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Abstract: Modeling fluid flows is a general procedure to handle engineering problems. Here we
present a systematic study of the flow and heat transfer around a circular cylinder by introducing a
new representative appropriate drag coefficient concept. We demonstrate that the new modified drag
coefficient may be a preferable dimensionless parameter to describe more appropriately the fluid
flow physical behavior. A break in symmetry in the global structure of the entire flow field increases
the difficulty of predicting heat and mass transfer behavior. A general simple drag model with high
accuracy is further developed over the entire range of Reynolds numbers met in practice. In addition,
we observe that there may exist an inherent relation between the drag and heat and mass transfer.
A simple analogy model is established to predict heat transfer behavior from the cylinder drag data.
This finding provides great insight into the underlying physical mechanism.

Keywords: circular cylinder; analogy; appropriate drag coefficient; drag model; heat transfer; entire
range of Reynolds numbers

1. Introduction

Flow over an object is omnipresent both in nature [1–3] and in many engineering applications [4–6].
For instance, the motion of swimming and flying animals [1], growth of stalagmites [2], fall motion of
hailstones [3], motion of pollutants in the atmosphere [7], complex motion of the drill string in the field
of petroleum engineering [8], and flow over bridge piers, chimney stacks, offshore structures, and tower
structures in civil engineering [9], aircrafts in the field of aerospace [10], nuclear fuel rods in the atomic
field [5], power battery cooling structures in the field of new energy vehicles [11], heat exchanger tubes
in thermal engineering [12], etc. The fluid dynamic drag [13–15], active and passive methods for drag
reduction [16–18], boundary layer flow [19], flow-induced vibration [5], behavior of turbulent fluid
motion [20], and instability in the wake shear layer [21–23] are of interest in numerous fields. Owing to
its practical importance in engineering applications and theoretical significance in understanding
fundamental fluid mechanics, the flow over a circular cylinder has attracted extensive study interest
from both scientists and engineers. Therefore, the flow and heat transfer characteristics of circular
cylinders in cross flow have been the subject of many theoretical, experimental, and numerical studies;
thus, a large number of results exist and are available in the literature.

2. Literature Review

The flow over bluff bodies like spheres [24–26] and circular cylinders [27–30] is a classical problem in
fluid mechanics. Yao et al. [9] focused on the influence of turbulence on the wind pressure and aerodynamic
behavior of smooth circular cylinders. Liang and Duan [12] studied numerically the flow past a yawed
circular cylinder using large eddy simulation. They pointed out that the boundary condition of the two
end-plates has a significant effect on the flow behaviors in the wake. Sarıoğlu et al. [18] investigated
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experimentally the effect of a rod on the flow around a square cylinder at incidence. Lin et al. [21] carried
out an experimental study on nonstationary three-dimensional aspects of flow past a circular cylinder and
found that the flow behaviors are critically affected by the presence of a separation bubble. Ahmed and
Wagner [28] focused on the vortex shedding and transition frequencies associated with flow around a
circular cylinder. During an oil drilling process, complex motion of the drill string [31,32] and the settling
velocity of drill cuttings in drilling fluids [33,34] have been the focus of investigations in the field of
petroleum engineering. Leth-Espensen et al. [35] presented a biomass devolatilization model describing
both spherical and cylindrical particles for suspension firing. Duan et al. [7] investigated the flow and
heat transfer past a sphere, and they first proposed the appropriate drag coefficient to replace the inertia
type definition proposed by Sir Isaac Newton.

It seems to be a common perception that the drag and customary drag coefficient would preferably
have a uniform variation trend. In fact, this is a wrong perception caused by the inertia type definition.
An extension research of the previous work (Reference [7]) was conducted in the present paper.
The flow past a circular cylinder was investigated by introducing a new representative appropriate
drag coefficient concept originally presented in Reference [7] for spheres. The Kutta-Joukowski theorem
states that the force experienced by a body in a uniform stream is equal to the product of the fluid
density, stream velocity, and circulation and has a direction perpendicular to the stream velocity [36].
Appling the Kutta-Joukowski theorem, the motion of flying animals, high-speed aircrafts, and cylinders
of various shapes may be easily converted into a specific type of problem (Figure 1).
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Figure 1. Flow past an object. (a) Flight of an eagle; (b) flow past a circular cylinder; (c) flow past
an airfoil.

The flow over a circular cylinder is a classic example of flow over a bluff body and frequently serves
as a benchmark to help understand flow separation and vortex shedding [37]. Extensive studies have
been carried out on this classic problem in the past century. A literature survey indicates that resistance
formulas for a wide range of Reynolds (Re) numbers are rarely reported, especially concerning the
absence of a classical drag relationship in the entire range of Re numbers. Therefore, based on a
systematic summary of previous studies, we have developed such a general empirical model for
accurate prediction of the appropriate drag coefficient.
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Historical experimental data for drag and heat transfer of the flow around a circular cylinder were
critically examined. Analogous investigations have been reported by many researchers working in the
flow and heat and mass transfer area, including internal flows [38] and external flows [7]. For external
flows, Duan et al. [7] found that there exists a relation between the drag and heat transfer in spheres.
For internal flows, Duan and He [38] presented an extended Reynolds analogy for slip flow heat
transfer in microchannels. To the authors’ best knowledge, the internal relationship between the drag
and heat transfer for cylinders has not been revealed in the existing literature. Here we present drag
and heat transfer results which demonstrate that there may exist an inherent relation between the drag
and heat transfer in cylinders. The appropriate drag coefficient may be associated with the Nusselt
number. Thus, a simple model is proposed to predict heat transfer behavior from drag data.

Drag estimation of bodies moving through fluids is a crucial concern in engineering practice [1].
For a uniform stream past a circular cylinder, the usual definition of the drag coefficient CD is [39]

CD =
F

1
2ρU2

∞A
=

F
1
2ρU2

∞(D · 1)
(1)

where F represents the drag force on the circular cylinder per unit length, ρ is the fluid density, U∞ is
the relative velocity of the fluid and the object, A is the projected area of the body in the direction of the
flow, and D is the cylinder diameter.

It is well known that in a viscous cross flow, the drag acting on a circular cylinder is due to
friction and inertia. Earlier efforts and significant contributions were made by Stokes [40], Oseen [41],
and Lamb [42] to obtain theoretical solutions for creeping flows. Van Dyke [43] introduced the
development of theoretical solutions for spheres and circular cylinders. A first approximation for the
drag coefficient on a cylinder is known as the Oseen solution, and it is expressed as follows [41]

CD =
8π

Re
(

1
2 − Γ − ln Re

8

) (2)

where Γ = 0.577216 . . . is Euler’s constant and Re is the Reynolds number defined by Re = U∞D/ν.
Tomotika and Aoi [44] derived and presented expansion formulas of the drag force at small Reynolds
numbers. As a result of their efforts, a second approximation of the drag coefficient was presented [44]:

CD =
8π
ReS

[
1−

1
S
(S2
−

1
2

S +
5

16
)
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]
(3)

where S is a constant defined by S = 1
2 − Γ− ln Re

8 . Further, a third approximation of the drag coefficient
is expressed as [44]
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25
256

)
Re4

322

]
. (4)

Subsequently, further research was conducted by Proudman and Pearson [45], Kaplun [46],
and Tamada et al. [47] in order to determine expansion formulas of drag force. Due to the complexity
and difficulty of mathematically solving Navier-Stokes equations, it is quite difficult to extend the
availability of the analytical solutions to higher Reynolds numbers. The correlation between the drag
coefficient and Reynolds number can only be determined by means of experiment.

For historical reasons, it is a common practice to use dynamic pressure to nondimensionalize
the drag experienced by bodies. The drag coefficient can also be expressed by the following general
expression [44]:

F = 4πµU∞
∞∑

m=0

Bm (5)
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where µ represents the viscosity. The constants Bm may be acquired via solving the following
simultaneous linear algebraic equations:

∞∑
m=0

Bmλm,n(Re) =
{

4 (n = 1),
0 (n = 2, 3, . . .),

(6)

where λm,n(Re) are functions of the Re number, and they may be expressed by

λm,n(Re) = Im−nKm−1 + Im+nKm+1 + Im−n+1Km + Im+n−1Km (7)

where Im and Km are the modified Bessel functions of the first and second kind, respectively. Furthermore,
substituting Equation (5) into Equation (1), the general formula of CD can be written as

CD =
4π
Re

∞∑
m=0

Bm. (8)

A literature survey shows that drag correlations for a wide range of Re numbers are rarely reported.
In particular, there is no such correlation for drag in the entire range of Re numbers. The old drag
coefficient diagrams were used in almost all the relevant literature and texts. When researchers verify
the accuracy and reliability of the results they have obtained, they all have to use traditional drag
coefficient diagrams. Therefore, a new drag coefficient diagram with rich and reliable data and a general
drag model is necessary. Based on this situation, we extensively collected historical experimental data
and mapped them on the latest drag coefficient-Re diagram (Figure 2). The historical experimental data
collected by Schlichting [48] and other experimental results from Dryden and Hill [49], Delany and
Sorensen [50], Tritton [51], Roshko [52], and Achenbach [53] for the drag coefficient of circular cylinders
all fall on a single curve. The new drag coefficient diagram refers to a wide range of Re numbers and
can greatly facilitate engineering applications, and it can be updated in the texts of fluid mechanics
and heat transfer, since it is of great significance to teaching and scientific research.
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3. Results and Discussion

3.1. Drag Force-Velocity Diagram

It is intuitive to people that the resistance of a moving body increases rapidly with velocity.
For bluff-body flows, trend graphs of resistance and velocity over a broad range of Re are rarely
seen in the literature, especially for flow around circular cylinders. Based on the results of previous
experimental studies [48–53], a resistance-velocity diagram over a broad range of Re numbers was
obtained, and it is illustrated in Figure 3. The relative velocity range is from 1.5 × 10−3 to 1.5 × l03

m/s, which roughly covers all the flow conditions that exist in nature and in engineering applications,
and the corresponding Reynolds number range is from 1 to 106.
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The classic shape of the drag coefficient curve versus Reynolds number for circular cylinders is
presented in Figure 2 and also appears in every fluid mechanics text. Figure 3 shows the typical trend
that the drag on a circular cylinder increases with increasing flow velocity of the fluid; however, there is
a significant reduction in the customary drag coefficient CD with increasing Re number (Figure 2).
Obviously, the drag and the customary drag coefficient have a roughly opposite changing trend,
which may be undesirable and unreasonable. As can be seen from Figure 2, with increasing Re number,
the drag coefficient first decreases, then it is nearly invariant in a wide range of Re number with a rise
of Re up to 2.0 × 105; however, as a matter of fact, the drag coefficient is closely related to the Reynolds
number in this regime. The most remarkable variation in CD occurs in the critical Reynolds number
range (3–4) × 105, where CD decreases from its subcritical value of 1.2 to the supercritical value of 0.2.
The sudden drop in the drag coefficient marks the end of the subcritical regime and the beginning of
the critical regime. In detail, this decrease in CD is a result of the transition from laminar to turbulent
flow in the boundary layer [54]. After that, CD rises again in the supercritical regime, and it gradually
approaches a constant value in the transcritical regime [55]. This variation trend is strange and ruleless,
which further demonstrates that the customary drag coefficient may be not a proper dimensionless
parameter to describe and represent the drag.

3.2. The Concept of Appropriate Drag Coefficient and Its Physical Meaning

Although extensive investigations on flow past circular cylinders have been conducted in
pressurized wind tunnels, due to the limitations of the conditions, most of the experimental works
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were carried out below the critical Reynolds number Re < 4 × 105. In the supercritical and transcritical
flow regimes, generally the behavior of the flow around circular cylinders is abnormally sensitive
to the Reynolds number or a very small perturbation, so there are some differences in the results of
different researchers (see Figure 2).

In fluid dynamics, the drag coefficient is an important dimensionless group which is utilized to
quantify the drag of a body in a moving fluid. Therefore, the drag coefficient is a crucially important
dimensionless parameter when calculating resistance, and we hope it can hint as to the variation trend
of resistance. However, it is clear that the traditional drag coefficient does not possess this important
characteristic, and its change trend with the Reynolds number may be also easily misleading. A very
representative example is shown on Wikipedia [56], where the relevant statement is expressed as
follows: “the drag coefficient is utilized in the resistance relation in which a lower drag coefficient
indicates the body will have less aerodynamic or hydrodynamic drag”. Through the above analysis,
we can see that this expression is not rigorous, since a smaller value of drag coefficient does not
necessary imply that the drag acting on the body is lower. This demonstrates that the customarily
used drag coefficient may not be a desirable and appropriate dimensionless parameter to describe the
fluid flow physical behavior. It seems to be a common perception that the drag and customary drag
coefficient would preferably have a uniform variation trend. In fact, this is a wrong perception caused
by Newton’s definition, and herein lies the significance of our research work.

Thus, in this work, we propose the use of a new, more representative drag coefficient quantity,
namely, the modified drag coefficient that is defined in the following manner [7].

DC = ReCD =
F

1
2µU∞

(9)

By comparison with Equation (1), it is clearly observed that the above definition of the appropriate
drag coefficient is simpler and easier to use. Furthermore, by the use of Equation (8), the appropriate
drag coefficient can also be expressed as follows:

DC = ReCD = 4π
∞∑

m=0

Bm. (10)

From the above formula, it is noted that the new drag coefficient is directly related to the constants
Bm. Using the definition of the modified drag coefficient for spheres and cylinders, the general drag
expressions may be restated respectively as

FD,spheres =
DC
8
πµDU∞, (11)

FD,cylinders =
DC
2
µ · 1 ·U∞. (12)

A striking similarity in the equation structure emerges between the drag expressions in terms of
the modified drag coefficient and the linear Stokes drag expression for spheres [57]. The linear Stokes
drag of spheres at low Reynolds numbers may be expressed as

FD,spheres = 3πµDU∞. (13)

The Stokes drag for spheres is also referred to as the Stokes-Einstein-Sutherland equation, and it
was developed based on the analytical solution of Navier-Stokes equations by Sir George Gabriel
Stokes [40].

Based on the discussion above, we observe that the proposed dimensionless group DC is desirable
and reasonable in representing the drag and also shows more physical meaning. As a consequence,
it is more appropriate and convenient to work out drag problems using Equation (9).
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3.3. General Drag Model over the Entire Range of Reynolds Numbers

Historical experimental drag data for circular cylinders were processed and presented according
to the definition of the modified drag coefficient. Figure 4 demonstrates the appropriate drag coefficient
of circular cylinders as a function of the Re number. It can be seen that the modified drag coefficient
rises with increasing Re number as the drag force itself does. From Figures 3 and 4, it is observed that
the drag and the modified drag coefficient have roughly the same variation trend with increasing Re
number. Figure 4 is more reasonable and intuitive in reflecting the original physical behavior and
natural tendency. Therefore, Figure 4 does serve as a significant visual aid in drag analysis and optimum
structural design. Furthermore, the curve is relatively smooth and there does not exist a minimum for
DC. This means that the definition of the appropriate drag coefficient is more scientific and reasonable.
Figure 2 demonstrates that the customary drag coefficient is a fairly complicated function of the Re
number, while the appropriate drag coefficient curve is relatively very smooth (Figure 4), so it is easier
to obtain a relatively simple expression to accurately describe the flow characteristics over the entire
range of Re numbers.
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Due to the absence of a classical drag relationship over the entire range of Re numbers, based
on the systematic summary of previous research, according to the definition of the appropriate drag
coefficient, an extensive empirical model of the appropriate drag coefficient with great accuracy was
developed by means of a weighted least square fit in the entire Re number range. The simple model
obtained is expressed as follows:

DC = 1.38Re0.95 + 7.72Re0.31 + 1.82. (14)

As can be seen from Figures 2 and 4, the modified drag coefficient curve is smoother than the
traditional drag coefficient curve. The model developed is in good agreement with the analytical
solution and almost all experimental data. Using the appropriate drag coefficient definition to solve the
problems of flow past an object, the change in resistance of the object with the velocity of the fluid can
be intuitively reflected by the relation between the appropriate drag coefficient and Re number in the
graph. The above discussion demonstrates that the new modified drag coefficient may be a preferable
dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be
solved in a simple and intuitive manner.
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3.4. Relationship between the Drag and Heat Transfer

For convection heat transfer from cylinders, Tomotika et al. obtained the Oseen solution, and they
proposed a mean Nusselt number correlation which is valid at low Reynolds numbers and of very
limited utility [58]. Lately, Khan et al. [59] performed an analytical study on heat transfer from cylinders
and proposed the corresponding relationship. The analytical solution of the average Nusselt number
obtained for both thermal boundary conditions is expressed as follows:

Nu
Re1/2Pr1/3

=

{
0.593 for constant wall temperature

0.632 for constant heat flux
. (15)

A large number of experimental studies on convection heat transfer from cylinders were performed
by researchers. Based on experimental data, Kramers [60] suggested a mean Nusselt number correlation
for 0.1 ≤ Re ≤ 104.

Nu = 0.42Pr0.2 + 0.57Pr1/3Re0.5 (16)

The correlation by Kramers is recommended due to its simplicity. In addition, Fand [61] analyzed
the results of other investigators for liquids and air and correlated previous researchers’ and his
experimental data by an equation as follows:

Nu = (0.35 + 0.34Re0.5 + 0.15Re0.58)Pr0.3. (17)

Owing to the similarity of governing differential equations for heat and mass transfer, analogy has
been developed as a useful tool [62]. Based on the classical analogical approach, some analogy studies
were carried out on the flow of fluids through a fluidized bed [63], turbulent flow in circular pipes [64,65],
fully developed turbulent flow of power law fluids [66], slip flow heat transfer in microchannels [38],
drag-reduced turbulent channel flow [67], and material evaporation behavior [68]. It is an efficient
and applicable approach to predict heat and mass transfer coefficients from hydrodynamic results,
especially for complex engineering problems. The change of the thermal field for different Reynolds
numbers can be predicted from that of flow [69], particularly for the heat transfer behavior of the
wake behind a heated body. This means the role played by the heat flux has a similar nature to that of
the drag. It was found that there may exist a strong similarity between the drag and heat and mass
transfer. It is expected that one transport process may be associated with another transport process,
allowing one to be determined if the other is known. For example, an analogy exists between the
diffusion of heat and electrical charge. This part focuses on an analogy between the appropriate drag
coefficient and the mean Nusselt number.

In general, engineers may be interested in the availability of simple models which can be applied
to extended studies. Through in-depth comparisons and analyses of heat transfer correlations and the
new drag model, based on comprehensive consideration of simplicity, ease of use, and high accuracy,
an analogy between drag and heat transfer for cylinders was developed. The analogy is applicable for
a wide range of Reynolds numbers, 0.1 ≤ Re ≤ 105, and it may approximately hold for flow with higher
Reynolds number. The rough analogy may be expressed as follows:

DC

7.5 + 2.5Re0.45
� Nu � Sh. (18)

It is well known that the thermal field and concentration field can be related to the velocity field
through Re. It is established that a relationship exists between momentum transfer and heat and mass
diffusivities via Equation (18). The key engineering parameters, the Nusselt number and the Sherwood
number, can be predicted using the presented analogy in the calculation and analysis of heat and
mass transfer for convenience due to the simplicity of this expression, but there may be some loss in
accuracy. Here, Equation (18) is valid for gases in which Pr is near unity in the heat transfer process.
Therefore, in order to extend the availability of the simple analogy, the Prandtl number effect was
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considered and added in a more exact analogy. The exact analogy was developed for a wide range of
Reynolds numbers, 0.1 ≤ Re ≤ 105.

DC

7.5 + 2.5Re0.45
�

Nu
Pr0.4

(19)

The above model for circular cylinders is presented as (7.5 + 2.5Re0.45)Nu/Pr0.4, and it is compared
with the drag experimental results in Figure 5. The flow and heat transfer data in Figure 5 come
from experimental studies, in which the heat transfer data were collected by Whitaker [70], and other
experimental data were from Sanitjai and Goldstein [71] and Perkins and Leppert [72]. The presented
model does provide a means to approximately predict the Nusselt number for the whole range of
Reynolds numbers, even if no experimental results exist! In particular, this may be quite important due
to the lack of information on heat transfer for high-Reynolds-number flows in the literature. In addition,
the obtained results also provide a theoretical basis for the design and optimization of the shape and
thermal barrier coating system of high-speed aircrafts.
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Figure 5. Comparison of drag experimental results and heat transfer experimental data with the
developed model (Equation (19)).

An inherent relation between the drag and heat and mass transfer was obtained by analogy with
hydrodynamic drag data. The strong analogy further proves that the new modified drag coefficient
may be a proper dimensionless parameter to describe and represent the drag, and it provides great
insight into the mechanism of different transport phenomena.

4. Conclusions

The flow over regular-shaped bodies like spheres and circular cylinders represents a classical and
conventional problem in hydromechanics. It was found that the customary drag coefficient may not be
a proper dimensionless parameter to describe and represent the drag for flow past bluff bodies.
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In the present work, it was demonstrated that a new modified drag coefficient may be a preferable
dimensionless parameter to describe fluid flow physical behavior and reflect the real variation trend of
drag force. A general simple drag model with fundamental accuracy was developed and is universally
valid for all Reynolds number regimes. It is convenient to predict the hydrodynamic drag on cylinders
utilizing the general simple model.

It was observed that there may exist a strong similarity between the drag and heat and mass
transfer. It was established in this paper that a relation exists between the drag and heat transfer
around a circular cylinder. This may be quite crucial due to the lack of information on the Nusselt
number and the Sherwood number for most bluff bodies in the existing literature. In this context,
the presented model does offer a method for predicting the Nusselt number and the Sherwood number
for flow over other body shapes. The proposed simple means may provide great insight into the design
and optimization of the shape and thermal barrier coating system of high-speed aircrafts.

In future research work, we will further extend analogies to other body shapes employing the
appropriate drag coefficient concept.
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Nomenclature

A cross-sectional area, m2

Bm constants
CD drag coefficient
D cylinder, sphere diameter, m
DC appropriate drag coefficient
F drag force, N
Im, Km modified Bessel function
Nu surface-average Nusselt number
Pr Prandtl number
Re Reynolds number, = U∞D/ν
S constant
Sh Sherwood number
U∞ free stream velocity, m/s
Γ Euler’s constant
λm,n coefficient is a function of the Reynolds number
µ dynamic viscosity, N·s/m2

ν kinematic viscosity, m2/s
ρ density, kg/m3

D drag
∞ for fluid at free stream conditions
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