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Abstract: The higher category theory can be employed to generalize the BF action to the so-called
3BF action, by passing from the notion of a gauge group to the notion of a gauge 3-group. The theory
of scalar electrodynamics coupled to Einstein–Cartan gravity can be formulated as a constrained 3BF
theory for a specific choice of the gauge 3-group. The complete Hamiltonian analysis of the 3BF action
for the choice of a Lie 3-group corresponding to scalar electrodynamics is performed. This analysis is
the first step towards a canonical quantization of a 3BF theory, an important stepping stone for the
quantization of the complete scalar electrodynamics coupled to Einstein–Cartan gravity formulated
as a 3BF action with suitable simplicity constraints. It is shown that the resulting dynamic constraints
eliminate all propagating degrees of freedom, i.e., the 3BF theory for this choice of a 3-group is
a topological field theory, as expected.

Keywords: Hamiltonian analysis; higher gauge theory; BF theory; topological theory; scalar
electrodynamics

1. Introduction

The vast majority of physics community agrees that the quantum theory of gravity is necessary,
even if they disagree on the quantization approach. The theory of loop quantum gravity is one of
the well-formulated possible candidates for the desired theory of quantum gravity [1–3]. There are
two approaches within the theory—the canonical and the covariant quantization method. The covariant
quantization method is focused on obtaining a generating functional, by considering a triangulated
spacetime manifold and defining the functional as a state sum over all configurations of a field living
on simplices of the triangulation [2].

One of the key tools in the covariant quantization approach is the so-called BF theory. Given a Lie
group G and its corresponding Lie algebra g, one considers a g-valued connection 1-form A, and its
corresponding field strength 2-form F ≡ dA + A ∧ A. Multiplying F with a g-valued Lagrange
multiplier 2-form B and integrating over a four-dimensional spacetime manifoldM, one obtains the
action of the BF theory,

SBF[A, B] =
∫
M
〈B ∧ F〉g ,

where 〈_ , _〉g is a G-invariant non-degenerate symmetric bilinear form. The BF theory derives its
name from the symbols B and F for the Lagrange multiplier and the field strength present in the action.
As it is defined, the BF theory is topological, containing no local propagating degrees of freedom.
Therefore, for the purpose of building physically relevant actions, attention usually focuses not on
the pure BF theory, but rather on the theory with constraints. The constrained BF models are based
on deformations of the BF theory [4], by adding constraints to the topological BF action that promote
some of the gauge degrees of freedom into physical ones. The well known example is the Plebanski
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model for general relativity [5]. Constrained BF models represent a starting point in the spinfoam
approach to the construction of quantum gravity models [2].

The main shortcoming of building a quantum gravity model using a BF theory is the fact that it is
very hard, if not impossible, to write the action for matter fields (specifically scalar and fermion fields)
in the form of a constrained BF theory. Thus, the spinfoam quantization method is limited to pure
gravity, and the problem of consistently coupling matter fields to gravity in this framework becomes
highly nontrivial. One of the proposed ways to circumvent this issue is to generalize the notion of a BF
theory using the mathematical apparatus of higher category theory.

The higher category theory [6] can be employed to generalize the BF action to the so-called
nBF action, by passing from the notion of a gauge group to the notion of a gauge n-group
(for a comprehensive review of n-groups see for example [7], and also Appendix C). Specifically,
the notion of a 3-group in the framework of higher category theory is introduced as a 3-category with
only one object where all the morphisms, 2-morphisms and 3-morphisms are invertible. Based on
this generalization, recently a constrained 3BF action has been introduced, which describes the full
Standard Model coupled to Einstein–Cartan gravity [8].

As a first step to the study of the Hamiltonian structure of such theories, in this work, we discuss
the simplest nontrivial toy example, namely the theory of scalar electrodynamics coupled to gravity.
The standard way to define scalar electrodynamics coupled to gravity is by the action:

S =
∫

d4x
√
−g

[
− 1

16πl2
p

R− 1
4

gµρgνσFµνFρσ + gµν∇µφ∗∇νφ−m2φ∗φ

]
. (1)

Here, gµν is the spacetime metric, g ≡ det(gµν) is its determinant, R is the corresponding
curvature scalar, and lp is the Planck length, its square being equal to the Newton’s gravitational
constant, l2

p = G, in the natural system of units h̄ = c = 1. The total covariant derivative ∇µ of the
complex scalar field φ is defined as ∇µφ = (∂µ + iqAµ)φ, and thus coupled to the electromagnetic
potential Aµ via the coupling constant q (the electric charge of the field φ). See Appendix A for more
detailed notation. In the next section, we will reformulate this model as a classically equivalent
constrained 3BF theory for a specific choice of the gauge 3-group. Moreover, for reasons of simplicity,
in the Hamiltonian analysis, we will focus only on the topological sector, disregarding the simplicity
constraints. The Hamiltonian structure of the theory is important for various reasons, primarily for the
canonical quantization program.

The layout of the paper is as follows. In Section 2, we introduce the 3-group structure
corresponding to the theory of scalar electrodynamics coupled to Einstein–Cartan gravity and the
corresponding constrained 3BF action. Section 3 contains the Hamiltonian analysis for the topological,
3BF sector of the action, with the resulting first-class and second-class constraints present in the theory,
and their mutual Poisson brackets. In Section 4, we analyze the Bianchi identities that the first-class
constraints satisfy, which enforce restrictions in the sense of Hamiltonian analysis, and reduce the
number of independent first-class constraints present in the theory. Section 5 focuses on the counting
of the dynamical degrees of freedom present in the theory, based on the results from Sections 3 and 4.
Encouraged by these results, in Section 6, we construct the generator of the gauge symmetries for
the topological theory and we find the form variations of all variables and their canonical momenta.
Finally, Section 7 is devoted to the discussion of the results and the possible future lines of research.
The Appendices contain various technical details.

The notation and conventions are as follows. The local Lorentz indices are denoted by the Latin
letters a, b, c, . . . , take values 0, 1, 2, 3, and are raised and lowered using the Minkowski metric ηab
with signature (−,+,+,+). Spacetime indices are denoted by the Greek letters µ, ν, . . . , and are
raised and lowered by the spacetime metric gµν = ηabea

µeb
ν, where ea

µ are the tetrad fields.
The inverse tetrad is denoted as eµ

a, so that the standard orthogonality conditions hold: ea
µeµ

b = δa
b

and ea
µeν

a = δν
µ. When needed, spacetime indices will be split into time and space indices,
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denoted with a 0 and lowcase Latin indices i, j, . . . , respectively. All other indices that appear in
the paper are dependent on the context, and their usage is explicitly defined in the text where they
appear. The antisymmetrization over two indices is introduced with the factor one half that is
A[a1|a2 ...an−1|an ] =

1
2
(

Aa1a2 ...an−1an − Aana2 ...an−1a1

)
, and the total antisymmetrization is introduced as

A[a1 ...an ] =
1
n! ∑σ∈Sn(−1)sign(σ)Aaσ(1) ...aσ(n) .

2. Scalar Electrodynamics as a Constrained 3BF Action

Let us begin by providing a short introduction into the construction and structure of a 3BF theory,
after which we will impose appropriate simplicity constraints, in order to obtain the equations of
motion for scalar electrodynamics coupled to gravity.

As was discussed in detail in [8], one formulates a topological 3BF action by specifying a particular
gauge Lie 3-group. It has been proved that any strict 3-group is equivalent to a 2-crossed module [9,10].

A gauge theory for the manifold M4 and 2-crossed module (L δ→ H ∂→ G ,� , {_ , _}) can be
constructed for the following choice of the three Lie groups as:

G = SO(3, 1)×U(1) , H = R4 , L = R2 .

The maps ∂ and δ are chosen to be trivial. The action of the algebra g on h and l is chosen as:

Mab � Pc = �ab,c
d Pd = δ[a|

dη|b]c Pd = η[b|c P|a] , T � Pa = 0 ,
Mab � PA = 0 , T � PA = �A

B PB
(2)

where Mab denote the six generators of so(3, 1), T is the sole generator of u(1), Pa are the four generators
of R4 and PA are the two generators of R2. In the previous expression, the action of the algebra u(1) on
the algebra R2 is defined via

�A
B = iq

[
1 0
0 −1

]
.

The action of the algebra g on itself is by definition given via the adjoint representation and, for
the choice g = so(3, 1)× u(1), one obtains

Mab � Mcd = �ab ,cd
e f Me f = fab ,cd

e f Me f = ηad Mbc + ηbc Mad − ηac Mbd − ηbd Mac ,

Mab � T = 0 , T � Mab = 0 , T � T = 0 ,
(3)

as the consequence of the direct product structure and the Abelian nature of the subgroup U(1).
The Peiffer lifting

{_ , _} : H × H → L

is also trivial, i.e., all the coefficients Xab
A are equal to zero:

{Pa , Pb} ≡ Xab
ATA = 0 . (4)

Given Lie algebras g, h, and l, one can introduce a 3-connection (α, β, γ) given by the
algebra-valued differential forms α ∈ A1(M4 , g), β ∈ A2(M4 , h) and γ ∈ A3(M4 , l).
The corresponding fake 3-curvature (F ,G ,H) is then defined as:

F = dα + α ∧ α− ∂β , G = dβ + α ∧� β− δγ , H = dγ + α ∧� γ + {β ∧ β} , (5)
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see [9,10] for details. For this specific choice of a 3-group, where α = ω+ A, given by the algebra-valued
differential forms ω ∈ A1(M4 , so(3, 1)), A ∈ A1(M4 , u(1)), β ∈ A2(M4 ,R4) and γ ∈ A3(M4 ,R2),
the corresponding 3-curvature (F ,G ,H) is defined as

F = Rab Mab + FT =
(
dωab + ωa

c ∧ωcb)Mab + dA T ,

G = GaPa =
(
dβa + ωa

b ∧ βb)Pa ,

H = HAPA =
(
dγA +�B

A A ∧ γB)PA .

(6)

Note that the connection ωab is not present in the last expression, as follows from the definition of
the action � and the Peiffer lifting {_ , _}, see Equations (2) and (4):

H = dγ + α ∧� γ + {β ∧ β}

= dγAPA + (ωab Mab + AT) ∧� (γAPA)

= dγAPA + ωab ∧ γA Mab � PA + A ∧ γAT � PA

= dγAPA + A ∧ γA �A
BPB

= (dγA +�B
A A ∧ γB)PA .

(7)

The coefficients of the differential 2-forms F and Rab, 3-form G, and 4-formH are:

Fµν = ∂µ Aν − ∂ν Aµ ,

Rab
µν = ∂µωab

ν − ∂νωab
µ + ωa

cµωcb
ν −ωa

cνωcb
µ ,

Ga
µνρ = ∂µβa

νρ + ∂νβa
ρµ + ∂ρβa

µν + ωa
bµ βb

νρ + ωa
bν βb

ρµ + ωa
bρ βb

µν ,

HA
µνρσ = ∂µγA

νρσ − ∂νγA
ρσµ + ∂ργA

σµν − ∂σγA
µνρ

+�B
A AµγB

νρσ −�B
A AνγB

ρσµ +�B
A AργB

σµν −�B
A AσγB

µνρ .

(8)

Now, one can define a gauge invariant 3BF action as:

S3BF =
∫
M4

(
〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l

)
, (9)

where B ∈ A2(M4 , so(3, 1)), C ∈ A1(M4 ,R4) and D ∈ A0(M4 ,R2) are Lagrange multipliers.
The forms 〈_ , _〉g, 〈_ , _〉h and 〈_ , _〉l are G-invariant bilinear symmetric nondegenerate forms on g, h
and l, respectively, defined as

〈Mab , Mcd〉g = gab, cd , 〈T , T〉g = 1 , 〈Mab , T〉g = 0 , 〈Pa , Pb〉h = gab , 〈PA , PB〉l = gAB ,

where

gab, cd = ηa[c|ηb|d] , gab =

[
1 0
0 1

]
, gAB =

[
0 1
1 0

]
.

Identifying the Lagrange multiplier Ca as the tetrad field ea, and the Lagrange multiplier DA as the
doublet of scalar fields φA,

φ = φAPA = φP1 + φ∗P2 ,
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based on their transformation properties as discussed in [8,11], the Lagrangian of the action (9) obtains
the form:

S3BF =
∫
M4

d4x εµνρσ
(1

4
Bab

µν Rcd
ρσ gab, cd +

1
4

BµνFρσ +
1
3!

ea
µ Gb

νρσ gab +
1
4!

φAHB
µνρσ gAB

)
. (10)

Varying the action with respect to all the variables, one obtains the equations of motion:

varied variable equation of motion

δBab Rab = 0

δωab ∇Bab − e[a| ∧ β|b] = 0

δea Ga = 0

δφA ∇γA = 0

varied variable equation of motion

δB F = 0

δA dB + φA �B
A γB = 0

δβa ∇ea = 0

δγA ∇φA = 0

(11)

Since one is interested in the doublet of scalar fields φA of mass m and charge q minimally
coupled to gravity and electromagnetic field, we impose additional simplicity constraint terms to
the topological action (9), in order to obtain the appropriate equations of motion equivalent to the
equations of motion for the action (1):

S =
∫
M4

Bab ∧ Rab + B ∧ F + ea ∧∇βa + φA∇γA

− λab ∧
(

Bab − 1
16πl2

p
εabcdec ∧ ed

)
+ λA ∧

(
γA −

1
2

HabcAea ∧ eb ∧ ec
)
+ ΛabA ∧

(
HabcAεcde f ed ∧ ee ∧ e f −∇φA ∧ ea ∧ eb

)
+ λ ∧

(
B− 12

q
Mabea ∧ eb

)
+ ζab

(
Mabεcde f ec ∧ ed ∧ ee ∧ e f − F ∧ ea ∧ eb

)
− 1

2 · 4!
m2φA φAεabcdea ∧ eb ∧ ec ∧ ed .

(12)

For the notation used here and the equations of motion obtained by varying the action (12),
see Appendix A.

The dynamical degrees of freedom are the tetrad fields ea, the scalar doublet φA, and the
electromagnetic potential A, while the remaining variables are algebraically determined in terms
of them, as shown in Appendix A. The equation of motion for the field φA reduces to the covariant
Klein-Gordon equation for the scalar field,(

∇µ∇µ −m2
)

φA = 0 . (13)

The differential equation of motion for the field A is:

∇µFµν = jν , jµ ≡ 1
2

(
∇νφA �B

AφB − φA �B
A∇νφB

)
= iq

(
∇φ∗ φ− φ∗∇φ

)
. (14)

Finally, the equation of motion for ea becomes:

Rµν − 1
2

gµνR = 8πl2
p Tµν ,

Tµν ≡ ∇µφA∇νφA − 1
2

gµν
(
∇ρφA∇ρφA + m2φA φA

)
− 1

4q
(

FρσFρσgµν + 4FµρFρ
ν
)

.
(15)
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3. The Hamiltonian Analysis

The Hamiltonian analysis of the constrained 3BF action (12) for scalar electrodynamics is
exceedingly complicated to study. A testament to this is the level of complexity of the constrained
2BF formulation of general relativity [12], which is merely one sector in the action (12). Therefore,
in this paper, we will limit ourselves to the topological sector of the theory, namely the unconstrained
3BF theory (9), which consists of the terms in the first row of Equation (12), and is written in full
detail in Equation (10). One should be aware that this restriction changes various properties of the
theory. Namely, the simplicity constraints (everything but the first row in Equation (12)) substantially
modify the dynamics of the theory—they increase the number of local propagating degrees of freedom
of the theory, a property that was known since the original Plebanski model [5]. On the other hand,
the unconstrained 3BF theory (9) is important even in its own right, and the Hamiltonian analysis may
give important insight into the structure of both the unconstrained and the constrained theory.

In what follows, the complete Hamiltonian analysis for the action (9) is presented, see [13] for
an overview and a comprehensive introduction of the Hamiltonian analysis. The Hamiltonian analysis
for a 2BF action is performed in [12,14–16].

Under the standard assumption that the spacetime manifold is globally hyperbolic,M4 = R×Σ3,
the Lagrangian of the action (9) has the form:

L3BF =
∫

Σ3

d3~x εµνρσ
(1

4
Bab

µν Rcd
ρσ gab, cd +

1
4

BµνFρσ +
1
3!

ea
µ Gb

νρσ gab +
1
4!

φAHB
µνρσ gAB

)
. (16)

The canonical momentum π(q) corresponding for the canonical coordinate q from the set of all
variables in the theory, q ∈ {Bab

µν, ωab
µ, Bµν, Aµ, ea

µ, βa
µν, φA, γA

µνρ}, is obtained as a derivative of
the Lagrangian with respect to the appropriate velocity,

π(q) ≡ δL
δ∂0q

,

giving:

π(B)ab
µν = 0 , π(ω)ab

µ = ε0µνρBabνρ ,

π(B)µν = 0 , π(A)µ =
1
2

ε0µνρBνρ ,

π(e)a
µ = 0 , π(β)a

µν = −ε0µνρeaρ ,

π(φ)A = 0 , π(γ)A
µνρ = ε0µνρφA .

(17)

Since these momenta cannot be inverted for the time derivatives of the variables, they all give rise
to primary constraints:

P(B)ab
µν ≡ π(B)ab

µν ≈ 0 , P(ω)ab
µ ≡ π(ω)ab

µ − ε0µνρBabνρ ≈ 0 ,

P(B)µν ≡ π(B)µν ≈ 0 , P(A)µ ≡ π(A)µ − 1
2 ε0µνρBνρ ≈ 0 ,

P(e)a
µ ≡ π(e)a

µ ≈ 0 , P(β)a
µν ≡ π(β)a

µν + ε0µνρeaρ ≈ 0 ,

P(φ)A ≡ π(φ)A ≈ 0 , P(γ)A
µνρ ≡ π(γ)A

µνρ − ε0µνρφA ≈ 0 .

(18)

Here, the symbol “≈” denotes the so-called “weak” equality, i.e., the equality that holds on
a subspace of the phase space determined by the constraints, while the equality that holds for any
point of the phase space is referred to as the “strong” equality and it is denoted by the symbol “=”.
The expressions “on-shell” and “off-shell” are used for weak and strong equalities, respectively,
and henceforth will be used in this paper.
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The fundamental Poisson brackets are defined as:

{ Bab
µν(x) , π(B)cd

ρσ(y) } = 4δa
[cδb

d]δ
ρ
[µδσ

ν] δ(3)(~x−~y) ,

{ωab
µ(x) , π(ω)cd

ν(y) } = 2δa
[cδb

d]δ
ν

µ δ(3)(~x−~y) ,

{ Bµν(x) , π(B)ρσ(y) } = 2δρ
[µδσ

ν] δ(3)(~x−~y) ,

{ Aµ(x) , π(A)ν(y) } = δν
µ δ(3)(~x−~y) ,

{ ea
µ(x) , π(e)b

ν(y) } = δa
bδν

µ δ(3)(~x−~y) ,

{ βa
µν(x) , π(β)b

ρσ(y) } = 2δa
b δρ

[µδσ
ν] δ(3)(~x−~y) ,

{ φA(x) , π(φ)B(y) } = δA
B δ(3)(~x−~y) ,

{ γA
µνρ(x) , π(γ)B

αβγ(y) } = 3!δA
B δα

[µδβ
νδγ

ρ] δ(3)(~x−~y) .

(19)

Using these relations, one can calculate the algebra between the primary constraints,

{ P(B)ab jk(x) , P(ω)cd
i(y) } = 4ε0ijk δa

[cδb
d] δ(3)(~x−~y) ,

{ P(B)jk(x) , P(A)i(y) } = ε0ijk δ(3)(~x−~y) ,

{ P(e)ak , P(β)b
ij(y) } = −ε0ijk δa

b(x) δ(3)(~x−~y) ,

{ P(φ)A(x) , P(γ)B
ijk(y) } = ε0ijk δA

B δ(3)(~x−~y) ,

(20)

while all other Poisson brackets vanish. The canonical on-shell Hamiltonian is defined by

Hc =
∫

Σ3

d3~x
[

1
4

π(B)ab
µν ∂0Bab

µν +
1
2

π(ω)ab
µ ∂0ωab

µ +
1
2

π(B)µν ∂0Bµν + π(A)µ ∂0 Aµ

+ π(e)a
µ ∂0ea

µ +
1
2

π(β)a
µν ∂0βa

µν + π(φ)A ∂0DA +
1
3!

π(γ)A
µνρ ∂0γA

µνρ

]
− L .

(21)

Rewriting the Hamiltonian (21) such that all the velocities are multiplied by the first class
constraints and therefore in an on-shell quantity they drop out, one obtains:

Hc =−
∫

Σ3

d3~x ε0ijk
[

1
2

Bab0i Rab
jk +

1
2

B0iFjk +
1
6

ea0 Ga
ijk + βa

0i∇jeak

+
1
2

ωab
0

(
∇iBab jk − e[a|i β|b]jk

)
+

1
2

A0

(
∂iBjk +

1
3

φA �B
A γB

ijk

)
+

1
2

γA
0ij∇kφA

]
.

(22)

This expression does not depend on any of the canonical momenta and it contains only the fields
and their spatial derivatives. By adding a Lagrange multiplier λ for each of the primary constraints we
can build the off-shell Hamiltonian, which is given by:

HT = Hc+
∫

Σ3

d3~x
[

1
4

λ(B)ab
µνP(B)ab

µν +
1
2

λ(ω)ab
µP(ω)ab

µ +
1
2

λ(B)µνP(B)µν + λ(A)µP(A)µ

+λ(e)a
µP(e)a

µ +
1
2

λ(β)a
µνP(β)a

µν + λ(φ)AP(φ)A +
1
3!

λ(γ)A
µνρP(γ)A

µνρ

]
.

(23)

Since the primary constraints must be preserved in time, one must impose the
following requirement:

Ṗ ≡ { P , HT } ≈ 0 , (24)
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for each primary constraint P. By using the consistency condition (24) for the primary constraints
P(B)ab

0i, P(ω)ab
0, P(B)0i, P(A)0, P(e)a

0, P(β)a
0i, and P(γ)A

0ij,

Ṗ(B)ab
0i ≈ 0 , Ṗ(ω)ab

0 ≈ 0 , Ṗ(B)0i ≈ 0 , Ṗ(A)0 ≈ 0 ,

Ṗ(e)a
0 ≈ 0 , Ṗ(β)a

0i ≈ 0 , Ṗ(γ)A
0ij ≈ 0 ,

(25)

one obtains the secondary constraints S ,

S(R)ab
i ≡ ε0ijkRab jk ≈ 0 , S(∇B)ab ≡ ε0ijk(∇iBab jk − e[a|i β|b] jk

)
≈ 0 ,

S(F)i ≡ 1
2 ε0ijkFjk ≈ 0 , S(∇B) ≡ 1

2 ε0ijk(∂iBjk +
1
3 φA �B

A γB
ijk
)
≈ 0 ,

S(G)a ≡ 1
6 ε0ijkGaijk ≈ 0 , S(∇e)a

i ≡ ε0ijk∇jeak ≈ 0 ,

S(∇φ)A
ij ≡ ε0ijk∇kφA ≈ 0 ,

(26)

while in the case of P(B)ab
jk, P(ω)ab

k, P(B)jk, P(A)k, P(e)a
k, P(β)a

jk, P(φ)A and P(γ)A
ijk the

consistency conditions

Ṗ(B)ab
jk ≈ 0 , Ṗ(ω)ab

k ≈ 0 , Ṗ(B)jk ≈ 0 , Ṗ(A)k ≈ 0 ,

Ṗ(e)a
k ≈ 0 , Ṗ(β)a

jk ≈ 0 , Ṗ(φ)A ≈ 0 , Ṗ(γ)A
ijk ≈ 0 ,

(27)

determine the following Lagrange multipliers:

λ(ω)ab
i ≈ ∇i ωab 0 , λ(B)ij ≈ 2∂[i| B0|j] + γA

0ij �B
A φB ,

λ(A)i ≈ ∂i A0 , λ(β)a
ij ≈ 2∇[i| βa

0|j] −ωab
0 βb ij ,

λ(φ)A ≈ A0 � A
B φB , λ(e)a

i ≈ ∇i ea
0 −ωa

b 0 eb
i ,

λ(B)ab
ij ≈ 2∇[i|Bab

0|j] + e[a| 0β|b]
ij − 2e[a| [i|β|b]0|j] + 2ω[a|

cB|b]c ij ,

λ(γ)A
ijk ≈ −A0 � A

B γB
ijk +∇iγA

0jk −∇jγA
0ik +∇kγA

0ij .

(28)

Note that the consistency conditions leave the Lagrange multipliers

λ(B)ab
0i , λ(ω)ab

0 , λ(B)0i , λ(A)0 , λ(e)a
0 , λ(β)a

0i , λ(γ)A
0ij (29)

undetermined. The consistency conditions of the secondary constraints do not produce new constraints,
since one can show that

Ṡ(R)abi = {S(R)abi , HT} = ω[a|
c0 S(R)c|b]i ,

Ṡ(∇B) = {S(∇B), HT} = −�B
A γB

0ij S(∇φ)A
ij ,

Ṡ(G)a = {S(G)a , HT} = βb0k S(R)abk −ωab
0 S(G)b ,

Ṡ(∇e)a
i = {S(∇e)a

i , HT} = eb
0 S(R)ab

i −ωa
b

0 S(∇e)b
i ,

Ṡ(∇φ)A
ij = {S(∇φ)A

ij , HT} = A0 � A
BS(∇φ)B

ij ,

Ṡ(F)i = {S(F)i , HT} = 0 ,

Ṡ(∇B)ab = {S(∇B)ab , HT} = S(R)[a|ck Bc
|b]0k + ω[a|

c
0S(∇B)|b]c

−β[a|0k S(∇e)|b]k + e[a|0 S(G)|b] .

(30)
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Then, the total Hamiltonian can be written as

HT =
∫

Σ3

d3~x
[

1
2

λ(B)ab
0i Φ(B)ab

i +
1
2

λ(ω)ab
0 Φ(ω)ab + λ(B)0i Φ(B)i + λ(A)0 Φ(A)

+ λ(e)a
0 Φ(e)a + λ(β)a

0i Φ(β)a
i +

1
2

λ(γ)A
0ijΦ(γ)A

ij

− 1
2

Bab0i Φ(R)abi − 1
2

ωab0 Φ(∇B)ab − B0i Φ(F)i − A0 Φ(∇B)

− ea0 Φ(G)a − βa0i Φ(∇e)ai − 1
2

γA0ij Φ(∇φ)Aij
]

,

(31)

where

Φ(B)ab
i = P(B)ab

0i , Φ(γ)A
ij = P(γ)A

0ij ,

Φ(ω)ab = P(ω)ab
0 , Φ(F)i = S(F)i − ∂jP(B)ij ,

Φ(B)i = P(B)0i , Φ(R)abi = S(R)abi −∇jP(B)ab ij ,

Φ(A) = P(A)0 , Φ(G)a = S(G)a +∇iP(e)a i − 1
4 βb ij P(B)ab ij ,

Φ(e)a = P(e)a
0 , Φ(∇e)a i = S(∇e)a i −∇jP(β)a ij + 1

2 eb j P(B)ab ij ,

Φ(β)a
i = P(β)a

0i , Φ(∇φ)A ij = S(∇φ)A ij +∇kP(γ)A ijk −�B
A φB P(B)ij ,

Φ(∇B) = S(∇B) + ∂iP(A)i +
1
3!

γA
ijk �A

B P(γ)B
ijk − φA �B

A P(φ)B ,

Φ(∇B)ab = S(∇B)ab +∇iP(ω)abi + B[a|
c ij P(B)c|b] ij − 2e[a|i P(e)|b] i − β[a|

ij P(β)|b] ij ,

(32)

are the first-class constraints, while

χ(B)ab
jk = P(B)ab

jk , χ(B)jk = P(B)jk , χ(e)a
i = P(e)a

i , χ(φ)A = P(φ)A ,

χ(ω)ab
i = P(ω)ab

i , χ(A)i = P(A)i , χ(β)a
ij = P(β)a

ij , χ(γ)A
ijk = P(γ)A

ijk ,
(33)

are the second-class constraints.
The PB algebra of the first-class constraints is given by:

{Φ(G)a(x) , Φ(∇e)b
i(y) } = −Φ(R)a

b
i(x) δ(3)(~x−~y) ,

{Φ(G)a(x) , Φ(∇B)bc(y) } = 2δa
[b| Φ(G)|c](x) δ(3)(~x−~y) ,

{Φ(∇e)a
i(x) , Φ(∇B)bc(y) } = 2δa

[b|Φ(∇e)|c]i(x) δ(3)(~x−~y) ,

{Φ(R)abi(x) , Φ(∇B)cd(y) } = −4δ[a| [c Φ(R)|b]d]i(x) δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , Φ(∇B)cd(y) } = −4δ[a| [c| Φ(∇B)|b] |d](x) δ(3)(~x−~y) ,

{Φ(∇B)(x) , Φ(∇φ)A
ij(y) } = −2 �B

A Φ(∇φ)B
ij(x)δ(3)(~x−~y) .

(34)
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The PB algebra between the first and the second-class constraints is given by:

{Φ(R)abi(x) , χ(ω)cd
j(y) } = 4 δ[a| [c| χ(B)|b] |d]ij(x)δ(3)(~x−~y) ,

{Φ(G)a(x) , χ(ω)cd
i(y) } = 2 δa

[c| χ(e)|d]i(x)δ(3)(~x−~y) ,

{Φ(G)a(x) , χ(β)c
jk(y) } = −1

2
χ(B)a

c
jk(x) δ(3)(~x−~y) ,

{Φ(∇e)ai(x) , χ(ω)cd
j(y) } = −2 δa

[c| χ(β)|d]
ij(x) δ(3)(~x−~y) ,

{Φ(∇e)ai(x) , χ(e)b
j(y) } =

1
2

χ(B)a
b

ij δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(ω)cd
i(y) } = 4 δ[a| [c| χ(ω)|d]

|b]i δ(3)(~x−~y) ,

{Φ(∇B)(x) , χ(A)i(y) } = 2 χ(A)i δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(β)c
jk(y) } = −2δ[a|c χ(β)|b]jk δ(3)(x− y) ,

{Φ(∇B)(x) , χ(γ)A
ijk(y) } = �A

B χ(γ)B
ijk(x) δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(B)cd
jk(y) } = 4 δ[a| [c χ(B)d]

|b]jk δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(e)a
i(y) } = −2δ[a|c χ(e)|b]i δ(3)(~x−~y) ,

{Φ(∇B)(x) , χ(φ)A(y) } = −�B
A χ(φ)B(x) δ(3)(~x−~y) ,

{Φ(∇φ)Aij(x) , χ(A)k(y) } = −�B
A χ(γ)Bijk(x) δ(3)(~x−~y) ,

{Φ(∇φ)Aij(x) , χ(φ)B(y) } = −�B
A χ(B)ij(x) δ(3)(~x−~y) .

(35)

The PB algebra between the second-class constraints has already been calculated, and is given
in Equations (20).

4. The Bianchi Identities

In order to calculate the number of degrees of freedom in the theory, one needs to make use of the
Bianchi identities (BI), as well as additional, generalized Bianchi identities (GBI) that are an analogue of
the ordinary BI for the additional fields present in the theory.

One uses BI associated with the 1-form fields ωab and ea, as well as the GBI for the 1-form A.
Namely, the corresponding 2-form curvatures

Rab = dωab + ωa
c ∧ωcb , Ta = dea + ωa

b ∧ eb , F = dA , (36)

satisfy the following identities:

ελµνρ∇µRab
νρ = 0 , (37)

ελµνρ
(
∇µTa

νρ − Rab
µν ebρ

)
= 0 , (38)

ελµνρ∇µFνρ = 0 . (39)

Choosing the free index to be time coordinate λ = 0, these indentities, as the time-independent
parts of the Bianchi identities, become the off-shell restrictions in the sense of the Hamiltonian analysis.
On the other hand, choosing the free index to be a spatial coordinate, one obtains time-dependent
pieces of the Bianchi identities, which do not enforce any restrictions, but can instead be derived as
a consequence of the Hamiltonian equations of motion.
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There are also GBI associated with the 2-form fields Bab, B and βa. The corresponding 3-form
curvatures are given by

Sab = dBab + 2ω[a|
c ∧ Bc |b] , P = dB , Ga = dβa + ωa

b ∧ βb . (40)

Differentiating these expressions, one obtains the following GBI:

ελµνρ

(
1
3
∇λ Sab

µνρ − R[a| c
λµ Bc

|b]
νρ

)
= 0 , (41)

ελµνρ∂λ Pµνρ = 0 , (42)

ελµνρ

(
2
3
∇λ Ga

µνρ − Rab
λµ βb νρ

)
= 0 . (43)

However, in four-dimensional spacetime, these identities will be single-component equations,
with no free spacetime indices, and therefore necessarily feature time derivatives of the fields.
Thus, they do not impose any off-shell restictions on the canonical variables.

Finally, there is also GBI associated with the 0-form φ. The corresponding 1-form curvature is:

QA = dφA +�B
A A ∧ φB , (44)

so that the GBI associated with this curvature is:

ελµνρ

(
∇νQA

ρ −
1
2
�B

A FνρφB
)
= 0. (45)

This GBI consists of 12 component equations, corresponding to six possible choices of the
free antisymmetrized spacetime indices λµ, and the 2 possible choices of the free group index A.
However, not all of these 12 identities are independent. This can be seen by taking the derivative of the
Equation (45) and obtaining eight identities of the form

�B
A ελµνρ ∂µ Fνρ φB = 0 , (46)

which are automatically satisfied because of the GBI (39). One concludes there are only four
independent identities (45). Now, fixing the value λ = 0, one obtains the time-independent components
of both Equations (45) and (46),

ε0ijk
(
∇jQA

k −
1
2
�B

A FjkφB
)
= 0 , (47)

and
�B

A ε0ijk ∂i Fjk φB = 0 . (48)

Of these, there are six components in Equation (47), but, because of the two components of
Equation (48), there are overall only four independent GBI relevant for the Hamiltonian analysis.

5. Number of Degrees of Freedom

Let us now show that the structure of the constraints implies that there are no local degrees of
freedom (DoF) in a 3BF theory. In the general case, if there are N initial fields in the theory and there
are F independent first-class constraints per space point and S independent second-class constraints
per space point, then the number of local DoF, i.e., the number of independent field components,
is given by

n = N − F− S
2

. (49)
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Equation (49) is a consequence of the fact that S second-class constraints are equivalent to
vanishing of S/2 canonical coordinates and S/2 of their momenta. The F first-class constraints are
equivalent to vanishing of F canonical coordinates, and since the first-class constraints generate
the gauge symmetries, we can impose F gauge-fixing conditions for the corresponding F canonical
momenta. Consequently, there are 2N − 2F− S independent canonical coordinates and momenta and
therefore 2n = 2N − 2F− S, giving rise to Equation (49).

In our case, N can be determined from the Table 1, giving rise to a total of N = 120 canonical
coordinates. Similarly, the number of independent components for the second class constraints is
determined by the Table 2, so that S = 70.

Table 1. The number of components for all fields present in the theory.

ωab
µ Aµ βa

µν γA
µνρ Bab

µν Bµν ea
µ φA

24 4 24 8 36 6 16 2

Table 2. The number of components for the second class constraints present in the theory.

χ(B)ab
jk χ(B)jk χ(e)a

i χ(φ)A χ(ω)ab
i χ(A)i χ(β)a

ij χ(γ)A
ijk

18 3 12 2 18 3 12 2

The first-class constraints are not all independent because of BI and GBI. To see that, take the
derivative of Φ(R)abi to obtain

∇iΦ(R)abi = ε0ijk∇iRab
jk +

1
2

Rc[a|
ijP(B)c

|b]ij . (50)

The first term on the right-hand side is zero off-shell because εijk∇iRab
jk = 0, which is a λ = 0

component of the BI (37). The second term on the right-hand side is also zero off-shell, since it is
a product of two constraints,

Rc[a|
ij P(B)c

|b]ij ≡ 1
2

ε0ijkS(R)c[a|k P(B)c
|b]ij = 0 . (51)

Therefore, we have the off-shell identity

∇iΦ(R)abi = 0 , (52)

which means that six components of Φ(R)abi are not independent of the others. In an analogous
fashion, taking the derivative of Φ(F)i, one obtains

∂iΦ(F)i = ε0ijk ∂iFjk +
1
2

Fij P(B)ij . (53)

The first term on the right-hand side is zero off-shell because εijk ∂iFjk = 0, which is a λ = 0
component of the GBI (37). The second term on the right-hand side is also zero off-shell, since it is a
product of two constraints,

Fij P(B)ij ≡ 1
2

ε0ijk S(F)k P(B)ij = 0 . (54)

Therefore, we have the off-shell identity

∂iΦ(F)i = 0 , (55)
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which means that one component of Φ(F)i is not independent of the others. Similarly, one can
demonstrate that

∇iΦ(∇e)a
i − 1

2
Φ(R)ab

i eb
i +

1
4

ε0ijkS(R)abk P(β)b
ij =

1
2

ε0ijk
(
∇iTajk − Rab ij eb

k

)
. (56)

The right-hand side of the Equation (56) is the λ = 0 component of the BI (38), so that Equation (56)
gives the relation:

∇iΦ(∇e)a
i − 1

2
Φ(R)ab

i eb
i = 0 , (57)

where we have omitted the term that is the product of two constraints. This relation means that four
components of the constraints Φ(∇e)a

i and Φ(R)ab
i can be expressed in terms of the rest. Finally,

one can also demonstrate that

∇iΦ(∇φ)A
ij − 1

2
ε0ikl �A S(F)l χ(γ)B

ijk +�B
A φB Φ(F)j

+
1
2

ε0ilm �B
A P(B)ij S(∇φ)B

lm = ε0ijk
(
∇iQAk +

1
2
�B

A Fik φB

)
,

(58)

which gives

∇iΦ(∇φ)A
ij +

1
2
�B

A φB Φ(F)j = 0 , (59)

for λ = 0 component of the GBI (45), where we have again used that the product of two contraints
is zero off-shell. This relation suggests that six components of two first-class constraints, Φ(∇φ)A

ij

and Φ(F)j, are not independent of the others. However, in the previous section, we have discussed
that only four of these six identities are mutually independent, which means that we have only
four independent identities (59). A rigorous proof of this statement entails the evaluation of the
corresponding Wronskian, and is left for future work.

Taking into account all of the above indentites (52), (55), (57), and (59), we can finally evaluate
the total number of independent first-class constraints. From the Table 3, one can see that the total
number of components of the first-class constraints is given by F∗ = 100. However, the number
of independent components of the first-class constraints is F = 85, obtained by subtracting the six
relations (52), one relation (55), four relations (57) and four relations (59).

Table 3. The number of components for the first class constraints present in the theory. The identities (52),
(55), (57), and (59) reduce the number of components which are independent. This reduction is explicitly
denoted in the table.

Φ(B)ab
i Φ(B)i Φ(e)a Φ(ω)ab Φ(A) Φ(β)a

i Φ(γ)A
ij Φ(R)ab

i Φ(F)i Φ(G)a Φ(∇e)a
i Φ(∇B)ab Φ(∇B) Φ(∇φ)A

ij

18 3 4 6 1 12 6 18− 6 3− 1 4 12− 4 6 1 6− 4

Therefore, substituting all the obtained results into Equation (49), one gets

n = 120− 85− 70
2

= 0, (60)

which means that there are no propagating DoF in a 3BF theory described by the action (10).

6. Generator of the Gauge Symmetry

Based on the results of the Hamiltonian analysis of the action (10), it can also be interesting to
calculate the generator of the complete gauge symmetry of the action. The gauge generator of the theory
is obtained by using the Castellani’s procedure (see Chapter V in [13] for details of the procedure),
and one gets the following result (see Appendix B for details of the calculation):
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G =
∫

Σ3

d3~x
(

1
2
(∇0εab

i)Φ(B)ab
i − 1

2
εab

iΦ(R)ab
i +

1
2
(∇0εab)Φ(ω)ab −

1
2

εabΦ(∇B)ab

+ (∂0εi)Φ(B)i − εiΦ(F)i + (∂0ε)Φ(A)− εΦ(∇B)

+ (∇0εa)Φ(e)a − εaΦ(G)a + (∇0εa
i)Φ(β)a

i − εa
iΦ(∇e)a

i

+
1
2
(∇0εA

ij)Φ(γ)A
ij − 1

2
εA

ijΦ(∇φ)A
ij

+ εab
(

β[a|0iP(β)|b]
i + e[a|0P(e)|b] + B[a|c0iP(B)c

|b]
i
)
− ε γA0ij �B

A P(γ)Bij

+ εaβb0iP(B)abi + εa
i eb0P(B)a

bi
)

.

(61)

Here, εab
i, εab, εi, ε, εa, εa

i and εA
ij are the independent parameters of the gauge transformations.

Furthermore, one can employ the gauge generator to calculate the form-variations for all canonical
coordinates and their corresponding momenta, by computing the Poisson bracket of the chosen variable
A(t,~x) and the generator (61):

δ0 A(t,~x) = {A(t,~x) , G} . (62)

The results are given as follows:

δ0ωab
0 = ∇0εab , δ0π(ω)ab

0 = −2ε[a|
c
iπ(B)c|b]

0i − 2ε[a|
cπ(ω)c|b]

0 ,

+2ε[a|π(e)|b]0 + 2ε[a|iπ(β)|b]
0i ,

δ0ωab
i = ∇iε

ab , δ0π(ω)ab
i = −2ε[a|

c
j π(B)c|b]

ij − 2ε[a|
c
i π(ω)|b]c

i

+2ε[a| π(e)|b]i + 2ε[a| jπ(β)|b]
ij

+2ε0ijk∇[j|εab |k] + ε0ijkε[a|β|b] jk ,

δ0Bab
0i = ∇0εab

i + ε[a|ie|b]0 δ0π(B)ab
0i = 2ε[a|c π(B)|b]ci ,

+2ε[a|cB|b]c0i + ε[a|β|b]0i ,

δ0Bab
ij = 2∇[i|ε

ab
|j] + 2ε[a|cB|b]cij δ0π(B)ab

ij = 2ε[a|c π(B)|b]cij ,

+2ε[a| [ie|b] j] + ε[a|β|b]ij ,

δ0 A0 = ∂0ε , δ0π(A)0 = − 1
2 εA

ij �
B

A π(γ)B
0ij ,

δ0 Ai = ∂iε , δ0π(A)i = ε0ijk∂jεk − 1
2 εA

jk �B
A π(γ)B

ijk ,

δ0B0i = ∂0εi , δ0π(B)0i = 0 ,

δ0Bij = 2 ∂[i|ε|j] + εA
ij �

B
A φB , δ0π(B)ij = −ε0ijk∂kε ,

δ0βa
0i = ∇0εa

i − εabβb0i , δ0π(β)a
0i = −εabπ(β)b0i + 1

2 εbπ(B)ab
0i ,

δ0βa
ij = 2∇[i|ε

a
|j] − εab βbij , δ0π(β)a

ij = −εab π(β)bij + 1
2 εb π(B)ab

ij

−ε0ijk∇kεa ,

δ0ea
0 = ∇0εa − εab eb0 , δ0π(e)a

0 = −εab π(e)b0 + 1
2 εb

i π(B)ab
0i ,

δ0ea
i = ∇iε

a − εab ebi , δ0π(e)a
i = −εab π(e)bi + ε0ijk

(
∇[j|εa |k] + εabβbjk

)
+ 1

2 εb
j π(B)ab

ij ,
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δ0γA
0ij = ∇0εA

ij − ε γB
0ij �

A
B , δ0π(γ)A

0ij = ε �B
A π(γ)B

0ij ,

δ0γA
ijk = − ε γB

ijk �B
A +∇iε

A
jk δ0π(γ)A

ijk = ε �A
B
(

π(γ)B
ijk + ε0ijk φB

)
,

−∇jε
A

ik +∇kεA
ij ,

δ0φA = ε φB � A
B , δ0π(φ)A = −ε �B

A π(φ)B +
1
3!

ε ε0ijk �B
A γBijk

−1
2
�A B εB

ij π(B)ij − 1
2

ε0ijk∇iε
A

jk ,

(63)

These transformations are an extension of the form-variations in the case of the Poincaré 2-group
obtained in [17].

7. Conclusions

Let us summarize the results of the paper. In Section 2, we have demonstated in detail how to use
the idea of a categorical ladder to introduce the 3-group structure corresponding to the theory of scalar
electrodynamics coupled to Einstein–Cartan gravity. We have introduced the topological 3BF action
corresponding to this choice of a 3-group, as well as the constrained 3BF action which gives rise to
the standard equations of motion for the scalar electrodynamics. In order to perform the canonical
quantization of this theory, the complete Hamiltonian analysis of the full theory with constraints has to
be performed, but the important step towards this goal is the Hamiltonian analysis of the topological
3BF action. This has been done in Section 3. Here, the first-class and second-class constraints of
the theory, as well as their Poisson brackets, have been obtained. In Section 4, we have discussed the
Bianchi identities and also the generalized Bianchi identities, since they enforce restrictions in the
sense of Hamiltonian analysis, and reduce the number of independent first-class constraints present
in the theory. With this background material in hand, in Section 5, the counting of the dynamical
degrees of freedom present in the theory has been performed and it was established that the considered
3BF action is a topological theory, i.e., the diffeomorphism invariant theory without any propagating
degrees of freedom. In Section 6, we have constructed the generator of the gauge symmetries for
the theory, and we found the form-variations for all the variables and their canonical momenta.

The results obtained in this paper represent the straightforward generalization of Hamiltonian
analysis done in [15] for the Poincaré 2-group, and a first example of the Hamiltonian analysis of
a 3BF action. The fact that the theory was found to be topological is nontrivial, since it relies on the
existence of the generalized Bianchi identities, which have been identified for the first time. In addition
to that, it was demonstrated that the algebra of constraint closes, which is an important consistency
check for the theory. There is another very interesting aspect of the constraint algebra. Namely,
one can recognize, looking at the structure of Equations (34) that the subalgebra generated by the
first-class constraint Φ(∇φ)A

ij is in fact an ideal of the constraint algebra because the Poisson bracket
between this constraint and all other constraints is again proportional to that constraint. It is curious
that precisely the constraint Φ(∇φ)A

ij is the only one related to the Lie group L from the 3-group,
according to its index structure, and also that the structure constant of the ideal is determined by
the action � of the group G on L. Let us also note that the action � appears as well in the structure
constants of the algebra between the first-class and second-class constraints.

The results of this work open several avenues for future research. From the point of view of
mathematics, the relationship between the algebraic structures mentioned above should be understood
in more detail. More generally, one should understand the correspondence between the gauge
group generated by the generator (61) and the 3-group structure used to define the theory. This is
not viable in the special case of the 3-group discussed in this work, but instead needs to be done
in the case of a generic 3-group, where homomorphisms δ and ∂ and the Peiffer lifting {_ , _} are
nontrivial. From the point of view of physics, the obtained results represent the fundamental building
blocks for the construction of the quantum theory of scalar electrodynamics coupled to gravity, as
well as a convenient model to discuss before proceeding to the Hamiltonian analysis and canonical
quantization of the full Standard Model coupled to gravity, formulated as a 3BF action with suitable
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constraints [8]. Both the Hamiltonian analysis of constrained 3BF models and the corresponding
canonical quantization programme need to be further developed in order to achieve these goals.
Our work is a first step in this direction.

Finally, let us note in the end that the above list of topics for future research is by no means
complete, and there are potentially many other interesting topics that can be studied in this context.
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Appendix A. The Equations of Motion for the Scalar Electrodynamics

The action of scalar electrodynamics coupled to Einstein–Cartan gravity is given in the form (12):

S =
∫
M4

Bab ∧ Rab + B ∧ F + ea ∧∇βa + φA∇γA

− λab ∧
(

Bab − 1
16πl2

p
εabcdec ∧ ed

)
+ λA ∧

(
γA −

1
2

HabcAea ∧ eb ∧ ec
)
+ ΛabA ∧

(
HabcAεcde f ed ∧ ee ∧ e f −∇φA ∧ ea ∧ eb

)
+ λ ∧

(
B− 12

q
Mabea ∧ eb

)
+ ζab

(
Mabεcde f ec ∧ ed ∧ ee ∧ e f − F ∧ ea ∧ eb

)
− 1

2 · 4!
m2φA φAεabcdea ∧ eb ∧ ec ∧ ed .

(A1)

Varying the total action (12) with respect to the variables Bab, B, ωab, βa, λab, ΛabA, γA, λA, HabcA,
ζab, Mab, λ, A, φA and ea, one obtains the equations of motion:

Rab − λab = 0 , (A2)

F + λ = 0 , (A3)

∇Bab − e[a| ∧ β|b] = 0 , (A4)

∇ea = 0 , (A5)

Bab − 1
16πl2

p
εabcdec ∧ ed = 0 , (A6)
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HabcAεcde f ed ∧ ee ∧ e f −∇φA ∧ ea ∧ eb = 0 , (A7)

∇φA − λA = 0 , (A8)

γA −
1
2

HabcAea ∧ eb ∧ ec = 0 , (A9)

− 1
2

λA ∧ ea ∧ eb ∧ ec + εcde f ΛabA ∧ ed ∧ ee ∧ e f = 0 , (A10)

Mabεcde f ec ∧ ed ∧ ee ∧ e f − F ∧ ea ∧ eb = 0 , (A11)

− 12
q

λ ∧ ea ∧ eb + ζabεcde f ec ∧ ed ∧ ee ∧ e f = 0 , (A12)

B− 12
g

Mabea ∧ eb = 0 , (A13)

− dB + d(ζabea ∧ eb)− φA �B
AγB −ΛabA �B

A φB ∧ ea ∧ eb = 0 , (A14)

∇γA −∇(Λab
A ∧ ea ∧ eb)−

1
4!

m2 φAεabcdea ∧ eb ∧ ec ∧ ed = 0 , (A15)

∇βa +
1

8πl2
p

εabcdλbc ∧ ed +
3
2

HabcAλA ∧ eb ∧ ec + 3Hde f AεabcdΛe f A ∧ eb ∧ ec

− 2ΛabA ∧∇φA ∧ eb − 2
1
4!

m2φA φAεabcdeb ∧ ec ∧ ed

− 24
q

Mabλ ∧ eb + 4ζe f Me f εabcdeb ∧ ec ∧ ed − 2ζabF ∧ eb = 0 .

(A16)

The dynamical degrees of freedom are the tetrad fields ea, the scalar field φA, and the
electromagnetic potential A, while the remaining variables are algebraically determined in terms
of them. Specifically, Equations (A2)–(A13) give

λabµν = Rabµν , ωab
µ = 4ab

µ , γA
µνρ = − 1

2e
εµνρσ∇σφA ,

ΛabA
µ =

1
12e

gµλελνρσ∇νφA ea
ρeb

σ , βa
µν = 0 , Babµν =

1
8πl2

p
εabcdec

µed
ν ,

HabcA =
1
6e

εµνρσ∇µφA ea
νeb

ρec
σ , λA

µ = ∇µφA ,

λµν = Fµν , Bµν = − 1
2eq

εµνρσFρσ ,

Mab = − 1
4e

εµνρσFµν ea
ρeb

σ , ζab =
1

4eq
εµνρσFµν ea

ρeb
σ .

(A17)

Note that from the Equations (A4)–(A6) it follows that βa = 0, as in the pure gravity case. The
equation of motion (A15) reduces to the covariant Klein–Gordon equation for the scalar field coupled
to the electromagnetic potential A, (

∇µ∇µ −m2
)

φA = 0 . (A18)

From Equation (A14), we obtain the differential equation of motion for the field A:

∇µFµν = jν , jµ ≡ 1
2

(
∇νφA �B

AφB − φA �B
A∇νφB

)
= iq

(
∇φ∗ φ− φ∗∇φ

)
. (A19)
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Finally, the equation of motion (A16) for ea becomes:

Rµν − 1
2

gµνR = 8πl2
p Tµν ,

Tµν ≡ ∇µφA∇νφA − 1
2

gµν
(
∇ρφA∇ρφA + m2φA φA

)
− 1

4q
(

FρσFρσgµν + 4FµρFρ
ν
)

.
(A20)

The system of Equations (A2)–(A16) is equivalent to the system of Equations (A17)–(A20).

Appendix B. The Calculation of the Gauge Generator

The gauge generator of the theory is obtained by the standard Castellani procedure (see [13] for
an introduction). One starts from the generic form for the generator,

G =
∫

Σ3

∂3~x
(1

2
(∂0εab

i)G1ab
i +

1
2

εab
iG0ab

i +
1
2
(∂0εab)G1ab +

1
2

εabG0ab

+ (∂0εi)G1
i + εiG0

i + (∂0ε)G1 + εG0

+ (∂0εa)G1a + εaG0a + (∂0εa
i)G1a

i + εa
iG0a

i

+
1
2
(∂0εA

ij)G1 A
ij +

1
2

εA
ijG0 A

ij
)

,

(A21)

where the generators G0 and G1 are obtained by the standard prescription [13]:

G1 = CPFC ,

G0 + {G1 , HT } = CPFC ,

{G0 , HT } = CPFC ,

(A22)

where CPFC is a primary first-class constraint. For example, one choses G1ab
i = Φ(B)ab

i. From
the conditions

G0ab
i + {Φ(B)ab

i , HT } = G0ab
i + Φ(R)ab

i = CPFC ,

{G0ab
i , HT } = CPFC

∗ = {CPFC −Φ(R)ab
i , HT } ,

(A23)

we solve for G0ab
i by determining CPFC from the second equation. Evaluating one PB, one can reexpress

the second equation in the form:

{CPFC , HT } = CPFC
∗ + 2ω[a|

d
0Φ(R)|b]d

i = { 2ω[a|
d

0P(B)|b]d
i , HT } . (A24)

From the second equality, we recognize that

CPFC = 2ω[a|
d

0P(B)|b]d
i , (A25)

which can then be substituted into the first condition above, giving

G0ab
i = 2ω[a|

d
0Φ(B)|b]d

i −Φ(R)ab
i . (A26)

One thus obtains

1
2
(∂0εab

i)(G1)ab
i +

1
2

εab
iG0ab

i =
1
2
∇0εab

iΦ(B)ab
i − 1

2
εab

iΦ(R)ab
i .

The other G0 and G1 terms are obtained in a similar way, and the generator (61) is derived.
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Appendix C. Introduction to 3-Groups

The notion of a 3-group is usually introduced in the framework of higher category theory [6].
In category theory, every group can be understood as a category which has only one element,
and morphisms which are all invertible. The group elements are then individual morphisms that
map the category element to itself, while the group operation is the categorical composition of the
morphisms. In such a case, the axioms of the category guarantee the validity of all axioms of a group.
This kind of construction can be generalized to 2-groups, 3-groups and, in general, n-groups. Namely,
a 2-group is by definition a 2-category which has only one element, and whose morphisms and
2-morhisms (i.e., morphisms between morphisms) are invertible. Similarly, a 3-group is by definition
a 3-category which has only one element, while its morphisms, 2-morphisms, and 3-morphisms
are invertible.

The above definition of a 3-group is very abstract, and while theoretically very important, in itself
not very useful for practical calculations and applications in physics. Fortunately, there is a theorem
of equivalence between 3-groups and the so-called 2-crossed modules, which are algebraic structures
with more familiar properties [9,10]. For the applications in physics, attention focuses on the so-called
strict Lie 3-groups, and their corresponding differential (Lie algebra) structure, which corresponds to
the differential Lie 2-crossed module. Let us therefore give a brief overview of the latter.

A differential Lie 2-crossed module (l
δ→ h

∂→ g, �, {_ , _}) is given by three Lie algebras g, h and l,
maps δ : l→ h and ∂: h→ g, together with a map called the Peiffer lifting,

{_ , _} : h× h→ l , (A27)

and an action � of the algebra g on all three algebras.
Let us introduce the bases in the three algebras, τα ∈ g, ta ∈ h and TA ∈ l, and structure constants

in those bases, as follows:

[τα , τβ] = fαβ
γτγ , [ta , tb] = fab

ctc , [TA TB] = fAB
CTC . (A28)

Now, the maps ∂ and δ can be written as

∂(ta) = ∂a
α τα , δ(TA) = δA

a ta , (A29)

and the action of the algebra g on g, h and l as:

τα � τβ = �αβ
γ τγ , τα � ta = �αa

b tb , τα � TA = �αA
B TB . (A30)

Finally, the Peiffer lifting can be encoded into coefficients Xab
A as:

{ta, tb} = Xab
A TA . (A31)

A differential Lie 2-crossed module has the following properties (we write all equations in the
abstract and their corresponding component forms, side by side):

1. The action of the algebra g on itself is via the adjoint representation, i.e., ∀g, g1 ∈ g:

g � g1 = [g, g1] , �αβ
γ = fαβ

γ . (A32)

2. The action of the algebra g on algebras h and l is g-equivariant, i.e., ∀g ∈ g, h ∈ h, l ∈ l:

∂(g � h) = g � ∂(h) , ∂a
β fαβ

γ = �αa
b ∂b

γ , (A33)

δ(g � l) = g � δ(l) , δA
a �αa

b = �αA
B δB

b . (A34)
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3. The Peiffer lifting is a g-equivariant map, i.e., for every g ∈ g and h1, h2 ∈ h:

g � {h1, h2} = {g � h1, h2}+ {h1, g � h2} , Xab
B �αB

A = �αa
c Xcb

A +�αb
c Xac

A . (A35)

4. For every h1, h2 ∈ h, the following identity holds:

δ({h1, h2}) = [h1 , h2]− ∂(h1)� h2 , Xab
A δA

c = fab
c − ∂a

α �αb
c . (A36)

5. For all l1, l2 ∈ l, the following identity holds:

[l1, l2] = {δ(l1), δ(l2)} , fAB
C = δA

a δB
b Xab

C . (A37)

6. For all h1, h2, h3 ∈ h:

{[h1, h2], h3} = ∂(h1)� {h2, h3}+ {h1, [h2, h3]} − ∂(h2)� {h1, h3} − {h2, [h1, h3]} ,

fab
d Xdc

B = ∂a
α Xbc

A �αA
B + Xad

B fbc
d − ∂b

α �αA
B Xac

A − Xbd
B fac

d .
(A38)

7. For all h1, h2, h3 ∈ h:

{h1, [h2, h3]} = {δ {h1, h2} , h3} − {δ {h1, h3} , h2} ,

Xad
A fbc

d = Xab
B δB

d Xdc
A − Xac

B δB
dXdb

A .
(A39)

8. For all l ∈ l and ∀h ∈ h:

{δ(l), h}+ {h, δ(l)} = −∂(h)� l , 2 δA
a X{ab}

B = −∂b
α �αA

B . (A40)

Finally, when dealing with various algebra valued differential forms, one multiplies them as
differential forms using the ordinary wedge product ∧, and simultaneously as algebra elements using
one of maps defined above. For example, the product with an action ∧� of the g-valued n-form ρ on
the h-valued m-form η is defined as:

ρ ∧� η =
1

n!m!
ρα

µ1 ...µm ηa
ν1 ...νn τα � ta dxµ1 ∧ . . . dxµm ∧ dxν1 ∧ · · · ∧ dxνn

=
1

n!m!
ρα

µ1 ...µm ηa
ν1 ...νn �αa

btb dxµ1 ∧ . . . dxµm ∧ dxν1 ∧ · · · ∧ dxνn .
(A41)
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