96.71 (2.25)
5 MLP-NB 97 (1.92) 97.28 (2.19) * 97.42 (2.14) * 97.28 (2.17) * 97.28 (1.94) * 97.42 (2) * 97 (2.15) 97.14 (2.16)
6 MLP-J48 96.42 (1.96) * 96.14 (2.24) 96.14 (2.19) 96.14 (2.22) 96.57 (1.95) * 96.57 (2.03) * 96.28 (2.28) 96.14 (2.31)
7 MLP-Ibk 96.42 (1.95) 96.14 (2.21) 96.28 (2.17) 96.42 (2.18) 96.71 (1.94) * 96.42 (2.06) 96.42 (2.26) 96.57 (2.28)
8 J48-NB 96.85 (1.96) * 97.28 (2.16) * 97.14 (2.14) * 97.57 (2.14) * 97.14 (1.94) * 97.57 (2.03) * 96.57 (2.36) 96.28 (2.36)
9 J48-Ibk 96.42 (1.98) 96.42 (2.18) 96.57 (2.15) * 96.57 (2.15) * 96.42 (2.02) 96.57 (2.06) * 95.85 (2.42) 96.42 (2.39)
10 NB-Ibk 97.14 (1.98) 97.57 (2.15) * 97.14 (2.12) * 97.57 (2.12) * 97.57 (2) * 97.42 (2.04) * 97.14 (2.37) 97 (2.35)
11 SMO-IbK-NB 97.14 (2.05) 97.57 (2.1) 97.14 (2.24) 97.57 (2.17) 97.28 (1.93) 97.28 (2.06) 97.71 (2.34) 96.85 (2.34)
12 SMO-IbK-mlp 96.42 (2.05) 96.42 (2.14) 96.57 (2.19) 96.71 (2.23) 97 (1.93) 96.71 (2.06) 97.28 (2.32) 96.28 (2.35)
13 SMO-Ibk-J48 96.57 (2.06) 96.42 (2.15) 96.57 (2.27) 96.57 (2.24) 96.85 (1.96) 96.42 (2.11) 97.14 (2.28) 96.71 (2.36)
14 SMO-J48-MLP 96.28 (2.24) 96.14 (2.31) 96.42 (2.33) 96.42 (2.58) 96.85 (2.1) 97 (2.17) 97 (2.28) 96.57 (2.36)
15 SMO-J48-NB 96.85 (2.07) 97.28 (2.07) 97 (2.18) 97.57 (2.13) * 97.28 (1.89) 97.42 (1.97) 97.42 (2.25) 96.71 (2.34)
16 SMO-MLP-NB 97 (2.04) 97.28 (2.18) 97.28 (2.11) 97.42 (2.23) * 97.14 (1.92) 97.42 (1.95) * 97.14 (2.22) 97.28 (2.31)
17 J48-MLP-NB 96.71 (2.03) 96.71 (2.09) 97 (2.2) 97.28 (2.13) * 97.28 (1.92) * 97.42 (2.02) * 97.14 (2.2) 96.71 (2.3)
18 J48-MLP-Ibk 96.28 (2.04) 95.71 (2.19) 96.14 (2.24) 96.14 (2.19) 96.57 (1.96) 96.28 (2.11) 97 (2.18) 96.57 (2.31)
19 J48-NB-Ibk 96.85 (2.01) 97.28 (2.13) * 97.14 (2.17) * 97.57 (2.12) * 97 (1.95) * 97.42 (2.06) * 96.85 (2.18) 96.71 (2.31)
20 MLP-NB-Ibk 96.85 (2.01) 97.42 (2.16) 97.14 (2.2) 97.28 (2.16) 97.28 (1.94) 97.28 (2.08) 97.42 (2.16) 96.85 (2.3)
21 SMO-Ibk-NB-MLP 97 (2.01) 97.28 (2.16) 97 (2.22) 97.42 (2.04) 97.14 (1.88) 97.28 (2.06) 97.57 (2.14) 96.71 (2.3)
22 SMO-Ibk-NB-J48 97 (1.98) 97.28 (2.08) 97.14 (2.18) 97.57 (1.97) * 97.28 (1.85) 97.28 (1.99) 97.42 (2.14) 96.71 (2.3)
23 SMO-J48-MLP-NB 96.57 (2.05) 96.71 (2.22) 96.85 (2.11) 97.42 (1.67) * 97.14 (1.7) 97.42 (1.67) * 97.14 (2.13) 96.71 (2.3)
24 SMO-J48-MLP-Ibk 96.28 (2.05) 96.14 (2.24) 96.42 (2.32) 96.42 (2.18) 96.85 (1.97) 96.42 (2.18) 97.42 (2.12) 96.57 (2.3)
25 J48-MLP-NB-Ibk 96.71 (1.95) 97 (2.04) 97 (2.12) 97.28 (1.95) 97.14 (1.85) 97.28 (1.96) 97.42 (2.11) 96.85 (2.29)
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Table A6. Classification accuracy (%) on Mammographic mass dataset.

Pool of Base
Classifiers

Algorithm 1 Algorithm 2 Algorithm 3
OLA LCA

CR CA CR CA CR CA

1 NB-SMO 82.1 (2.68) * 81.58 (2.37) 82 (2.65) * 81.37 (2.39) 81.69 (2.63) 81.89 (2.49) 81.89 (1.56) 81.69 (2.88)
2 MLP-SMO 81.37 (2.58) 80.85 (2.43) 81.37 (2.58) 80.85 (2.43) 81.27 (2.24) 80.96 (2.67) 81.89 (1.8) 82.21 (2.86)
3 J48-SMO 82.31 (2.73) * 81.27 (2.66) 82.1 (2.75) * 81.17 (2.64) 81.79 (2.8) 81.17 (2.77) 81.58 (2.44) 81.89 (2.72)
4 iBK-SMO 81.48 (2.65) 81.37 (2.6) 81.48 (2.63) 81.37 (2.61) 81.58 (2.63) 81.48 (2.61) 81.27 (2.44) 82.1 (2.78)
5 MLP-NB 81.79 (2.64) 81.69 (2.54) 82 (2.61) 81.69 (2.55) 81.89 (2.66) 81.69 (2.54) 82.21 (2.45) 81.79 (2.71)
6 MLP-J48 82.52 (2.65) * 81.58 (2.62) 82.52 (2.63) * 81.58 (2.63) 82.41 (2.67) * 81.58 (2.63) 81.79 (2.42) 82.1 (2.73)
7 MLP-Ibk 81.27 (2.63) 80.85 (2.5) 81.27 (2.6) 80.85 (2.51) 81.48 (2.64) 81.17 (2.53) 81.79 (2.35) 81.69 (2.68)
8 J48-NB 82.52 (2.64) * 81.27 (2.4) 82.52 (2.63) * 81.27 (2.41) 82.1 (2.62) 80.96 (2.41) 81.58 (2.27) 82.21 (2.64)
9 J48-Ibk 81.58 (2.64) 80.85 (2.48) 81.58 (2.62) 80.85 (2.48) 81.58 (2.62) 80.54 (2.49) 80.85 (2.33) 82.41 (2.62)

10 NB-Ibk 82.41 (2.6) * 81.58 (2.42) 82.73 (2.59) * 81.58 (2.43) 82.62 (2.58) * 81.58 (2.44) 82 (2.33) 82.1 (2.67)
11 SMO-IbK-NB 81.79 (2.52) * 82.21 (2.58) * 81.89 (2.45) * 81.89 (2.55) * 81.58 (2.48) 81.89 (2.46) * 81.37 (2.34) 81.69 (2.73)
12 SMO-IbK-mlp 81.27 (2.5) 80.65 (2.54) 81.17 (2.41) 80.75 (2.55) 80.85 (2.34) 80.75 (2.47) 81.06 (2.32) 81.79 (2.73)
13 SMO-Ibk-J48 81.89 (2.57) 81.17 (2.66) 81.89 (2.51) 81.27 (2.67) 81.27 (2.55) 80.75 (2.55) 81.58 (2.4) 81.89 (2.73)
14 SMO-J48-MLP 82.52 (2.46) * 80.85 (3) 82.52 (2.46) * 80.85 (3.04) 81.89 (2.73) 80.65 (2.85) 81.89 (2.45) 82.1 (2.75)
15 SMO-J48-NB 82.21 (2.56) * 80.85 (2.48) 82.1 (2.48) * 80.96 (2.51) 82 (2.45) * 80.75 (2.42) 81.17 (2.43) 81.69 (2.78)
16 SMO-MLP-NB 81.79 (2.48) 81.48 (2.53) 81.79 (2.39) 81.58 (2.53) 81.06 (2.46) 81.48 (2.42) 82.1 (2.4) 81.69 (2.78)
17 J48-MLP-NB 82.31 (2.58) 81.06 (2.46) 82.31 (2.53) * 81.27 (2.45) 82.41 (2.51) * 80.85 (2.34) 81.48 (2.38) 81.69 (2.78)
18 J48-MLP-Ibk 82.41 (2.6) * 80.96 (2.58) 82.41 (2.55) * 81.37 (2.5) 80.96 (2.53) 81.27 (2.42) 81.48 (2.38) 82.31 (2.78)
19 J48-NB-Ibk 82.1 (2.56) 80.33 (2.48) 82.1 (2.5) 80.54 (2.42) 81.48 (2.48) 80.33 (2.36) 81.06 (2.36) 82.1 (2.79)
20 MLP-NB-Ibk 81.89 (2.57) 81.06 (2.51) 82.1 (2.52) * 81.37 (2.44) 81.69 (2.5) 81.37 (2.37) 81.89 (2.39) 81.48 (2.8)
21 SMO-Ibk-NB-MLP 82 (2.56) * 81.69 (2.46) 81.89 (2.42) * 81.79 (2.5) * 81.27 (2.43) 81.48 (2.36) 81.69 (2.38) 81.48 (2.82)
22 SMO-Ibk-NB-J48 82.1 (2.54) * 80.85 (2.44) 82.21 (2.44) * 81.27 (2.48) 82 (2.49) * 80.75 (2.36) 81.79 (2.38) 81.69 (2.83)
23 SMO-J48-MLP-NB 82 (2.64) * 80.65 (2.2) 82 (2.64) * 80.85 (2.26) 81.37 (2.54) 80.54 (2.14) 81.69 (2.38) 81.58 (2.83)
24 SMO-J48-MLP-Ibk 82.31 (2.66) * 80.54 (2.57) 82.21 (2.61) * 80.85 (2.68) 81.37 (2.64) 80.44 (2.52) 81.89 (2.38) 81.89 (2.83)
25 J48-MLP-NB-Ibk 82.31 (2.55) * 80.33 (2.41) 82.31 (2.47) * 81.06 (2.38) 81.58 (2.48) 80.65 (2.26) 81.58 (2.38) 81.69 (2.83)
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