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Abstract: A comprehensive exploration of symmetry and conditional symmetry is made from the
evolution of symmetry. Unlike other chaotic systems of conditional symmetry, in this work it is derived
from the symmetric diffusionless Lorenz system. Transformation from symmetry and asymmetry to
conditional symmetry is examined by constant planting and dimension growth, which proves that
the offset boosting of some necessary variables is the key factor for reestablishing polarity balance in
a dynamical system.
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1. Introduction

The system structure is a fundamental topological constraint to the dynamical evolution,
which determines how the attractor stretches in phase space. Symmetric systems give birth to
attractors with a symmetrical face [1–5]. When symmetry is broken, the attractor splits into a symmetric
pair of attractors [6–8] or is preserved by doubling coexisting attractors [9]. Asymmetric systems
seem to give a single asymmetric attractor in most cases, although sometimes it hatches coexisting
asymmetric attractors [10–14] under a set of combined parameters. However, many asymmetric
systems have coexisting attractors of conditional symmetry with the new polarity balance from the
offset boosting.

Furthermore, symmetric structure does not reject conditional symmetry. In this paper,
the symmetry evolution in chaotic systems is analyzed, as shown in Figure 1. From the start of
the variable polarity reversal, if a dynamical system can establish its own polarity balance from
itself, the system is symmetric, or else losing the polarity balance indicates the asymmetric structure.
If a system recovers its polarity balance from a step with offset boosting, the derived system is of
conditional symmetry. From this observation, we can conclude that a system, whether it is symmetric
or asymmetric, can be transformed to be of conditional symmetry. In Section 2, the early proposed
chaotic systems of conditional symmetry are collected. In Section 3, conditional symmetry is coined
in a symmetric system. In Section 4, the collapse of polarity balance is thoroughly explored in two
directions, one of which is from the constant planting, and the other of which is from the dimension
growth. Conditional symmetry is therefore in the primary road where the offset-boosting-induced
polarity balance is well preserved. The conclusion is given in the last section.

Symmetry 2020, 12, 574; doi:10.3390/sym12040574 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-9932-0914
http://www.mdpi.com/2073-8994/12/4/574?type=check_update&version=1
http://dx.doi.org/10.3390/sym12040574
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 574 2 of 10

Symmetry 2020, 12, x FOR PEER REVIEW 2 of 10 

 

 

Figure 1. Relationship among symmetry, asymmetry and conditional symmetry. 

2. Conditional Symmetry from Asymmetry 

As we know, for a dynamical system �̇� = 𝐹(𝑋) =  (𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝑁(𝑋))𝑇 , ( 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑁)𝑇), if there exists a variable substitution 𝑢𝑖1
= −𝑥𝑖1

, 𝑢𝑖2
= −𝑥𝑖2

, ⋯ , 𝑢𝑖𝑘
= −𝑥𝑖𝑘

, 𝑢𝑖 = 𝑥𝑖 , 

(here 1 ≤ 𝑖1, ⋯ , 𝑖𝑘 ≤ 𝑁, 𝑖1, ⋯ , 𝑖𝑘  are not identical, 𝑖 ∈ {1,2, … , 𝑁}\{𝑖1, ⋯ , 𝑖𝑘} ) satisfying �̇� = 𝐹(𝑈) 

( 𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑁)) , then the system �̇� = 𝐹(𝑋)  ( 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁))  is symmetric. Conditional 

symmetry is a new terminology to describe the polarity balance from offset boosting [15–18]. For a 

differential dynamical system, �̇� = 𝐹(𝑋) =  (𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝑁(𝑋))𝑇 , ( 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁)𝑇) , the 

substitution 𝑢𝑖0
= 𝑥𝑖0

+ 𝑐 (𝑖0 ∈ {1,2, … , 𝑁} (c is an arbitrary constant) brings the offset boosting in 

the variable 𝑥𝑖0
, where the new constant c will change the average value of the variable 𝑥𝑖0

. For a 

dynamical system， if there exists a variable substitution, 𝑢𝑖0
= 𝑥𝑖0

+ 𝑐0 , 𝑢𝑖 = 𝑥𝑖  (here 𝑐0  is a 

non-zero constant, then 𝑖0 ∈ {1,2, … , 𝑁}, and 𝑖 ∈ {1,2, … , 𝑁}\{𝑖0}), which makes the deduced system 

�̇� = 𝐹∗(𝑈) = (𝑓1
∗(𝑈), 𝑓2

∗(𝑈), … , 𝑓𝑁
∗(𝑈)) (𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑁)) asymmetric, but when 𝑓𝑗0

∗ (𝑈)（1 ≤ 𝑗0 ≤

𝑁, 𝑗0 ≠ 𝑖0）is revised, the system becomes symmetric, and then system �̇� = 𝐹(𝑋) (𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁)) 

is conditionally symmetric. Some early proposed chaotic systems of conditional symmetry [19,20] 

are listed in Table 1. All the coexisting attractors of conditional symmetry are shown in Figure 2. As 

we can see, all these systems are asymmetric ones but give twin attractors. 

 

Figure 2. Coexisting twin attractors in chaotic systems in Table 1: (a) CS1, (b) CS2, (c) CS3, (d) CS4, (e) 

CS5, (f) CS6. 

Figure 1. Relationship among symmetry, asymmetry and conditional symmetry.

2. Conditional Symmetry from Asymmetry

As we know, for a dynamical system
.

X = F(X) = ( f1(X), f2(X), . . . , fN(X))T, (X =

(x1, x2, . . . , xN)
T), if there exists a variable substitution ui1 = −xi1 , ui2 = −xi2 , · · · , uik = −xik , ui = xi,

(here 1 ≤ i1, · · · , ik ≤ N, i1, · · · , ik are not identical, i ∈ {1, 2, . . . , N}\{i1, · · · , ik}) satisfying
.

U = F(U)

(U = (u1, u2, . . . , uN)), then the system
.

X = F(X) (X = (x1, x2, . . . , xN)) is symmetric. Conditional
symmetry is a new terminology to describe the polarity balance from offset boosting [15–18].
For a differential dynamical system,

.
X = F(X) = ( f1(X), f2(X), . . . , fN(X))T, (X = (x1, x2, . . . , xN)

T),
the substitution ui0 = xi0 + c (i0 ∈ {1, 2, . . . , N} (c is an arbitrary constant) brings the offset boosting
in the variable xi0 , where the new constant c will change the average value of the variable xi0 .
For a dynamical system, if there exists a variable substitution, ui0 = xi0 + c0, ui = xi (here c0 is
a non-zero constant, then i0 ∈ {1, 2, . . . , N}, and i ∈ {1, 2, . . . , N}\{i0}), which makes the deduced
system

.
U = F∗(U) =

(
f ∗1(U), f ∗2(U), . . . , f ∗N(U)

)
(U = (u1, u2, . . . , uN)) asymmetric, but when f ∗j0(U)

(1 ≤ j0 ≤ N, j0 , i0) is revised, the system becomes symmetric, and then system
.

X = F(X)

(X = (x1, x2, . . . , xN)) is conditionally symmetric. Some early proposed chaotic systems of conditional
symmetry [19,20] are listed in Table 1. All the coexisting attractors of conditional symmetry are shown
in Figure 2. As we can see, all these systems are asymmetric ones but give twin attractors.
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Table 1. Early explored typical chaotic systems of conditional symmetry.

Cases System Equations Parameters Initial Condition Lyapunov
Exponents

CS1


.
x = y2

− az2,
.
y = −z2

− by + c,
.
z = yz + F(x),

F(x) = |x| − 3

a = 0.4,
b = 1.75,
c = 3

(3, −1.5, −2)
(3, −1.5, 1)

0.1191,
0,
−1.2500

CS2


.
x = y2

− a,
.
y = bz,
.
z = −y− z + F(x),

F(x) = |x| − 3

a = 1.22,
b = 8.48

(3, 1, 0.5)
(−3, 1, 0.5)

0.2335,
0,
−1.2335

CS3


.
x = F(y),
.
y = z,
.
z = −x2

− az + b(F(y))2 + 1,
F(y) =

∣∣∣y∣∣∣− 4

a = 2.6,
b = 2

(0.5, 4, −1)
(0.5, −4, −1)

0.0463,
0,
−2.6463

CS4


.
x = y,
.
y = F(z),
.
z = x2

− ay2 + bxy + xF(z),
F(z) = |z| − 8

a = 1.24,
b = 1

(4, 0.8, −2)
(−4, 0.8, 2)

0.0645,
0,
−1.2582

CS5


.
x = 1−G(y)z,
.
y = az2

−G(y)z,
.
z = F(x),

F(x) = |x| − 3
G(y) =

∣∣∣y∣∣∣− 5

a = 0.22 (−1, 1, −1)
(2, 6, −1)

0.0729,
0,
−1.6732

CS6


.
x = F(y),
.
y = xG(z),
.
z = −axF(y) − bxG(z) − x2 + (F(y))2,

F(y) =
∣∣∣y∣∣∣− 5

G(z) = |z| − 5

a = 3,
b = 1.2

(0, −6 −6)
(0, 6, 6)

0.0506,
0,
−0.2904

3. Constructing Conditional Symmetry from Symmetry

Interestingly, a symmetric structure also gives the chance for hosting an offset-boosting-assisted
polarity balance and leading to conditional symmetry. Taking the diffusionless Lorenz system [21,22],
for example, 

.
x = y− x + n,
.
y = −xz + m,
.
z = xy−R.

(1)

where the parameters m and n are introduced for later discussion. When m = n = 0, R = 1, the system has
a chaotic attractor with Lyapunov exponents (0.2101, 0, −1.2101) and a corresponding Kaplan–Yorke
dimension DKY = 2.1736 under initial conditions (−1, 0, −1). In this work, for obtaining representative
Lyapunov exponents rather than absolute ones [23–25], all the finite-time Lyapunov exponents (LEs) are
computed for the time interval [0, 107] for the initial points on the attractor based on the Wolf algorithm.
It is a simple matter to determine the Kaplan–Yorke dimension from the spectrum of Lyapunov
exponents by k + (LE1 + . . . + LEk)/|LEk+1| (here LE1 + . . . + LEk ≥ 0, and LE1 + . . . + LEk+1 ≤ 0).
System (1) is of rotational symmetry since the system is invariant under the transformation (x, y, z)→
(−x, −y, z) when m = n = 0, corresponding to a 180◦ rotation about the z-axis. In this case, system (1)
has a symmetric oscillation or a symmetric pairs of twin attractors under different initial condition (IC),
as shown in Figure 3.
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Figure 3. Symmetric attractor or symmetric pairs of attractors of system (1) with m = n = 0, IC = (1, 1, 1)
is red and IC = (1, −1, 1) is green: (a) R =1, (b) R =4.9, (c) R = 5.2, (d) R = 5.4.

Taking a further function introducing,
.
x = F(y) − x + n,
.
y = −xG(z) + m,
.
z = xF(y) −R.

(2)

where F(y) =
∣∣∣y∣∣∣− 6, G(z) = |z| − 8, m = n = 0, R = 1, system (2) gives birth to twin coexisting attractors

of conditional symmetry, as shown in Figure 4. Compared with the rotational symmetry with system (1),
system (2) is of conditional reflection symmetry since it is invariant under the transformation (x, y, z)→
(−x, y + c1, z + c2) (c1, c2 stand for calling a polarity reverse from the absolute value function). We can
compare these twin attractors; each one is symmetrically different from the above cases.
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∣∣∣y∣∣∣− 6, G(z) = |z| − 8, m = n = 0, R = 1,

IC = (1, 7, 9) is red, and IC = (−1, −6, −7) is green.

4. Recovering Conditional Symmetry from Destroyed Symmetry

4.1. Symmetry Destroyed by the Constant Planting

For observing the effect to conditional symmetry owing to the symmetric structure, two additional
constants are introduced in the diffusionless Lorenz system. The constant term, like a polarity fire
extinguisher, revises the polarity balance. As shown in Figures 5 and 6, when m and n vary, system (1)
switches between symmetric attractors and asymmetric ones for the compound structure with Lorenz
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attractor. Note that any constant m or n removes the polarity balance, which identifies that system (1)
loses symmetry when m , 0, or n , 0. However, for system (2), the situation is different. If m = 0,
n , 0, system (2) does not keep conditional symmetry. However, if n = 0, m , 0, system (2) maintains
conditional symmetry, giving two coexisting bifurcations, as shown in Figure 7. Unlike the attractors
shown in Figures 3 and 4, now all the coexisting attractors of conditional symmetry reside in the
asymmetric structure, as shown in Figure 8. Two typical pairs of chaotic signals are shown in Figure 9,
where the signals lose symmetry but stand steadily in the form of conditional symmetry.
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4.2. Symmetry Evolution Induced by the Dimension Growth

The influence of dimension growth to polarity balance is complicated, some of which may preserve
or destroy the polarity balance of the original system. Taking the following system, for example,

.
x = y− x,
.
y = −xz,
.
z = xy−R + axu,
.
u = bx.

(3)

In this case, system (3) is still symmetric, since it is invariant under the transformation (x, y, z, u)→
(−x, −y, z, −u). Now system (3) has a symmetric chaotic attractor with Lyapunov exponents (0.2609, 0,
−0.0079, −1.2530) and corresponding Kaplan–Yorke dimension DKY = 3.2019, is shown in Figure 10.
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System (3) is also a seed system for hosting conditional symmetry,
.
x = F(y) − x,
.
y = −xG(z),
.
z = xF(y) −R + axu,
.
u = bx.

(4)

where F(y) =
∣∣∣y∣∣∣− 15, G(z) = |z| − 15, a = 0.5, b = 0.1, R = 3; system (4) gives birth to twin coexisting

attractors of conditional symmetry, as shown in Figure 11. System (4) is of conditional rotational
symmetry since it is invariant under the transformation (x, y, z, u)→ (–x, y+c1, z+c2, –u) (c1, c2 stand
for calling a polarity reverse from the absolute value function).
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Figure 11. Coexisting conditional symmetric attractors in system (4) with F(y) =
∣∣∣y∣∣∣− 15, G(z) = |z| − 15,

a = 0.5, b = 0.1, R = 3, IC = (1, 16, 16, 2) is red, IC = (−1, −14, −14, −2) is green.

The dimension growth sometimes changes the polarity balance of the original system.
.
x = y− x− axu,
.
y = −xz,
.
z = xy−R,
.
u = bx.

(5)

System (5) becomes asymmetric since it is changed under the polarity transformation. When a = 0.1,
b = 0.1, R = 3, system (5) has chaotic attractor with Lyapunov exponents (0.0432, 0, −0.1083, −2.8978) and
corresponding Kaplan–Yorke dimension DKY = 2.3989 under initial conditions (1, 1, 1, 2). Interestingly,
this time the variable u is positive, and therefore the absolute value symbol of u can be introduced for
hatching coexisting attractors, as shown in Figure 12.

.
x = y− x− ax

∣∣∣u∣∣∣,
.
y = −xz,
.
z = xy−R,
.
u = bx.

(6)
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where a = 0.1, b = 0.1, R = 3; system (6) has a symmetric pair of coexisting chaotic attractors. Interestingly,
here these coexisting attractors are unlike the cases shown in reference [9]. In the fourth dimension of
system (6), the polarity balance is recovered by the out variable x rather than by an extra imported
signum function.
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Figure 12. Symmetric attractor of system (6) with a = 0.5, b = 0.1, R = 3, IC = (1, 1, 1, 2) is red, IC = (−1,
−1, 1, −2) is green.

Furthermore, based on the above case, the dimension growth also leaves the possibility for hosting
conditional-symmetry-like coexisting attractors. Taking a further function introducing to system (6).

.
x = F(y) − x− ax

∣∣∣H(u)
∣∣∣,

.
y = −xG(z),
.
z = xF(y) −R,
.
u = bx.

(7)

where F(y) =
∣∣∣y∣∣∣ − 15, G(z) = |z| − 15, H(u) = |u| − 10, a = b = 0.1, R = 3; system (7) gives birth to

twin coexisting attractors, which have the features of conditional symmetry, as shown in Figure 13.
However, system (7) is not of conditional rotational symmetry since it seems not invariant under the
transformation (x, y, z, u)→ (−x, y + c1, z + c2, u + c3) (c1, c2, c3 stand for calling a polarity reverse from
the absolute value function). The mechanism of the coexistence of attractors hides in the same balance
ability from the structure (6).Symmetry 2020, 12, x FOR PEER REVIEW 9 of 10 
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5. Conclusions

Conditional symmetry is a more flexible symmetry, which can be derived from both symmetry
and asymmetry. In fact, in the physical world symmetric structure is prone to be destroyed by a newly
introduced constant or by the dimension growth. However, asymmetric systems have enough space
for conditional symmetry if the offset-boosting assisted polarity balance is established. Conditional
symmetric systems are more promising than symmetric ones, which have reliable twin attractors rather
than a broken butterfly. In those chaos-based communications, conditional symmetry or symmetry
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usually indicates that the corresponding system has double monopolar chaotic signals, which meets
the needs of engineering application to a large extent.
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