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1. Introduction

Topological symmetry groups were originally introduced to classify the symmetries of non-rigid
molecules. In particular, the symmetries of rigid molecules are represented by the point group, which is
the group of rigid motions of the molecule in space. However, non-rigid molecules can have symmetries
which are not included in the point group. The symmetries of such molecules can instead be represented by
the subgroup of the automorphism group of the molecular graph which are induced by homeomorphisms
of the ambient space. In this way, the molecular graph is treated as a topological object, and hence this
group is referred to as the topological symmetry group of the graph in space.

Although initially motivated by chemistry, the study of topological symmetry groups of graphs
embedded in S3 can be thought of as a generalization of the study of symmetries of knots and links.
Various results have been obtained about topological symmetry groups in general ([1–4]) as well as
topological symmetry groups of embeddings of particular graphs or families of graphs in S3 ([5–10]).

In this paper, we classify the topological symmetry groups of embeddings of the Heawood
graph in S3, whose (combinatorial) automorphism group is PGL(2, 7). This graph, denoted by C14,
is illustrated in Figure 1. The Heawood graph is of interest to topologists because it is obtained from
the intrinsically knotted graph K7 by what are known as “∆−Y” moves. Such moves alter the graph
by replacing three edges that form a triangle by three edges in the form of the letter Y with a new
3-valent vertex in the center. Since ∆−Y moves preserve intrinsic knotting [11], the Heawood graph is
intrinsically knotted. This means that every embedding of C14 in S3 contains a non-trivial knot. It also
follows from [12] that C14 is intrinsically chiral, that is, no embedding of C14 in S3 has an orientation
reversing homeomorphism.
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Figure 1. The Heawood graph, which we denote by C14.

We begin with some terminology.

Definition 1. Let Γ be a graph embedded in S3. We define the topological symmetry group TSG(Γ) as
the subgroup of the automorphism group Aut(Γ) induced by homeomorphisms of (S3, Γ). We define the
orientation preserving topological symmetry group TSG+(Γ) as the subgroup of Aut(Γ) induced by
orientation preserving homeomorphisms of (S3, Γ).

Definition 2. Let G be a group and let γ denote an abstract graph. If there is some embedding Γ of γ in S3 such
that TSG(Γ) = G, then we say that G is realizable for γ. If there is some embedding Γ of γ in S3 such that
TSG+(Γ) = G, then we say that the group G is positively realizable for γ.

Definition 3. Let ϕ be an automorphism of an abstract graph γ. We say ϕ is realizable if for some embedding
Γ of γ in S3, the automorphism ϕ is induced by a homeomorphism of (S3, Γ). If such a homeomorphism exists
which is orientation preserving, then we say ϕ is positively realizable.

Since the Heawood graph is intrinsically chiral, a group is realizable if and only if it is positively
realizable. Our main result is the following classification theorem.

Theorem 1. A group G is realizable as the topological symmetry group of an embedding of C14 if and only if G
is the trivial group, Z2, Z3, Z6, Z7, D3, or D7.

In Section 2, we present some background material about C14. In Section 3, we determine which
of the automorphisms of C14 are realizable. We then use the results of Section 3 to prove our main
result in Section 4.

2. Background About the Heawood Graph

We will be interested in the action of automorphisms of C14 on cycles of particular lengths.
The graph C14 has 28 6-cycles, its shortest cycles, and 24 14-cycles [13,14]. The following results about
the 12-cycles and 14-cycles of C14 are proved in the paper [15]. While some of these results may be
well known, the authors could not find proofs in the graph theory literature.

Lemma 1. ([15])

1. C14 has 56 12-cycles.
2. Aut(C14) acts transitively on the set of 14-cycles and the set of 12-cycles.
3. The graph obtained from C14 by removing any pair of vertices which are a distance 3 apart has exactly two

12-cycles.
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By part (2) of Lemma 1, we can assume that any 14-cycle in C14 looks like the outer circle in
Figure 1 and any 12-cycle looks like the round circle in Figure 2. We will always label the vertices of
C14 either as in Figure 1 or as in Figure 2.
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Figure 2. Any 12-cycle looks like the round circle in this illustration.

The automorphism group of C14 is isomorphic to the projective linear group PGL(2, 7) whose order
is 336 = 24 × 3× 7 ([13]). The program Magma was used to determine that all of the non-trivial elements
of PGL(2, 7) have order 2, 3, 4, 6, 7, and 8. The following lemma gives us information about the action of
automorphisms with order 3 and 7 on the 12-cycles and 14-cycles of C14.

Lemma 2. Let α be an automorphism of C14. Then the following hold.

1. If α has order 7, then α setwise fixes precisely three 14-cycles, rotating each by 2πn
7 for some n < 7,

when considered as a round circle (see Figure 1).
2. If α has order 3, then α fixes precisely two vertices and setwise fixes precisely two 12-cycles in their

complement, rotating each by ± 2π
3 , when considered as a round circle (see Figure 2).

Proof. (1) Suppose that the order of α is 7. Since C14 has 24 14-cycles, α must setwise fix at least three
of them. Observe that any 14-cycle which is setwise fixed by α must be rotated by 2πn

7 for some n < 7.
Thus, every edge must be in an orbit of size 7. Since there are 21 edges, there are precisely three such
edge orbits. Now any 14-cycle which is setwise fixed must be made up of two of these three edge
orbits, and hence there are at most three 14-cycles which are invariant under α. It follows that there are
precisely three invariant 14-cycles.
(2) Suppose that the order of α is 3. Since there are 14 vertices, α must fix at least two vertices v and
w. Furthermore, since C14 has 56 12-cycles (by part (1) of Lemma 1), α must setwise fix at least two
12-cycles. If some vertex on an invariant 12-cycle were fixed, the entire 12-cycle would be fixed and
hence α could not have order 3. Thus, neither v nor w can be on an invariant 12-cycle. By part (2)
of Lemma 1, we can assume that one of the invariant 12-cycles is the round circle in Figure 2, and hence
v and w are as in Figure 2. Since v and w are a distance 3 apart, it follows from part (3) of Lemma 1
that there are precisely two 12-cycles in the complement of {v, w}. Therefore, α must rotate each of the
two 12-cycles in the complement of {v, w} by ± 2π

3 .

Lemma 3. Let α be an order 2 automorphism of C14 which setwise fixes a 12-cycle or a 14-cycle. Then no vertex
is fixed by α.

Proof. First suppose α setwise fixes a 14-cycle and fixes at least one vertex. Then without loss of
generality, α setwise fixes the round circle C in Figure 1 and fixes vertex 1. It follows that either α

interchanges vertices 2 and 14 or fixes both. In the latter case α would be the identity. Thus, we
can assume that α interchanges vertices 2 and 14. However, since vertex 6 is also adjacent to vertex
1, it must also be fixed by α. This implies that α interchanges the two components of C − {1, 6}.
However, this is impossible because one component of C− {1, 6} has four vertices while the other has
eight vertices.

Next suppose that α setwise fixes a 12-cycle. Then without loss of generality, α setwise fixes the
round circle D in Figure 2. Then α({v, w}) = {v, w}. However, every vertex on D has precisely one



Symmetry 2020, 12, 546 4 of 9

neighbor on D which is adjacent to {v, w}. Thus, if α fixed any vertex on D, it would have to fix every
vertex on D, and hence would be the identity. Now suppose α fixes v. Since α has order 2 and v has
three neighbors on D, one of these neighbors would have to be fixed by α. As we have already ruled
out the possibility that α fixes a vertex on D, this again gives us a contradiction.

3. Realizable Automorphisms of C14

Lemma 4. Let α be a realizable automorphism of C14. Then the following hold.

1. For some embedding Γ of C14 in S3, α is induced by an orientation preserving homeomorphism h: (S3, Γ)→
(S3, Γ) with order(h) = order(α).

2. If order(α) is a power of 2, then α leaves at least two 14-cycles or at least two 12-cycles setwise invariant,
and if order(α) = 2, then α fixes no vertices.

3. If order(α) is even, then order(α) = 2 or 6.

Proof. (1) Since α is realizable, there is some embedding Λ of C14 in S3 such that α is induced by a
homeomorphism g : (S3, Λ)→ (S3, Λ). Now by Theorem 1 of [16], since C14 is 3-connected, there is
an embedding Γ of C14 in S3 such that α is induced by a finite order homeomorphism h : (S3, Γ) →
(S3, Γ). Furthermore, it follows from [12] that no embedding of C14 in S3 has an orientation reversing
homeomorphism. Thus, h is orientation preserving.

Let order(α) = p and order(h) = q. Since hq is the identity, p ≤ q. If p < q, then hp pointwise
fixes Γ, yet hp is not the identity. However, by Smith Theory [17], the fixed-point set of hp is either
the empty set or S1. But, this is impossible since Γ is contained in the fixed-point set of hp. Thus,
order(h) = order(α).
(2) Suppose that order(α) is a power of 2. Let h be given by part (1). Then order(h) is the same power
of 2. Let S1 and S2 denote the sets of 12-cycles and 14-cycles, respectively. By [18], for any embedding
of C14 in S3, the mod 2 sum of the arf invariants of all 12-cycles and 14-cycles is 1. Thus, an odd number
of cycles in S1 ∪ S2 have arf invariant 1. Hence for precisely one i, the set Si has an odd number of
cycles with arf invariant 1. Since |S1| = 56 and |S2| = 24 are each even, Si must have an odd number
of cycles with arf invariant 0 and an odd number of cycles with arf invariant 1.

We know that h(Si) = Si and h preserves arf invariants. Hence h setwise fixes T0 the set of cycles
in Si with arf invariant 0 and T1 the set of cycles in Si with arf invariant 1. Since order(h) is a power of
2, and |T0| and |T1| are each odd, h setwise fixes at least one cycle in T0 and at least one cycle in T1.
Hence at least two 12-cycles or at least two 14-cycles are setwise fixed by h, and hence by α. It now
follows from Lemma 3 that if order(α) = 2, then α fixes no vertices.
(3) Suppose that order(α) is even and order(α) 6= 2, 6. Recall that every even order automorphism of
C14 has order 2, 4, 6 or 8. Then by part (2), α setwise fixes a 12-cycle or 14-cycle. If α setwise fixes a
14-cycle, then order(α) = 2 since order(α) is even and cannot be 14. Thus, we suppose that α setwise
fixes a 12-cycle Q, and hence order(α) 6= 8

Since order(α) 6= 2, 6, we must have order(α) = 4. Without loss of generality we can assume
that Q is the round 12-cycle in Figure 2 and α|Q = (1, 4, 7, 10)(2, 5, 8, 11)(3, 6, 9, 12). However, this is
impossible because α({v, w}) = {v, w}, and hence α cannot take vertex 4 (which is adjacent to w) to
vertex 7 (which is adjacent to neither v nor w). Thus, order(α) 6= 4.

Theorem 2. A non-trivial automorphism of C14 is realizable if and only if it has order 2, 3, 6 or 7.

Proof. Figure 3 illustrates an embedding of C14 with vertices labeled as in Figure 2 where vertex
w is at ∞ and the grey arrows are the edges incident to w. This embedding has a glide rotation h
obtained by rotating the picture by 2π

3 around a vertical axis going through vertices v and w while
rotating by π around the circular waist of the picture. Then h induces the order 6 automorphism
(v, w)(10, 11, 6, 7, 2, 3)(1, 4, 9, 12, 5, 8). Now h3 and h2 induce automorphisms of order 2 and 3
respectively. Thus, automorphisms of orders 2, 3, and 6 are all realizable.
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Figure 3. This embedding has a glide rotation inducing (v, w)(10, 11, 6, 7, 2, 3)(1, 4, 9, 12, 5, 8).

Figure 4 shows an embedding of C14 with a rotation of order 7 about the center of the picture.
Thus, C14 has realizable automorphisms of order 2, 3, 6, and 7, as required.
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Figure 4. This embedding has a rotation of order 7.

For the converse, we know that that the only odd order automorphisms of C14 have order 3 or 7,
and part (3) of Lemma 4 shows that the only realizable even order automorphisms of C14 have order 2
or 6.

4. Topological Symmetry Groups of Embeddings of C14

Since C14 is intrinsically chiral, for any embedding Γ of C14 in S3, TSG(Γ) = TSG+(Γ).
Thus, a finite group G is realizable for C14 if and only if G is positively realizable. Let Γ be an
embedding of C14 in S3. We know that TSG(Γ) is a subgroup of Aut(C14) ∼= PGL(2, 7). According
to [19], the non-trivial proper subgroups of PGL(2, 7) are Z2, Z3, Z4, Z6, Z7, Z8, D2, D3, D4, D6,
D7, D8, A4, S4, PSL(2, 7), Z7 o Z3, and Z7 o Z6. We can eliminate the groups Z4, Z8, D4, D8, S4,
PSL(2, 7), and PGL(2, 7) as possibilities for TSG(Γ) because we know from Theorem 2 that no realizable
automorphism of C14 has order 4. Thus, the only groups that are possibilities for TSG(Γ) for some
embedding Γ of C14 are the trivial group, Z2, Z3, Z6, Z7, D2, D3, D6, D7, A4, Z7 oZ3, and Z7 oZ6.

Theorem 3. The trivial group and the groups Z2, Z3, Z6, Z7, D3, and D7 are realizable for C14.

To prove Theorem 3, we will use the following prior result.

Theorem 4. ([20]) Let γ be a 3-connected graph embedded in S3 as a graph Γ which has an edge e that is not
pointwise fixed by any non-trivial element of G = TSG+(Γ). Then every subgroup of G is positively realizable for γ.

Proof of Theorem 3. We begin with the embedding Γ of C14 illustrated in Figure 5 where the grey
squares represent the same trefoil knot.
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Figure 5. TSG(Γ) = D7.

The outer circle C is setwise invariant under any homeomorphism of (S3, Γ) because C is the
only 14-cycle with 14 trefoil knots, and by [20] any such homeomorphism must preserve the set of
knotted edges. It follows that TSG(Γ) ≤ D14. Also, Γ is invariant under a rotation by 2π

7 inducing
the automorphism (1, 3, 5, 7, 9, 11, 13)(2, 4, 6, 8, 10, 12) and a homeomorphism turning C over inducing
(1, 14)(2, 13)(3, 12)(4, 11)(5, 10)(6, 9)(7, 8). Thus, D7 ≤ TSG(Γ). However, D7 is the only subgroup of
D14 containing D7 which has no element of order 14. Thus, TSG(Γ) = D7.

Observe that no edge of Γ is pointwise fixed by any non-trivial element of TSG(Γ) = TSG+(Γ).
Hence by Theorem 4, every subgroup of TSG(Γ) is realizable. In particular, the groups D7, Z7, Z2,
and the trivial group are each realizable for C14.

In the embedding Γ′ illustrated in Figure 6, v is above the plane of projection, w is below the plane,
and the three grey squares represent the same trefoil knot. Now C = 1, 12, 5, 4, 9, 8 is the only 6-cycle
containing three trefoil knots. It follows that any homeomorphism of (S3, Γ′) must take C to itself
taking the set of three trefoils to itself. Thus, TSG(Γ′) ≤ D3. Since Γ′ is invariant under a 2π

3 rotation as
well as under turning the picture over, TSG(Γ′) = D3. Now if we replace the three trefoils on C by
three identical non-invertible knots, we will get an embedding Γ′′ such that TSG(Γ′′) = Z3.
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Figure 6. TSG(Γ′) = D3 and TSG(Γ′′) = Z3.

Finally, let Λ be the embedding in Figure 3. Then the 6-cycle C = 10, 11, 6, 7, 2, 3 is the only
6-cycle which contains a trefoil knot. Thus, C is setwise invariant under any homeomorphism of
(S3, Λ). Hence TSG(Λ) ≤ D6. We also saw in Figure 3 that a glide rotation of S3 induces the order
6 automorphism (v, w)(10, 11, 6, 7, 2, 3)(1, 4, 9, 12, 5, 8). Thus, Z6 ≤ TSG(Λ). Since we know from
Theorem 5 that D6 is not realizable for C14, it follows that TSG(Λ) = Z6.

In what follows, we prove that no other groups are realizable for C14.

Theorem 5. The groups D2 and D6 are not realizable for C14.

Proof. Suppose that there exist realizable order 2 automorphisms α and β of C14 such that 〈α, β〉 = D2.
Since C14 has 21 edges, α and β each setwise fix an odd number of edges. Let Eα denote the set of edges
which are invariant under α. Let ε ∈ Eα. Then α(β(ε)) = β(α(ε)) = β(ε). Thus, β(ε) ∈ Eα. It follows
that β(Eα) = Eα. However, since Eα has an odd number of elements and β has order 2, there is some
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edge e ∈ Eα such that β(e) = e. Thus, α and β both setwise fix the edge e, and hence at least one of the
involutions α, β, or αβ must pointwise fix e.

Now by Lemma 3, none of α, β, or αβ can fix any vertex. Thus, D2 is not realizable. However, since D6

contains involutions α and β such that 〈α, β〉 = D2, it follows that D6 also cannot be realizable for C14.

Theorem 6. The group A4 is not realizable for C14.

Proof. Suppose that Γ is an embedding of C14 such that TSG(Γ) = A4. According to Burnside’s
Lemma [21], the number of vertex orbits of Γ under TSG(Γ) is:

1
|A4| ∑

α∈A4

|fix(α)|

where |fix(α)| denotes the number of vertices fixed by an automorphism α ∈ TSG(Γ). Observe that A4

contains eight elements of order 3, three elements of order 2, and no other non-trivial elements. Now
by part (2) of Lemma 2, each order 3 automorphism fixes precisely two vertices, and by Lemma 4 part
(2), no realizable order 2 automorphism fixes any vertex. Thus, the number of vertex orbits of Γ under
TSG(Γ) is:

1
|A4| ∑

α∈A4

|fix(α)| = 1
12

((8 · 2) + (3 · 0) + (1 · 14)) =
30
12

.

As this is not an integer, A4 cannot be realizable for C14.

To show that the groups Z7 oZ3 and Z7 oZ6 are not realizable for C14, we will make use of the
definition and results below.

Definition 4. A finite group G of orientation preserving diffeomorphisms of S3 is said to satisfy the involution
condition if for every involution g ∈ G, we have fix(g) ∼= S1 and no h ∈ G with h 6= g has fix(h) = fix(g).

Theorem 7 ([2]). Let Γ be a 3-connected graph embedded in S3 with H = TSG+(Γ). Then Γ can be re-embedded
in S3 as ∆ such that H ≤ TSG+(∆) and H is induced by an isomorphic finite group of orientation preserving
diffeomorphisms of S3.

Theorem 8 ([22]). Let G be a finite group of orientation preserving isometries of S3 which satisfies the
involution condition. Then the following hold.

1. If G preserves a standard Hopf fibration of S3, then G is cyclic, dihedral, or a subgroup of Dm ×Dm for some
odd m.

2. If G does not preserve a standard Hopf fibration of S3, then G is S4, A4, or A5.

Theorem 9. The groups Z7 oZ3 and Z7 oZ6 are not realizable for C14.

Proof. Suppose that for some embedding Γ of C14 in S3, TSG+(Γ) is Z7 oZ3 or Z7 oZ6. In either case,
G = Z7 oZ3 ≤ TSG+(Γ). Now since C14 is 3-connected, we can apply Theorem 7, to re-embed C14

in S3 as ∆ such that G ≤ TSG+(∆) and G is induced by an isomorphic finite group of orientation
preserving diffeomorphisms of S3. However, by the proof of the Geometrization Conjecture, every
finite group of orientation preserving diffeomorphisms of S3 is conjugate to a group of orientation
preserving isometries of S3 [23]. Thus, we abuse notation and treat G as a group of orientation
preserving isometries of S3.

Since G has no elements of order 2, it vacuously satisfies the involution condition, and hence by
Theorem 8, G is cyclic, dihedral, a subgroup of Dm × Dm for some odd m, S4, A4, or A5. However,
since |G| = 21, it cannot be dihedral, S4, A4, or A5. Also, since G ≤ Aut(C14) has no element of order
21, the elements of G of order 3 and 7 cannot commute. Thus, G cannot be cyclic; and since all elements
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of odd order in Dm × Dm commute, G cannot be a subgroup of any Dm × Dm. By this contradiction,
we conclude that neither Z7 oZ3 nor Z7 oZ6 is realizable for C14.

The following corollary summarizes our classification of which groups can occur as topological
symmetry groups of some embedding of the Heawood graph in S3.

Corollary 1. A group G is realizable as a topological symmetry group of C14 if and only if G is the trivial group,
Z2, Z3, Z6, Z7, D3, or D7.
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