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Abstract: We analyze the low-energy Lagrangian of hadronic dark matter interaction with nucleons
and leptons. The analysis was fulfilled within the framework of the effective meson-exchange model,
which is based on dynamic realization of SU(3)-symmetry. Using this Lagrangian, we calculate the
cross-section of low-energy scattering of nucleons on hadronic dark matter particles. Effective vertex
of W-boson interaction with new hadrons is constructed and the cross-section of lepton scattering on
dark matter particles is calculated.
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1. Introduction

The problem of dark matter description inevitably leads to the Standard Model (SM) extension.
Usually, the dark matter (DM) candidates are considered as stable or long-lived massive neutral
particles interacting weakly with the ordinary ones (WIMPs). The last measurements of the
cross-section of WIMP–nucleon scattering [1] bring strong experimental restrictions on the cross-section
value, excluding some models of WIMPs. Some other scenarios are discussed in a papers, for example,
the scenarios with strongly interacting new heavy particles [2–4]. Extensions of the SM with hadronic
or hadron-like heavy particle as the dark matter (DM) carrier [5–8] are also suggested. In these
scenarios, new particles consist of new heavy quark and the standard light quark. New quarks appear,
for example, in the extension of the SM with 4-th generation [9–12], in the extension with singlet
quark [5] and in the chiral-symmetric models [6] (see, also, the review [7] and references therein).
Experimental and theoretical premises of new heavy hadron existence were discussed in [8]. The main
properties and low-energy phenomenology of the hadronic DM were described in [5–7]. It was
underlined there that repulsive asymptotic of DM particles interactions with nucleons prevents to
form coupled states of these particles with ordinary cold matter. This effect makes it possible to escape
contradictions with rigid cosmochemical restrictions on anomalous hydrogen and helium [7,8].

In order to describe possible signals of the hadronic DM, we should develop the model of new
hadrons interaction with usual matter. Here, we consider the interaction of the hadronic DM particles
with nucleons and leptons. The Lagrangian of interaction is analyzed and represented in detail in
the framework of the effective low-energy meson-exchange approach, which is based on dynamic
realization of SU(3)-symmetry. In this consideration, we take into account that heavy DM is cold
and essentially non-relativistic now, therefore the effective meson-exchange model can be applied for
the description of the DM–nucleon strong interaction. The validity of this approach is restricted by
the value of momentum transfer, q2 ≤ m2, where m is the mass of light carrier of interaction in the
intermediate state, m ∼ 1 GeV. Kinematical analysis of the nucleon scattering on a cold DM revealed
that this condition is realised in the local reference frame which is comooving with non-relativistc
galactic matter. Using the model Lagrangian of DM interaction with nucleons and leptons, we derived
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analytical expressions for the cross-section of their scattering on the DM particles. These cross-sections
will be used in the future analysis and description of the DM interactions with usual matter.

The paper is organised as follows. In Section 2, we represent effective Lagrangian of baryon–meson
and DM–meson interactions at low energy. The analytical expressions for the cross-sections of nucleons
scattering off new heavy hadrons are derived in Section 3. The Lagrangian of the DM interaction with
the gauge boson W is constructed in Section 4, where the cross-section of the DM–electon scattering is
calculated. Some conclusions are represented in Section 5.

2. Meson-Exchange Model of New Hadrons Interaction with Nucleons

At hadronization stage of evolution, new heavy quarks, Q, form coupled states with ordinary
light quarks, q. Full classification of these heavy states was considered in Ref. [7], where quark
composition of two-quark (meson) and three-quark (fermion) states was represented for the case of
up- and down-types of new quark Q. In analogy with the standard heavy-light mesons, the states of
type (qQ) can be scalar, pseudoscalar and vector new heavy mesons. They possess effective vertexes
of interaction with gauge vector bosons and with various hadron states (standard and new). The first
type of interactions is defined quantitatively by electro-weak coupling constant and dominates in high
energy processes at short distances, RW ∼ 1/MW . The second type of interactions is described by
strong couplings and dominates in low-energy processes at long distances RS ∼ 1/mn, where mn is
the mass of nucleon. Here, we consider in detail the second type of low-energy interactions in the
framework of effective low-energy model, which can be applied to describe interaction of cold DM
with nucleons.

It is known that low-energy nucleons interaction can be described in the framework of effective
Yukawa’s type theory. The interaction between nucleons in this theory is explained by π-meson
exchange. This approach was developed by including singlet vector (ω) and scalar ( f0) mesons in
Ref. [13]. An account of ρ-meson contribution was realized in the framework of SU(2)-gauge scheme in
Ref. [14]. To consider the meson-exchange interaction of new hadrons with nucleons, we need vertexes
which describe interaction of nucleons and new hadrons with mesons in the intermediate states.
The first type of vertexes is represented in [15], where their description was developed on the base of
the gauge scheme U(1)× SU(3). There, U(1) is the group of semistrong interaction corresponding
to the exchange by singlet vector meson, and SU(3) is group of baryon unitary symmetry which
includes exhange by octet of vector mesons. It was demonstrated in [15] that the baryon–meson model
of interactions successfully describes the low-energy hadrons phenomenology. Namely, the model
gives three reasonable mass relations in meson and baryon sectors, and describes the decays of vector
mesons in good agreement with experimental data. This scheme also contains principal properties of
nucleon–nucleon interactions and makes it possible to introduce and operate with the minimal set of
model parameters. Here, we apply this approach to the low-energy description of nucleon scattering
on the DM particles. First of all, we represent the main elements of the gauge model of baryon–meson
interactions. The particles content of the model is the following:

1. Octet of baryons B = (N, Θ, Σ, Λ0) (adjoint representation of strong group SU(3)).
2. Singlet V0 and octet V = (ρ, φ0, K∗, K̄∗) of vector mesons (gauge fields).
3. Three triplets of scalar mesons H = (a0, f0, f

′
0, K0, K̄0) (higgs fields).

4. Octet of pseudoscalar fields Φ = (π, η, K, K̄) (adjoint representation).

The full baryon–meson Lagrangian is rather cumbersome, and here we represent only its main
parts which will be used in further considerations. The interactions of baryon with vector mesons are
described in accordance with the gauge scheme:

LBV = iB̄γµ{∂µB− iκV0
µ −

i√
2

g[Vµ, B]}. (1)
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In (1), the matrices B and V represent octets of baryons B = λiBi/
√

2 and vector mesons Vµ =

λiVi
µ/
√

2, where λi are Hell–Mann matrixes, i = 1, 2, ...8, and [Vµ, B] is commutator of matrices Vµ and
B. As a result of unitary symmetry breaking, octet of baryons B is splitted to the doublet of nucleon
N = (p, n), doublets of Θ-particles Θ = (Θ0, Θ−), triplet Σ = (Σ+, Σ0, Σ−) and neutral singlet Λ0.
Analogously, octet of vector mesons V is splited to the doublets K∗ = (K∗+, K∗0) and its antiparticles
K̄∗ = (K̄∗−, K̄∗0), triplet ρ = (ρ+, ρ0, ρ−) and singlet φ0. After the unitary symmetry breaking the
initial singlet fields V0 and φ0 are mixed and form two physical vector states ω(782) and φ(1020). It is
known that the last meson consists of mainly s-quarks, φ(1020) = (ss̄) and the coupling of φ(1020)
with nucleons is zero. From this condition, for gauge couplings it follows the relation:

κ =

√
3

2
g tan θ, (2)

where θ is the angle of V0− φ0 mixing. The part of physical Lagrangian which describes the interaction
of nucleons with vector mesons is as follows:

LNV = gωωµ( p̄γµ p + n̄γµn) +
1
2

gρ0
µ( p̄γµ p− n̄γµn)

+
1√
2

gρ+µ p̄γµn +
1√
2

gρ−µ n̄γµ p, (3)

where gωN =
√

3g/2 sin θ. The fitting of model parameters from decays of vector mesons and the
ω− φ mixing results in the following values: g2/4π ≈ 3.4 and sin θ ≈ 0.63.

The Lagrangian of interaction of baryon octet B with pseudoscalar octet Φ = λiΦ
i/
√

2 and singlet
ϕ0 has the form:

LBΦ = f0 ϕ0(B̄γ5B) + f8(B̄γ5BΦ) + d8(B̄γ5ΦB). (4)

The part of physical Lagrangian which follows from (4) and describes the interaction of nucleons with
π-mesons is as follows:

LNπ = igππ0( p̄γ5 p− n̄γ5n) +
i√
2

gπ(π
+ p̄γ5n + π−n̄γ5 p), (5)

where the value of coupling constant g2/4π ≈ 14 is fitted from πN-scattering cross-section at the
low energy.

Three fundamental representations of complex scalar fields are combined into (3× 3)-matrix H.
The part of initial Lagrangian describing interactions of baryons and scalar mesons has the form:

LBH = a1(H+B̄BH) + a2(B̄HH+B). (6)

After the breaking of SU(3)-symmetry H = Φ + v, where v is diagonal matrix of parameters
of shifting, v = diag(v1, v2, v3), v1 = v2. Nine degrees of freedom from H convert to longitudinal
polarizations of vector fields providing their masses. The remaining nine degrees of freedom form the
nonet of physical states, i.e., scalar mesons Φ = (a0, f0, f

′
0, K0, K̄0). Their interactions with nucleons are

described by the following Lagrangian:

LNΦ = g f f ( p̄p + n̄n) + gaa( p̄p− n̄n) +
ga√

2
(a+ p̄n + a−n̄p), (7)

where f = f0(980), a = a0(980), and interaction coupling g f ∼ ga ∼ 1.
The interaction of new hadrons with ordinary mesons can be considered using the same

SU(3)-symmetry. To incorporate interactions of new hadrons with vector mesons, we apply the
gauge scheme of dynamical realization of this symmetry. Then, the doublet of new heavy mesons
M(2) = (M0, M−) should be extended to triplet as the fundamental representation of SU(3) group.
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This extension can be fulfilled by including standard s-quark into composition of new heavy mesons:
M(3) = (M0, M−, M−s ), where M0 = (Ūu), M− = (Ūd) and M−s = (Ūs). Here, we should note
that SU(2) isotopic symmetry of nucleons, which consist of u- and d-quarks, is exact with respect to
strong interaction. The extension of the isotopic symmetry to unitary SU(3) group has an approximate
character. It, however, allows to analyze the symmetry of baryon octet consisting of u, d and s quarks.
Significant violation of SU(3)-symmetry is caused by large value of mass-splitting of the first and
second quark generation. In our case, the heavy hadrons M = (qU) consist of light (u, d, s) and
heavy (U) quarks, so the mass-splitting is negligible. Thus, the symmetry SU(3) is near exact and we
can consider its dynamical (gauge) realization. At low energy, the intermediate meson states can be
constructed by the standard light quarks.

Lagrangian of low-energy interactions of M-particles with vector mesons V is defined in the
standard gauge form:

LM3V = (Dµ M3)
†Dµ M3, Dµ M3 = (∂µ − itV0

µ −
ig√

2
Vµ)M3, (8)

where (A)† is Hermitian conjugation and t is new gauge parameter. From (8), it follows the physical
Lagrangian of interaction of M-particles with vector mesons:

LMV = igωMωµ(M̄0M0
,µ − M̄0

,µ M0 + M+
,µ M− −M+M−,µ)

+ (igωMs ωµ + igφMs φµ)(M+
s M−,µ −M+,µ M−s )

+ (
ig
2

ρ0
µ + igφMφµ)(M̄0M0

,µ − M̄0
,µ M0 + M+

,µ M− −M+M−,µ)

+
ig√

2
ρ+µ(M̄0M−,µ − M̄0

,µ M−) +
ig√

2
ρ−µ(M+M0

,µ −M+
,µ M0). (9)

To define coupling constant of physical fields we should take into account quark composition
of vector meson φ = (ss̄) and new mesons M0 = (Ūu), M− = (Ūd). Then we get gφM = 0 and
following relations:

gφM = t sin θ − g
2
√

3
cos θ = 0 =⇒ t =

g
2
√

3
cot θ =

κ

3
. (10)

An account of quark composition of new meson M−s = (Ūs) leads to the condition gωMs = 0,
that is:

gωMs =
g

2
√

3 sin θ
(1− 3 sin2 θ) = 0 =⇒ sin θ =

1√
3

. (11)

Using Equations (10) and (11), we represent the rest constants coupling in the form:

gωM =
g

2
√

3 sin θ
=

gωN
3

, gφMs = −
√

3
2

g cos θ. (12)

Thus, the extension of low-energy baryon–meson model of interaction with triplet of new hadrons
gives an additional information on coupling constants, namely, the relations (10)–(12). Here, we should
note that the condition following from the right side of Equation (11) fixes the mixing angle value,
sin θ = 1/

√
3 ≈ 0.58. This value, however, was fixed already in the low-energy part of the model [15],

sin θ ≈ 0.63, that is one can see an approximate self-consistency of the full model. Small discrepancy is
caused by limited accuracy of baryon SU(3)-symmetry and low-energy approach with including of
strange hadrons. It should be noted, olso, that the symmetry of heavy triplet (M0, M−, Ms) is nearly
exact due to super-heavy new quark Q, and we should accept the value of mixing angle, sin θ = 1/

√
3,

as the more appropriate.
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Tri-linear interactions of new scalar (or pseudoscalar) particle with standard pseudoscalar
mesons are absent because the vertexes of type ΦMM are forbidden by parity conservation. This is
principal feature which differs new hadrons from nucleon case, where the vertex ΦNN is permitted
(see expression (3)). So, the interaction of M-particle with nucleon through one-pion exchange is absent
at the tree level.

Interactions of M-particles with scalar mesons in analogy with (6) are described by four-field
Lagrangian:

LMH = h1(M† M)(H† H) + h2(M†HH† M). (13)

As a result of shift H = Φ + v̂, where v̂ = diag(v1, v2, v3), in Equation (13) appear the terms which
describe the interactions of M-particles with the ordinary scalar mesons, for instance singlet f0 and
triplet a0:

LMS = g f M f0(M̄0M0 + M+M−) + gaM(M†ak
0τk M), k = 1, 2, 3, (14)

where the value of coupling constants g f M and gaM are proportional to the value of shift v ≈ va in
multiplet H:

g f M = k f v, gaM = kav, k f ,a ∼ 1, v ≈ 0.1mN . (15)

As it will be shown further, this factor leads to significant suppression of NM-interaction through
scalar meson exchange.

3. Cross-section of Nucleons Scattering on New Hadrons

The scattering of nucleons on new heavy hadrons can be analyzed at the level of
one-meson-exchange diagrams with vector and scalar mesons in the intermediate t-channel states. To
refresh, a diagram with intermediate pseudoscalar (pion) meson does not contribute at the tree level
to prevent parity violation. So, this interaction is realized through two-pion exchange because the
vertex of type MMΦΦ is permitted. However, the vertex of type NNΦΦ is absent in the model [15]
and the two-pion exchange is possible at the loop level only. First of all, we consider elastic scattering
of type MN → MN, where M = (M0, M−) and N = (p, n). If particles are non-relativistic, value of
momentum transfer Q2 = −q2 is defined by the expression:

Q2 ≈ k2
N + p2

N − 2 cos β kN pN , (16)

where pN and kN are three-momenta of nucleon in initial and final states, and cos β is the angle of
scattering. The value Q2 can be expressed, also, in terms of heavy hadron momenta pM and kM by the
same formula. In the center-of-mass system (CMS) ~pN + ~pM = 0 and for the case of non-relativistic
process we get the relation vMmM = vNmN , where vM + vN = vr is relative velocity. In the Galaxy rest
system (the comoving system of frame) the DM particle velocity v ∼ 10−3 (in units of light velocity c),
so for the case under consideration vr ∼ 10−3. As a result, we have:

vN = vr/(1 +
mN
mM

) ≈ v; vM = vr/(1 +
mM
mN

) ≈ v
mN
mM

. (17)

So, in CMS pN ≈ pM ≈ mNvr and from the energy conservation it follows kN ≈ kM ≈ mNvr.
According to (16) maximal value of momentum transfer is Q2

max = (p + k)2 ≈ 4m2
Nv2

r , that is Qmax ≈
mNvr ∼ 10−3mN . From this evaluation, it follows that momentum transfer much less the mass of
intermediate mesons and the meson-exchange approach is relevant.

Now, we consider the process of proton elastic scattering on the DM particle, pM0 → pM0, which
is defined by the t-channel diagrams with vector V = (ω, ρ0) and scalar S = ( f0, a0

0) intermediate
mesons. We check that the relation of scalar and vector contribution to the amplitude square is
as follows:

A2
S

A2
V
∼

g2
spg2

sM

m2
M

; gsp = kv1 ∼ 0.1mN , (18)
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where gsp was defined in (12) and gsM is an unknown dimensionless coupling constant. For the case of
realistic value gsM ∼ 1 the relation of contributions is

A2
S

A2
V
∼ 10−2 m2

N
m2

M
∼ 10−10. (19)

The value of interference term is an order of 10−5, so we get strong suppression of the scalar
contribution. Using the Lagrangian from the previous section, we calculate cross-section for the process
pM0 → pM0:

σ(pM0 → pM0) =
g4m2

p

16πm4
V
(1 +

1
sin2 θ

), (20)

where V = (ω, ρ0), mV ≈ 0.75 GeV, g2/4π ≈ 3.4 and sin θ = 1/
√

3. As a result, we get rather large
value, σ(pM0 → pM0) ≈ 0.9 barn. However, the value of kinetic cross-section (σv) is suppressed by
the factor vr ∼ 10−3. Elastic cross-sections for other pairs of particles pM−, nM0 and nM− are the same,
because of coupling constants are the same, mp ≈ mn and m(M0) ≈ m(M−). Note, the cross-section of
non-relativistic scattering does not depend on the mass mM and the angle of scattering. The processes
of elastic skattering can be detected as nucleon recoil in the instruments with solid detector.

Further, we consider inelastic scattering of type N1M1 → N2M2, where Ni = p, n and Mi =

M0, M−. These processes possess threshold when the sum of final masses exceed sum of initial
masses. Because the mass splitting in both doublets, nucleons and new hadrons, is very small the
kinematics of these processes is practically the same as in the elastic scattering. In particular, the value
of momentum transfer is defined by Equation (16) and Qmax ≈ mNvr ∼ 10−3mN . Let us consider the
process pM0 → nM+ where M+ = (M−)† = M̄−. In this case, dominant contribution is defined by
t-channel diagram with intermediate ρ+ and the cross-section can be represented in a form indicating
the threshold existence explicitly:

σ(pM0 → nM+) =
g4mn

8πvrm4
ρ

√
2mp[Ep − δmM − δmN ]

1/2, (21)

where Ep ≈ mpv2
r /2, δmM = m+ −m0 and δmN = mn −mp ≈ 1.4 MeV. From the threshold kinetic

energy Ethr
p = δmM + δmN ≡ ∆m it follows the value of velocity at the threshold vthr

r =
√

2∆m/mp.
For the case ∆m = 10 MeV we get rather large relative velocity vthr

r = 0.1, which is much larger than
the DM particles velocity at the moment, vr ∼ 10−3. So, the process can not be registered by charged
particles detectors. The expression (21) can be rewritten in more simple form:

σ(pM0 → nM+) =
g4m2

N
8πm4

ρ
[1− δmM + δmN

Ep
]1/2. (22)

The full process of proton scattering on M0 looks as follows: pM0 → nM+ → e−pe+M0, that is
an obvious signal of the process is electron-positron pair production in the final state.

Expression for cross-section of inverse process, nM+ → pM0, can be directly derived from the
Equation (22) by the change ∆m→ −∆m:

σ(nM+ → pM0) =
g4m2

N
8πm4

ρ
[1 +

δmM + δmN
Ep

]1/2. (23)

This is non-threshold reaction with unstable (metastable) particles in the initial state.
The expression for cross-section of the process nM0 → pM− follows from (22) with the change
δmN → −δmN :

σ(nM0 → pM−) =
g4m2

N
8πm4

ρ
[1− δmM − δmN

Ep
]1/2. (24)
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In this reaction, the threshold energy is Ethr
p = δmM − δmN . Full process is nM0 → pM− →

pM0e−ν̄e, and the absence of these signals in space detectors makes it possible to conclude that
δmM > δmN .

4. Interaction of New Hadrons with Leptons

To describe the interaction of new heavy hadrons with leptons we have to construct effective
vertex of type M1M2V, where Ma is M0 or M− and V = Z, W. From the quark content of M-mesons,
M = (Q, q), it follows that the vertex MMZ is caused by interaction of Z-boson with both quarks,
Q and q, so we should take into consideration the interference of these sub-processes. In contrast,
the vertex M1M2W is caused by interaction of W-boson with standard quark q only. So, the last vertex
can be defined in form-factor approach (exclusive process) or in spectator approach (inclusive process).
In Refs. [5,6], we described the decay M− → M0W− → M0e−ν̄e where M0 = (Ūu) and M− = (Ūd)
in analogy with standard heavy-light meson decay. Using a known method of calculation (see review
by R. Kowalski in [16]) in HQS approximation, we derived the width of decay in the form [5]:

Γ(M− → M0e−ν̄e) ≈
G2

Fδm5

60π3 =
g4δm

15× 27π3 (
δm
MW

)4, (25)

where g is the constant of weak interaction and δm = m− − m0. In Ref. [6], the same formula was
derived in the form-factor approach which will be used further. In this approach, the amplitude of
decay at the quark level A ∼ GF ēγµ(1− γ5)ν · ūγµ(1− γ5)d, is transformed into the amplitude at the
meson level 〈M0|A|M−〉 with the help of equality:

〈M0|ūγµ(1− γ5)d|M−〉 ≈ f M
+ (q2)(P−M + P0

M)µ, (26)

where f M
+ (q2) is form-factor as the function of momentum transfer, P−M and P0

M are the four-momentum
of heavy meson in initial and final states. Using the expression (26), smallness of q2 and f M

+ (q2) ≈
f M
+ (0) = 1, we have found the expression for width (25). Here, this result we use for determination

of the effective coupling constant in the vertex MMW, which we represent in the following
differential form:

Le f f (WMM) = iGWMWµ(M̄0∂µ M− − ∂µ M̄0M−). (27)

Note, the Lagrangian in the differential form (27) generates the vertex which has the same structure
in the momentum representation as vertex in form-factor approach (26). Using effective Lagrangian
of interaction (27), we calculate Γ(M− → M0e−ν̄e) and found the value of effective constant GWM by
matching the result with Formula (25). Calculation of width is fulfilled in the framework of the model
of unstable particles with smeared mass [17,18]. For the case of the decay 1 → 3 the expression for
width is described by convolution representation [17]:

Γ(M− → M0e−ν̄e) =
∫ q2

2

q2
1

Γ(M− → M0W(q))
qΓ(W(q)→ e−ν̄e)

π|PW(q)|2 dq2, (28)

where W(q) is intermediate state of W with smeared mass m2 = q2 and PW(q) is propagator of W-boson,
which at q2 � M2

W is PW(q) ≈ −M2
W . The rest integrands in (28) are calculated in standard way:

Γ(M− → M0W(q)) =
G2

WMm3
−

16πq2 λ̄3(q2, m2
0; m2

−), (29)

where normalized kinematic function λ̄ is defined as follows:

λ̄3(q2, m2
0; m2

−) = (1− 2
q2 + m2

0
m2
−

+
(m2

0 − q2)2

m4
−

)1/2. (30)
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Then, for the width of the decay W(q)→ e−ν̄e we have:

Γ(W(q)→ e−ν̄e) =
g2q
48π

λ̄(o, m2
e ; q2)(1− m2

e
2q2 −

m4
e

2q4 ). (31)

Further, taking into account relations m− = m0 + δm and q2 ∼ (δm)2 � m2
0, we represent

Equation (28) in the form:

Γ(M− → M0e−ν̄e) =
g2G2

WM
96π3M4

W

∫ (δm)2

m2
e

((δm)2 − q2)3/2 dq2. (32)

In the approximation m2
e � (δm)2, the width is as follows:

Γ(M− → M0e−ν̄e) ≈
g2G2

WM
15 · 24π3

(δm)5

M4
W

. (33)

Comparison of the expressions (25) and (33) leads to the relation G2
WM = g2/23 or GWM = g/2

√
2.

It should be noted, the value of effective coupling constant GWM in Equation (27) is the same as
fundamental constant in the interaction of W-boson with quark current ūγµ(1− γ5)d. This means that
spectator approach at small momentum transfer is valid and corresponds to the structure of subprocess
at the quark level.

The scattering of low-energy lepton on the hadronic DM is defined by one t-channel diagram
with W-boson in the intermediate state. This process can be described with help of the effective
Lagrangian (27) with constant coupling GWM = g/2

√
2 and standard vertex of type Wlν̄l , where

l = e, µ, τ. From straightforward calculation it results the following form of the cross-section:

σ(e−M0 → νe M−) =
3g4

210πM4
W

s(1− M2

s
)2, (34)

where
√

s is full energy in CMS. For non-relativistic DM, this expression can be represented as:

σ(e−M0 → νe M−) =
3G2

F
8π

(Ee + Wk)
2, (35)

where Ee is the electron energy and Wk = Mv2/2 is kinetic energy of DM particle. The full
process of electron scattering on M0 is: e−M0 → νe M− → νe M0e−ν̄e, that is the process with
neutrino-antineutrino pair in the final state.

5. Conclusions

The main purpose of the DM investigation is the description of the processes of its interaction
with ordinary matter and predictions of possible signals. In order to describe signals from the hadronic
DM, we have developed and analyzed in details the effective model of new hadrons interaction with
nucleons and leptons. The model of DM–nucleon low-energy interaction is based on meson-exchange
approach and realized in gauge scheme with U(1) · SU(3) symmetry. In the framework of this model,
we derived analytical expressions for cross-sections of collisions of nucleons and new hadrons. These
expressions describe both elastic and inelastic processes of scattering of nucleons on new heavy hadrons.
They can be used for the analysis and investigations of the DM interactions with interstellar gas in the
Galaxy. The most important signals of the processes with participation of DM are shortly considered.

To describe the interaction of hadronic DM with leptons we have constructed the effective
vertexex of type WMM. From the quark content of M-meson, it follows that the vertex ZMM
resulted from the interaction of Z-boson with both quarks, Q and q, while the vertex WMM is caused
by the interaction of W-boson with standard light quark q only. In the previous work, the decay
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process M− → M0W− → M0e−ν̄e was analyzed in formfactor approach. Here, using this result, we
constructed an effective Lagrangian of WMM-interaction and defined the effective coupling constant.
This Lagrangian was used for calculation of the cross-section of lepton scattering on new heavy hadrons.
It is shown that there appears some typical signature of this processes which can be registered.
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