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Abstract: Small-amplitude quantum-gravity periodic perturbations of the metric tensor, occurring
in sequences of phase-shifted oscillations, are investigated for vacuum conditions and in the
context of the manifestly-covariant theory of quantum gravity. The theoretical background is
provided by the Hamiltonian representation of the quantum hydrodynamic equations yielding,
in turn, quantum modifications of the Einstein field equations. It is shown that in the case of the
DeSitter space–time sequences of small-size periodic perturbations with prescribed frequency are
actually permitted, each one with its characteristic initial phase. The same perturbations give rise to
non-linear modifications of the Einstein field equations in terms of a suitable stochastic-averaged
and divergence-free quantum stress-energy tensor. As a result, a quantum-driven screening effect
arises which is shown to affect the magnitude of the cosmological constant. Observable features on
the DeSitter space–time solution and on the graviton mass estimate are pointed out.
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1. Introduction

A basic challenge in theoretical astrophysics and quantum gravity (QG) is about the search
of possible quantum effects of space–time characterizing its microscopic QG-description, which are
capable of influencing its large-scale behavior and global structure even in a cosmological scenario [1–6].
More precisely, the issue refers to the possible identification of quantum phenomena that might produce
observable, namely macroscopic, modifications of space–time within the context of the Standard
Formulation of General Relativity (SF-GR) based on the Einstein field equations (EFE). The goal of
this paper refers more precisely to the identification of possible quantum screeening effects of the
cosmological constant which arise in a deSitter space-time. The establishment of features that might
affect the large-scale behavior of classical solutions of the same EFE expressed in terms of the structure
of background space–time has been a subject of increasing interest in the scientific community (e.g.,
see Refs. [7–11]). In fact, over the past fifty years, a plethora of disparate approaches and theories have
been devoted to quantum gravity. Concerning in particular the problems of the cosmological constant
and the large-scale structure of the universe, a proper comparison among them can only be based on
observations, i.e., the application of such theories to the description of observational data. The issue is
important primarily for resolving existing questions in cosmology and astronomy, like for example the
problems of dark matter and dark energy, for which conclusions and particular solutions applying to
the DeSitter space–time might provide a relevant framework [12,13].
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That such a problem, together with the goal anticipated above, makes sense at all is not even
obvious and has remained a challenging open issue since the early days of QG which, following the
original attempt by Dirac [14], led to the formulation of canonical Hamiltonian theory of GR
exemplified by the famous 3+1 ADM representation of classical GR (Arnowitt, Deser and Misner
1962 [15]) and the subsequent identification of the quantum Wheeler–DeWitt equation [16]. The same
equation, which prescribes the so-called “universe” quantum state function ψ, has become since then
very popular in the specialized literature. In fact, it underlies most of quantization approaches to
gravity formulated in the last fifty years, which include in particular canonical quantization theory [16]
and loop quantum gravity [17,18].

Despite of this, the question of identifying the appropriate representation or set up for QG
theory remains open. In fact, the Wheeler–DeWitt equation suffers from numerous shortcomings,
which concern for example divergences due to functional derivatives and operator ordering
ambiguities [19]. However, in the following we discuss three of them which are most pertinent
in connection with the content of the theory reported in this paper. Shortcoming #1 is the so-called
problem of time, namely the fact that the Wheeler–DeWitt equation plays the role of a constraint relation
on the wave function and is not represented as a first-order hyperbolic PDE with respect to a suitable
dynamical time variable, as is the case of the Schroedinger equation in quantum mechanics [20]. Indeed,
the absence of an external time parameter is not characteristic of the Wheeler–DeWitt equation itself
but already appears at the classical level in the ADM constrained Hamiltonian formulation of GR (in
the sense of Dirac). Although a time-like parameter can be recovered at the quantum level in various
ways, its definition carries an additional conceptual problem. In fact, in the absence of a background
space–time and of manifest covariance of the Wheeler–DeWitt theory, the same coordinate-time
appears simultaneously as the dynamical parameter and a component of space–time which must be
quantized by solving the same equation. In such a framework, the problem of time is included here as
a shortcoming of the Wheeler–DeWitt equation which is distinguished from CQG-theory on this issue.
As a consequence of its definition, the same equation holds therefore only for stationary solutions,
in the sense of absence of dynamics with respect to an invariant time-parameter to be properly
identified and distinguished by a coordinate-time of some sort. It is precisely this feature which makes
the Wheeler–DeWitt equation unsuitable for investigating non-stationary quantum phenomena of
the type considered in this paper and which arise due to non-equilibrium initial conditions of the
quantum-wave equation, for which the problem of time is resolved through the definition of an explicit
invariant evolution parameter. The same feature has apparently led Isham to give the following strong
statement: “...although it may be heretical to suggest it, the Wheeler–DeWitt equation—elegant though it
be—may be completely the wrong way of formulating a quantum theory of gravity” [21].

However, there are further serious shortcomings of the Wheeler–DeWitt equation raising, in turn,
the question of its validity. Let us briefly point out and critically examine some of them. A second
one is that, unlike what happens in standard non-relativistic Quantum Mechanics (QM [22]), for the
same equation |ψ|2 is not a probability density (Shortcoming #2). The implication is serious because,
as a consequence, the issue of quantum unitarity, i.e., conservation of quantum probability, cannot be
posted in such a context. The feature appears counter-intuitive and unphysical. Indeed, the property
of unitarity, or respectively non-unitarity, in QM is usually attributed to the probability of existence or
respectively decay of a quantum state.

Finally, there is a third aspect of the Wheeler–DeWitt equation which becomes crucial in the
present context. This is related to the (missing) property of manifest covariance, in turn, based on
the assumption that physical laws should be the same in the whole universe. In fact, any consistent
physical theory (and indeed any physical law expressed in terms of an equation of some sort) should
be the same in any part of the universe, and hence for this to be true the same theories should be
intrinsically coordinate- (i.e., GR-) frame independent. In other words, the same theory/equation
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should be covariant with respect to the group of 4−dimensional local point transformations realized
by diffeomeorphism of the type

r ⇐⇒ r′ = r′(r), (1)

which transform in each other two arbitrary coordinate systems (or GR-frames), while leaving invariant
the differential-manifold structure of the background space–time [23]. It should be clear that here the
focus is on the property of manifest covariance, which represents a more stringent requirement than
that of general covariance. In fact, general covariance still underlies the Wheeler–DeWitt equation,
in the same way it does at the classical level for ADM theory when a preferred reference system has
been introduced upon invoking space–time foliation, consistent with the asynchronous Lagrangian
formulation leading to EFE. In particular, the Hamiltonian constraint and momentum constraint of the
theory respectively impose the time and space diffeomorphism invariance, even though separately,
and the corresponding Hamiltonian equations of motion warrant the diffeomorphism invariance for
the remaining six degrees of freedom. However, precisely because of its foundational derivation, and in
contrast with the basic principle of the DeDonder–Weyl formalism, the Wheeler–DeWitt equation is
intrinsically not manifestly covariant (Shortcoming #3), in the sense that it is not written in 4−tensor
notation. The reason why this happens is that it relies on a preliminary 3+1 foliation of space–time.
This means that the same foliation is preserved only for the subset of point transformations among
GR-frames which do not mix time and space coordinates (a feature which therefore rules out by itself
manifest covariance). Furthermore, by construction it is based on a non-tensor prescription of the
classical and quantum canonical variables, according to which canonical variables do not preserve
their tensor form under the group or local point transformations (1).

In our view, this aspect of the Wheeler–DeWitt equation should not be overlooked. The precise
reasons why manifest covariance is crucial in the present context is two-fold:

• The first one concerns the representation of the quantum-wave equation, which should be cast
in a manifestly-covariant form. A prerequisite for this to happen is, of course, that the quantum
canonical variables (i.e., both the Lagrangian coordinates and the conjugate canonical momentum
operators) should be expressed in 4−tensor form.

• The second one is that QG-theory should be such to permit a second-quantization theory for the
gravitational field in the sense indicated above. More precisely, QG-theory should be capable
of prescribing also the non-linear quantum modifications of the background space–time. Thus,
besides prescribing the universe quantum state function ψ, QG-theory should predict also the
related quantum-modified form of EFE which determines the background metric field tensor.
As a consequence, the same equation—just as the original EFE - should be realized by means of
a tensor (and therefore frame-independent) PDE, so that it must preserve its form with respect to
the group of coordinate transformations (1) between two arbitrary GR-frames.

The implication is therefore that QG-theory should admit a frame (i.e., coordinate) independent
character so to result intrinsically manifestly covariant in form. This should, therefore, be regarded as
a mandatory property ultimately stemming from SF-GR itself.

Incidentally, all such requirements are not permitted or are violated in the case of the
Wheeler-DeWitt equation. However, a new axiomatic (i.e., first-principle) approach has been
recently achieved which altogether avoids the previous shortcomings and thus, in these respects,
yields a self-consistent theory of QG. This is realized by the theory of manifestly-covariant quantum
gravity (CQG-theory) proposed in Refs. [24,25], which is based on the discovery of classical and
corresponding non-perturbative quantum Hamiltonian structures of General Relativity (GR) which
are mutually related by means of standard covariant canonical quantization methods (see Ref. [26]).
Although it is not within the scope of the present work to prove and justify the new manifestly-covariant
Hamiltonian formalism for GR reported in Refs. [24,25], it is nevertheless instructive to clarify its
scope. Indeed, such Hamiltonian formalism differs both in form (e.g., no superspace, no functional
quantities, etc.) and content (different equation of motion) from the ADM one at the classical level
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and from the canonical one of DeWitt at the quantum level. However, remarkably, it remains fully
consistent with the customary manifestly-covariant Lagrangian formulation of GR and EFE. At the
classical level the fundamental departure between the two approaches lies primarily in the choice of
variational principles on which they are built on. These are labeled respectively as asynchronous and
synchronous ones (according to the nomenclature introduced in Ref. [27]), depending on the way in
which the 4−volume element dΩ =

√−gd4x (with g denoting the determinant of the metric tensor) is
treated during variations.

Indeed, according to the original Einstein’s approach, EFE is determined in terms of the
Einstein-Hilbert asynchronous variational principle, namely in which the invariant volume element
dΩ is considered variational. As a consequence, by construction the corresponding Lagrangian
density is not a 4−scalar, since it carries the quantity

√−g. In such a framework the variational
metric tensor exhibits the same geometrical and physical qualitative properties of the extremal
one, so that in particular, it is allowed to raise and lower tensor indices (geometrical property)
while it has an identically-vanishing covariant derivative (physical property). We stress that the
canonical Hamiltonian theory of GR which leads to the ADM formulation (and determined by the
same Einstein–Hilbert asynchronous variational principle) has analogies with non-relativistic classical
mechanics where time is considered as a separate coordinate (absolute time). Indeed it demands
a preliminary 3+1 foliation of space–time where again coordinate-time is singled out to parametrize
dynamical evolution. This requires in fact that canonical variables, in particular conjugate momenta,
are prescribed explicitly in terms of the same coordinate-time so that they actually realize non-tensor
quantities. As a consequence, it is obvious that the resulting classical and quantum Hamiltonian
structures of the theory which are determined in this way become intrinsically not manifestly-covariant.

However, it is well-known that for continuum-field theory an alternative Hamiltonian formulation
exists, which is well-established in mathematical physics and dates back to the pioneering work
by DeDonder (1930, [28]) and Weyl (1935, [29]). Such an approach is known in the literature
as DeDonder–Weyl variational formulation, although it has also been subsequently denoted as
“multi-symplectic” or “poly-symplectic field theory” (see for example Refs. [30–33]). Its basic
requirement is the validity of the principle of manifest covariance of variational theory, whereby both
Lagrangian density function and variational fields are represented by tensorial entities, a character
also inherited by the corresponding Hamiltonian theory. The manifestly-covariant Hamiltonian theory
of continuum field in DeDonder–Weyl formalism, therefore, arises as an intrinsic property of field
theory expressing the existence of an underlying Hamiltonian structure of field dynamics, which is
complementary to the non-manifestly-covariant one.

The implementation of the DeDonder–Weyl formalism for GR requires however the adoption of
a variational principle warranting the validity of manifest covariance of the theory. In Ref. [27] this
was found to be expressed by a synchronous Lagrangian variational principle of the type indicated
above, i.e., in which by construction the invariant 4−volume element dΩ and the factor

√−g in the
Lagrangian density are considered constant in the evaluation of the functional derivative. A basic
feature of the new variational approach is the use of superabundant variables. These are now
identified with the components of the variational symmetric metric tensor gµν, with properties to
be distinguished from those of the background metric tensor (or extremal one) ĝµν. In particular,
this means that gµν does not raise or lower tensor indices while exhibiting non-vanishing covariant
derivatives (i.e., which ultimately are associated with the conjugate canonical momenta). Nevertheless,
the identity gµν = ĝµν is warranted for the extremal EFE, proving the equivalence of the synchronous
variational principle with the Einstein–Hilbert one. However, the corresponding manifestly-covariant
Hamiltonian theory of GR built upon such Lagrangian principle represents a novel Hamiltonian
formulation of GR, which is admitted on physical grounds and remains distinguished from the ADM
one, expressing a different Hamiltonian character of gravitational theory. Besides the fulfillment of
manifest-covariance property, it affords also a Hamilton-Jacobi representation of classical GR and its
quantization by implementing canonical quantization methods well established in quantum mechanics



Symmetry 2020, 12, 531 5 of 17

and field theory, leading to the formulation of CQG-theory. The analytical progress reached so far
in such a framework distinguishes CQG-theory from canonical approaches, both for physical and
mathematical aspects.

In particular, CQG-theory exhibits both a suitable invariant proper-time parametrization and
a well-definite behavior with respect of the Quantum Unitarity Principle. More precisely:

(a) In the absence of quantum sinks, |ψ|2 identifies a quantum probability density [26] which
satisfies a quantum continuity equation. In this case |ψ|2 identifies the quantum probability density of
the existence of massive graviton particles.

(b) On the contrary, in the presence of quantum sinks |ψ|2 might not be locally conserved,
as investigated in Ref. [34]. In such a case, in fact, |ψ|2 satisfies a modified quantum continuity
equation, accounting for the decay of |ψ|2 produced by the effective loss of gravitons (see related
discussion in Section 4).

As a consequence of manifest covariance, the same Hamiltonian representations are cast
in 4−tensor frame-independent forms while the quantum probability density |ψ|2 acquires the
character of a physical observable and therefore necessarily coincides with a 4−scalar. The obvious
implication is that in such a context the traditional setting in terms of a preliminary 3 + 1 foliation of
space–time [35] becomes superfluous and hence can be actually avoided. The CQG-theory implies,
in particular, the validity of 4−tensor quantum Hamilton equations, to be intended as quantum
hydrodynamic equations associated with the quantum wave function ψ, and prescribed in terms
of a Hamiltonian hydrodynamic state x =

(
gµν, Πµν

)
, where gµν and Πµν denote independent

4−tensor canonical variables identified respectively with the generalized Lagrangian coordinates
and conjugate canonical momenta. The latter canonical theory has permitted the explicit construction
of non-perturbative quantum-modified EFE [7,36], identified with a suitable stationary form of the
quantum Hamiltonian equations obtained by imposing suitable “equilibrium” initial conditions
to the Hamiltonian hydrodynamic state, characterized by having vanishing canonical momentum.
This made possible also a novel quantum prescription of the cosmological constant (CC), generated by
the non-linear Bohm potential associated with the gravitational field quantum-vacuum self-interaction
occurring among massive gravitons. The study of the quantum-modified EFE has shown that
a cosmological DeSitter solution for the corresponding background metric tensor ĝ ≡ ĝµν remains
warranted in terms of the quantum CC.

The purpose of this paper is to extend the outcome of Ref. [7], searching for additional
quantum-gravity effects determined in the framework of CQG-theory that can further contribute
physically-observable quantum modifications of the classical EFE. The goal is twofold. First,
the investigation concerns the treatment of quantum effects arising due to the presence of
non-equilibrium initial perturbations of the canonical hydrodynamic state in the quantum Hamilton
equations, whereby both the quantum metric tensor and its canonical momentum are allowed to be
non-vanishing. It is shown that this can generate additional quantum corrections to the EFE solving
for the background metric tensor ĝ ≡ ĝµν. Such an equation generalizes the one obtained in Ref. [7]
with the inclusion of a suitably-defined stochastic-averaged stress-energy tensor, and in view of its
derivation procedure it is referred to as momentum quantum-modified EFE. The second target consists
in pointing out the existence of a screening effect on the quantum CC generated by quantum oscillatory
perturbations of the background metric tensor, and the study of the observable features that this
could produce on the physical properties of space–time and the cosmological graviton mass estimate.
More precisely, in the following we intend to show that:

(1) An ensemble of N small-amplitude quantum periodic oscillatory perturbations δg(i)µν of the
background metric tensor ĝµν can exist, for i = 1, N, which are of the form

δg(i)µν = f (s + ϕi) ĝµν, (2)



Symmetry 2020, 12, 531 6 of 17

where f (s + ϕi) is a periodic 4−scalar function of s with period τ > 0 and ϕi, for i = 1, N, is a constant
initial phase. Hence by construction f (s + ϕi) is actually defined for arbitrary s ∈ R.

(2) The background metric tensor ĝµν is a stationary solution of the corresponding
quantum-modified EFE. Therefore, we denote by 〈〉s ≡ 1

τ

∫ τ
0 ds the average performed on the

explicit dependence in terms of the proper-time s only (which is considered as a parameter),
while keeping constant the 4−position rµ (s) along a geodesic curve. This means that while performing
the s−averaging the variable s is considered independent (and hence takes in principle arbitrary real
values), so that by construction ĝµν =

〈
ĝµν

〉
s, while it is assumed that

〈
δg(i)µν

〉
s
= 0 for all i = 1, N.

(3) The quantum perturbations δg(i)µν affect the prescription of the CC, which is shown to take
the form

ΛS = KΛCQG(so), (3)

where K < 1 is the quantum screening factor depending on the proper-time averaged effect carried by
quantum gravitational perturbations, so that ΛS identifies the quantum-screened CC.

(4) The structure of the corresponding quantum-modified EFE now includes an additional source
term produced by proper-time averaged perturbations. Nevertheless, the customary vacuum-field
representation for the background Ricci tensor is recovered, namely

R̂µν = ΛS ĝµν. (4)

(5) As a consequence, the background metric tensor ĝµν determined in this way recovers again
a DeSitter space–time structure solution, in which however the radius of the event horizon is effectively
increased by the factor 1

K due to the screening of the CC, while the Ricci 4−scalar is correspondingly
reduced with respect to its value in the absence of the same screening effect.

(6) Based on the quantum screening mechanism, a new estimate for the quantum-graviton
rest-mass predicted to arise in the DeSitter space–time is performed. Assuming that the screening
effect is affecting the experimental CC-estimate, then it is shown that the graviton mass prediction can
be effectively increased by a factor 1√

K
with respect to the one in the absence of screening.

2. Quantum-Modified Einstein Field Equations

In this section, the theoretical framework underlying the present research is recalled. The starting
point is represented by the manifestly-covariant 4−scalar quantum-gravity wave equation (CQG-wave
equation) obtained in Refs. [25,26] and in turn based on manifestly-covariant canonical quantization.
Let us consider here for definiteness the case in which no quantum sink is present [7]. Then,
consistent with such a requirement, one can readily prove that Hamilton–Jacobi quantization [26]
permits us to identify its representation and interpretation which are formally analogous to those
laying at the foundation of Standard Quantum Mechanics, i.e., of the Schroedinger equation. Its form
is provided by a linear evolution PDE

i} d
ds

ψ(s) = H(q)
R ψ(s), (5)

with d
ds = d

ds

∣∣∣
s
+ ∂

∂s denoting the covariant s−derivative in Eulerian form and H(q)
R a suitable

gauge-dependent self-adjoint quantum Hamiltonian operator earlier reported in Ref. [25]. Here the
notation is given according to the same references, so that in particular for arbitrary s belonging to
the time axis I ≡ R and corresponding 4−position r = r(s) along a field geodetics, ψ(s) ≡ ψ(g, ĝ, r, s)
denotes the 4−scalar quantum wave function associated with a graviton particle belonging to r = r(s).
Furthermore, g =

{
gµν

}
is the quantum generalized-coordinate field which spans the 10−dimensional

real vector space Ug ⊆ R10 of the same wave-function, i.e., the set on which the associated quantum
probability density function ρ (s) = |ψ(s)|2 (quantum PDF) is prescribed.
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It is important to recall here two crucial features of CQG-theory earlier pointed out [7,24]. The first
one lies in the distinction between the quantum tensor gµν, which identifies the continuum Lagrangian
coordinates carrying the quantum physical properties of the gravitational field, and the background
metric tensor ĝµν which instead describes the geometry of space–time. By definition, the tensor gµν is
such that gµνgµν 6= δ

µ
µ , while identically the normalization condition ĝµν ĝµν = 4 applies to the classical

field. Accordingly, the quantum field gµν is allowed to exhibit a quantum dynamical behavior which
deviates from ĝµν and to acquire a non-vanishing quantum momentum Πµν, while thanks to the same
second-quantization scheme proposed here (see also Ref. [7]) these quantum contributions can be
included in the EFE and therefore they can in turn ultimately affect the solution of ĝµν itself.

The second feature is that the background metric tensor ĝµν is actually determined provided
suitable boundary conditions are set. In other words, besides the emerging QG feature pointed out in
Ref. [36], the quantum wave-equation which lies at the basic of CQG-theory prescribes also uniquely
the PDEs, referred to here as quantum-modified Einstein field equations, which in turn determine
ĝµν. This means, therefore, that CQG-theory provides at the same time a self-consistent treatment of
classical and quantum gravity, the first one containing however second-quantization corrections [7]
carried by CQG-theory itself. In this section, we intend to further elaborate on this important aspect of
the theory.

The CQG-wave Equation (5) can be represented in terms of an equivalent set of quantum
hydrodynamic equations upon introducing the Madelung representation

ψ(g, ĝ, r, s) =
√

ρ exp
{

i
}S

(q)
}

, (6)

where the quantum fluid fields
{

ρ, S(q)
}
≡
{

ρ(g, ĝ, r, s),S (q)(g, ĝ, r, s)
}

identify respectively the
4−scalar quantum PDF and quantum phase-function. As a result, the same quantum fluid fields can
be shown to satisfy the set of GR-quantum hydrodynamic equations (CQG-QHE) identified with the
continuity and quantum Hamilton–Jacobi equations

dρ

ds
+

∂

∂gµν

(
ρVµν

)
= 0, (7)

dS (q)
ds

+ H(q) = 0, (8)

where S(q) ≡ S(q)(g, ĝ, r, s) is the quantum phase-function. In addition, Vµν ≡ 1
αL

∂S (q)
∂gµν , where αL is

a dimensional constant which is related to the graviton mass estimate given in Ref. [25], while H(q)

denotes the effective quantum Hamiltonian density

H(q) =
1

2αL
∂S (q)
∂gµν

∂S (q)
∂gµν

+ VQM + Vo. (9)

Here the case of vacuum conditions is considered, namely absence of classical sources, so that
Vo and VQM identify respectively the vacuum effective potential and quantum Bohm interaction
potential [37] given by

Vo = αL
(

2− 1
4

gµνgµν

)
gαβR̂αβ, (10)

VQM ≡
}2

8αL
∂ ln ρ

∂gµν

∂ ln ρ

∂gµν
− }2

4αL
∂2ρ

ρ∂gµν∂gµν . (11)

An analytical treatment of the continuity Equation (7) has been carried out in Ref. [36] in terms
of the generalized Lagrangian-path representation of the CQG-QHE, which realizes a stochastic
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trajectory-based formulation of the CQG-wave equation. This allows for the construction of
an analytical solution for the PDF ρ (s) to be expressed as a shifted Gaussian distribution of the type

ρ (s) = ρG exp

−
s∫

so

ds′
∂Vµ

ν (s′)
∂gµ

ν (s′)

 , (12)

where ρG = ρ(∆g− ĝ) is the shifted Gaussian PDF

ρG ≡
1

π5r10
th

exp

{
− (∆g− ĝ)2

r2
th

}
. (13)

Here r2
th is the dimensionless invariant semi-amplitude width of the Gaussian quantum PDF,

while in short-notation the exponent (∆g− ĝ)2 stands for the 4−scalar defined as (∆g− ĝ)2 ≡(
∆gµν − ĝµν

)
(∆gµν − ĝµν). More precisely, ĝ = ĝµν is the background metric tensor and ∆g ≡ ∆gµν

identifies a stochastic displacement symmetric tensor field associated with each stochastic quantum
trajectory. As proved in Ref. [36], the generalized Lagrangian-path theory is constructed in such
a way that the stochastic average over ∆g of quantum observables (denoted with the symbol <>)
coincides with their quantum expectation value, so that in particular the emergent gravity relationship〈

∆gµν

〉
= ĝµν holds.

Let us now consider the quantum Hamilton–Jacobi Equation (8). It has been proved that
a quantum Hamiltonian structure analogous to that holding for the classical GR-Hamilton equations
can be established, which is represented by the set

{
x, H(q)

}
, where the 4−tensor canonical state

x ≡ (gµν, Πµν) is the Hamiltonian hydrodynamic state, with Πµν = ∂S (q)
∂gµν

, and H(q) is the effective
quantum Hamiltonian density defined above in Equation (9). This permits to represent Equation (8)
equivalently as a set of manifestly-covariant quantum Hamilton equations, which take to form of
evolution equations in terms of the proper-time invariant parameter s. In vacuum these equations are
written as

d
ds

gµν =
Πµν

αL
, (14)

d
ds

Πµν = − ∂

∂gµν (Vo + VQM), (15)

which are subject to generic initial conditions of the type x (so) = xo ≡
(

gµν
o , Π(o)µν

)
.

The quantum Hamilton Equations (14) and (15) generate corresponding quantum-modified EFE.
In Ref. [7] this occurrence was established as follows:

(1) by imposing the “equilibrium” initial conditions

x (so) =
(

gµν

(o) ≡ ĝµν, Π(o)µν ≡ 0
)

, (16)

namely requiring that the initial quantum tensor gµν coincides with the background one and its
corresponding momentum (i.e., its covariant derivative) is identically vanishing;

(2) by taking the deterministic limit ∆gµν → 0 in the contribution arising from the Bohm quantum
potential for the quantum PDF (12), which amounts to require that the stochastic quantum trajectories
driving the quantum wave function collapse on the single deterministic classical trajectory.

Under these assumptions and in vacuum conditions, the quantum Hamilton equations imply the
quantum-modified EFE, which have been obtained in Ref. [7]. The latter take the form

R̂µν −
1
2

[
R̂− 2ΛCQG (s)

]
ĝµν (s) = 0, (17)
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where ĝµν(s) ≡ ĝµν(r (s) , s) denotes the classical deterministic background metric tensor, while R̂µν

together with R̂ (respectively the Ricci tensor and Ricci 4−scalar) are evaluated in terms of ĝµν(s),
so that they are also actually treated as deterministic classical fields. Furthermore, ΛCQG (s) is the
quantum CC reported in Ref. [7] and determined by CQG-theory, which arises due to the Bohm
quantum vacuum interaction among massive gravitons. The tensorial term ΛCQG (s) ĝµν (s) yields
the quantum modification to the classical EFE, whereby in this framework the nature of the same
ΛCQG (s) is purely quantum and is a characteristic contribution of CQG-theory. Notice that in this
picture the background metric tensor ĝµν(s) can in principle depend both explicitly and implicitly on
the proper-time s, to be identified here with the arc-length of a suitable family of time-like geodesics.
The implicit dependence is carried by the 4−position r = r (s) which is evaluated along a non-null
geodesics {r = r (s) , s ∈ I1}. Here, I1 ≡ [so, s1] is a suitable proper-time interval, where the extrema
so and s1 identify the proper-times at which respectively the graviton geodesics begins and ends.
However, for definiteness, in the following we shall restrict our analysis to the case in which the
CC is stationary, namely is independent of proper time. As shown in Ref. [7] this corresponds to an
admissible initial condition for the quantum wave equation, which implies that for arbitrary s the
identity ΛCQG(s) ≡ ΛCQG(so) holds, where

ΛCQG(so) =
h̄2

(αL)2
1

r4
th

(18)

and h̄ is the reduced Planck constant. As a consequence of the stationarity condition indicated above,
it follows that the background metric tensor solution of Equation (17) is stationary too, in the sense
that it cannot depend explicitly on proper-time, so that symbolically in the following ĝµν ≡ ĝµν(r (s)).

A particular realization of ĝµν, solution of Equation (17), can be shown to be the DeSitter
space–time expressed in terms of the CC ΛCQG. Thus, upon introducing the 4−scalar function

B ≡
(

1− r2

A2

)
, the background metric tensor in spherical coordinates (ct, r, ϑ, ϕ) can be written

as ĝµν = diag
{

B, B−1, r2, r2 sin2 ϑ
}

, so that the corresponding Riemann distance takes the form
ds2 = Bc2dt2 − B−1dr2 + r2dΩ2. Here the parameter A is related to the “radius” of the DeSitter
space–time, which in the framework of the quantum modified EFE depends on ΛCQG by means of
the prescription

A =

√
3

ΛCQG
. (19)

We conclude by pointing out that, due to the choice of initial conditions x (so) given above, in the
quantum-modified EFE the only quantum contribution is carried by the quantum CC, and is therefore
associated with the potential term VQM. As a result, possible dynamical contributions associated with
non-vanishing canonical momenta Πµν remain ruled out in such a case.

3. Momentum Quantum-Modified Einstein Field Equations

Based on the results established in Ref. [7], in this section we explore the possibility of obtaining
a generalization of the quantum-modified EFE (17) that warrants at the same time the consistency with
the quantum Hamilton Equations (14) and (15) expressed in evolution form in terms of the invariant
proper-time s. In order to reach the goal, initial conditions different from those adopted previously and
reported in Equation (16) are implemented. More precisely, for the present investigation, more general
“non-equilibrium” initial conditions of the form

x (so) =
(

gµν

(o) ≡ ĝµν (so) + δgµν (so) , Π(o)µν ≡ δπµν (so)
)

(20)

are considered. This means that the initial tensor of the quantum gravitational field gµν

(o) is allowed to
deviate from the deterministic background metric tensor by the quantity δgµν (so), while its conjugate
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momentum is correspondingly non-vanishing in terms of δπµν (so). It follows that, according to this
new prescription, initial conditions for both canonical variables are introduced here, in difference
with Equation (16). Nevertheless, in this regard we notice that, for a single perturbation, the only
possible meaningful initial condition is the one in which δgµν (so) = 0 and δπµν (so) 6= 0. In fact, if the
converse case of δgµν (so) 6= 0 but δπµν (so) = 0 is considered, one can always absorb δgµν (so) into
the prescription of ĝµν (so), so that the customary case of the quantum-modified EFE is recovered.
However, in the more general case of superposition of different perturbations of the type (2) this is
not possible. Therefore, under such a prescription and given validity of Equation (20), for the i-th
perturbation, identifying δgµν ≡ δg(i)µν , one must introduce accordingly the decomposition

gµν (s) = ĝµν + δgµν (s) , (21)

Πµν (s) = δπµν (s) , (22)

holding at the generic proper-time s. Here, both δπµν (s) and δgµν (s) are treated as stochastic
fields with respect to the background fields, while proper-time averages on arbitrary functions of
δπµν (s) and δgµν (s) are treated as classical observables. Correspondingly, the quantum Hamilton
Equations (14) and (15) imply therefore

d
ds

δgµν =
δπµν

αL
, (23)

d
ds

δπµν = − ∂

∂gµν (Vo + VQM), (24)

where in the second equation the rhs is a function of δgµν (s). In particular, because of the definition
of the potential Vo (see Equation (10)), which is a quadratic function of gµν (s), Equation (24) carries
necessarily non-linear dependences on the displacement tensor δgµν (s). Furthermore, the momentum
equation yields a second-order proper-time derivative of the same tensor δgµν when replaced in
Equation (24).

Direct evaluation of the rhs of Equation (24), upon also letting the deterministic limit ∆gµν → 0
in the quantum PDF, yields two independent equations, respectively for δgµν and ĝµν. The first one,
written in the linear approximation for the ith-perturbation, to be considered suitably small with
respect to the background metric tensor ĝµν, becomes

d2

ds2 δg(i)µν = −1
2

[
ĝµνR̂αβ + R̂µν ĝαβ

]
δg(i)αβ − 1

2
R̂δg(i)µν , (25)

which represents a harmonic dynamical equation for each δg(i)µν driven by the background curvature
tensors of space–time. Instead, Equation (24) yields now for ĝµν the equation

R̂µν −
1
2

[
R̂− 2ΛCQG

]
ĝµν =

〈
Tµν

〉
s , (26)

to be referred to as momentum quantum-modified EFE. Its solution, represented by the metric
tensor ĝµν again consistently prescribes the tensor properties of the theory. The difference between
Equation (17) and Equation (26) lies in the tensor term

〈
Tµν

〉
s which is characteristic of non-vanishing

momentum contributions retained in the quantum Hamilton equations, and which were previously
excluded in the treatment of Ref. [7]. More precisely, here

〈
Tµν

〉
s identifies, up to a dimensional

constant, a stress–energy tensor which carries proper-time averaged quantum contributions of all the
ensemble of perturbations. This is found to be defined as

〈
Tµν

〉
s ≡

N

∑
i=1

[
1
2

R̂αβ

〈
δg(i)αβδg(i)µν

〉
s
+

1
4

R̂µν

〈
δg(i)αβδg(i)αβ

〉
s

]
. (27)
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Hence,
〈

Tµν

〉
s contains the non-linear (i.e., quadratic) corrections in δgµν, while the proper-time

averages extrapolate its stochastic quantum character and warrant it is an observable in Equation (26).
We stress that, although each term δg(i)µν of the perturbation sequence is assumed small,

the non-linear contribution carried by
〈

Tµν

〉
s gives actually a non-perturbative character to

Equation (26). The form of Equation (26) suggests to seek a solution for the Ricci tensor of the form
R̂µν = KΛCQG ĝµν, and consequently R̂ = 4KΛCQG. It can be easily shown that such a solution exhibits
the remarkable feature of warranting also the divergence-free condition of

〈
Tµν

〉
s and of the whole

Equation (26). In particular, substituting in Equation (26) then it follows that the 4−scalar K is given by

K =
1

1 + 1
4 ∑N

i=1

[〈
δg(i)αβδg(i)αβ

〉
s
+ 1

2
〈
δg(i)2

〉
s

] , (28)

where δg(i) ≡ δg(i)µν ĝµν is the trace and consequently
〈

δg(i)2
〉

s
> 0, while by construction〈

δg(i)αβδg(i)αβ

〉
s
> 0, so that necessarily K < 1, which therefore identifies a quantum screening factor.

This proves the validity of the representation (3) and the fact that the same CC ΛS is proper-time
independent.

The same result permits us to cast Equation (25) for the ith-perturbation in the form

d2

ds2 δg(i)µν = −ΛS

(
ĝµνδg(i) + 2δg(i)µν

)
, (29)

which implies
d2

ds2 δg(i) = −6ΛSδg(i). (30)

This is a harmonic oscillator equation with a generic solution for the trace of the form
δg(i) = Φ sin

(√
6ΛS (s + ϕi)

)
, namely

δg(i)µν =
1
4

Φ sin
(√

6ΛS (s + ϕi)
)

ĝµν, (31)

where ϕi for i = 1, N are assumed to be uniformly spread in the interval [0, τ], while Φ is a constant
amplitude. The conclusion is therefore that the function f (s + ϕi) introduced in Equation (2) is
found to be f (s + ϕi) ≡ 1

4 Φ sin
(√

6ΛS (s + ϕi)
)
, which indeed is periodic in s with period τ = 2π√

6ΛS
.

As a consequence, proper-time averages can be computed analytically, so that the screening coefficient
K is given by

K =
1

1 + 3N
32 Φ2

. (32)

The solution for the i-th perturbation δg(i)µν implies that at the proper-time so = 0 the initial
perturbation of metric tensor is

δg(i)µν (so) =
1
4

Φ sin
(√

6ΛS ϕi

)
ĝµν, (33)

while the corresponding initial condition for δπ
(i)
µν (so) is found to be

δπ
(i)
µν (so) =

1
4

ΦαL
√

6ΛS cos
(√

6ΛS ϕi

)
ĝµν (so) , (34)

consistent with the previous considerations. We further notice that the solutions for δg(i)µν and

δπ
(i)
µν identify quantum periodic oscillatory perturbations. Regarding the physical interpretation,

the quantum perturbations considered here do not have the character of wave perturbations, namely as
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travelling waves propagating in space–time. We remark that, although the amplitude Φ of the
perturbations can be in principle assumed to be such that the corresponding perturbation δg(i)µν remains
much smaller than ĝµν, e.g., below the current accuracy level of experimental observations aimed at
measuring the same ĝµν, the overall contribution to the screening factor K can be nevertheless of O (1)
and therefore significant. This may occur provided the quantity 3N

32 Φ2 is at least of O (1) or larger. Thus,
for example, letting Φ ∼ 5× 10−4 and N ∼ 108 (which justifies the statistical average hypothesis)
yields K ∼ 0.3. Under these conditions, the metric tensor itself is affected.

4. Case of Quantum Non-Unitarity

Let us consider here for completeness also the case of quantum sinks treated in Ref. [34].
Correspondingly, the CQG-wave Equation (5) is replaced with the modified equation

i} d
ds

ψ(g, s) =
{

H(q)
R +

i}
2

Q(q)
L

}
ψ(g, s), (35)

in which i}Q(q)
L and Q(q)

L denote respectively an appropriate 4−scalar it (or capture) quantum operator

and a real function, denoted as graviton capture term. In particular, Q(q)
L , which is assumed to hold for

the deSitter event horizon, following Ref. [34] is taken of the form

Q(q)
L = f (r, s)Θ(ε− ∆). (36)

Here, f (r, s) is an arbitrary smooth and bounded real function. Furthermore, the theta function
Θ(ε − ∆)(with ε > 0 to be assumed � 1 and ∆ = ∆(r) being a monotonic function of the radial
displacement from an event horizon) takes into account the spatial localization of the quantum sink,
which is assumed to be located suitably close to the DeSitter event horizon [34]. In particular, in the
case in which f (r, s) ≤ 0 the operator i}

2 Q(q)
L identifies a localized quantum pit or capture operator.

As a consequence, Q(q)
L is non-zero only in a suitable domain close to the event horizon domain defined

above. Introducing once again the Madelung representation (6) one notices that now ρ ≡ ρ(g, ĝ, r, s)
generally is no more a probability density since it follows that∫

Ug
d(g)ρ(g, ĝ, r, s) ≤ 1, (37)

with Ug ⊆ R10 denoting the 10−dimensional configuration space spanned by the symmetric coordinate
field g ≡

{
gµν

}
. A corresponding set of quantum hydrodynamic equations analogous to Equations (7)

and (8) is therefore recovered. In particular, one finds that the first one is now replaced with the PDE
in Eulerian form

dρ

ds
+

∂

∂gµν

(
ρVµν

)
= Q(q)

L , (38)

which realizes the non-unitary generalization of the quantum continuity equation. In analogy to
Equation (7), the modified Equation (38) can be solved explicitly to give the analytical solution for the
PDF ρ ≡ ρM (s), where

ρM (s) = ρ (s) η(s), (39)

with

η(s) ≡ exp


s∫

so

ds′ f (r(s′), s′)Θ(ε− ∆)

 , (40)

carrying the new non-stationary modification produced by the graviton capture term f (r(s′), s′)Θ(ε−
∆) which appears in the previous modified quantum continuity equation. We stress furthermore that
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the quantum Hamilton-Jacobi Equation (8) remains unchanged. As a consequence, the subsequent
theory developed in Section 3 still applies.

5. Physical Properties and Applications: DeSitter Solution and Graviton Mass

We now proceed to elucidate the physical implications of the quantum screening mechanism.
First we stress that validity of Equation (4) implies that the space–time metric tensor still admits
a DeSitter type solution expressed in terms of ΛS. More precisely, in analogy with Section 2,

we introduce the 4−scalar function BS ≡
(

1− r2

A2
S

)
, with AS identifying the “radius” of the DeSitter

space–time in the presence of screening effect. Then, in spherical coordinates (ct, r, ϑ, ϕ) the background
metric tensor can be written as ĝµν = diag

{
BS, B−1

S , r2, r2 sin2 ϑ
}

, so that the corresponding Riemann

distance takes the form ds2 = BSc2dt2 − B−1
S dr2 + r2dΩ2. Here, the parameter AS is related to ΛS by

means of the prescription

AS =

√
3

ΛS
. (41)

Comparison between the DeSitter radius solutions A and AS, corresponding respectively to
the two cases of quantum-modified and momentum quantum-modified EFE, permits to establish
the inequality

AS > A =⇒

√
3

ΛS
>

√
3

ΛCQG
, (42)

so that effectively the radius of the DeSitter event horizon is increased if the screening mechanism of
the quantum CC is considered.

Furthermore, denoting here for convenience by R̂ΛS and R̂ΛCQG the Ricci 4−scalars associated
with the quantum-modified and the momentum quantum-modified EFE, the following inequality is
similarly established on this basis:

0 < R̂ΛS < R̂ΛCQG . (43)

This relationship states that, in vacuum configurations considered here:
(1) The classical Ricci 4−scalar obtained by taking the semi-classical limit of the quantum-gravity

contributions is identically vanishing, namely the classical space–time is flat in a vacuum.
(2) In the framework of CQG-theory, quantum contributions retained in the EFE always act so to

produce a non-vanishing and positive curvature of space–time.
(3) The Ricci 4−scalar obtained in the framework of the quantum-modified EFE due to the

Bohm potential interaction is greater than the corresponding one established by the momentum
quantum-modified EFE which includes also corrections due to the stress-energy tensor

〈
Tµν

〉
s.

Validity of Equations (42) and (43) then proves that a physical observable feature distinguishes
the DeSitter solutions considered here, depending on whether the screening effect is set in or not.
In particular, the momentum quantum-modified EFE predicts a different geometry of space–time
in which the accessible physical domain, related to the magnitude of AS is increased, while the
corresponding invariant curvature measured by R̂ΛS is decreased. Hence, momentum corrections to
the EFE contribute to making the space–time flatter and to set the ideal surface of the DeSitter event
horizon further away.

The theoretical foundation for the screening effect of the CC pointed out here is unique in its
formulation. In fact, although the possible occurrence of a physical mechanism of this type has been
pointed out recently in Ref. [38], the framework adopted here remains unprecedented for the following
distinguishing features: (1) The CC is not an ad hoc classical term that is included a priori in the
field equations, but its prescription has a well-defined quantum origin, since it is generated by the
quantum-gravity Bohm interaction occurring among massive gravitons. (2) The classical EFE are
modified by explicit self-consistent quantum contributions, represented by a stochastic-averaged and
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divergence-free quantum stress-energy tensor, rather than by ad hoc phenomenological extra-terms
included in the classical Einstein–Hilbert action, as it is the case of the Energy–Momentum Log Gravity
theory considered in Ref. [38]. (3) Unlike the solution reported in Ref. [38], the present derivation
exhibits the remarkable feature of warranting also the divergence-free condition of

〈
Tµν

〉
s and of the

whole Equation (26). (4) The case of vacuum quantum-modified EFE is considered here, thus excluding
the effect of classical field sources. Hence, the screening effect depicted here is purely quantum in
character, arising specifically due to quantum-gravity non-equilibrium initial perturbations.

Finally, a crucial issue concerns the physical implications of the screening effect of the CC on
the mass estimate for massive gravitons predicted by CQG-theory in a cosmological scenario like the
DeSitter space–time. The invariant graviton rest-mass mo was estimated in Ref. [25] in terms of the
ground-state eigenvalue energy occurring in the presence of discrete energy levels generated by the
potential associated with the same CC. In such a case the upper bound estimate is provided by

mo . 0.326
}
√
|ΛCQG|

c
, (44)

so that the theory prescribes mo as a function of ΛCQG, i.e., mo = mo
(
ΛCQG

)
. The numerical

value for mo was obtained in Ref. [25] by assuming that the observationally-measured value of
the CC, to be denoted Λobs, coincides with ΛCQG, so that there enter no additional (quantum and/or
classical) contributions to the CC other than the one provided by CQG-theory. Hence, letting
ΛCQG = Λobs in Equation (44) and adopting for Λobs the current astrophysical estimated value
Λ ∼= 1.2× 10−52m−2 [39], one finds that mo (Λobs) ∼= 1.26× 10−69kg ∼ 7× 10−34eV/c2, so that the
resulting graviton-to-electron mass ratio is mo

me
∼= 1.38× 10−39, with me denoting the electron rest-mass.

However, if we instead assume that the screening mechanism pointed out in this Letter is effectively
operating, then necessarily the previous numerical estimate requires that Λobs = ΛS = KΛCQG,
so that mo (Λobs) = mo (ΛS). This means that the graviton rest-mass estimated in this way might be
affected itself by the screening factor K. Thus, replacing in Equation (44) ΛCQG with ΛS, the following
mass-enhancement relationship applies:

mo
(
ΛCQG

)
=

1√
K

mo (ΛS) . (45)

As a consequence, since K < 1, the numerical value for the graviton rest-mass obtained under
the assumption mo (Λobs) = mo (ΛS) is effectively increased by a factor 1√

K
. From the physical point

of view, this implies that, if the screening mechanism is in place, the real graviton rest-mass can be
higher than the one inferred by adopting the observationally-deduced value of the CC. On similar
grounds, it is immediate to determine the corresponding correction for the Compton wave-length
λC ≡ h̄

moc associated with the massive graviton. If the physical mass increases, then λC must decreases
accordingly. In fact, one obtains that λC

(
ΛCQG

)
=
√

KλC (ΛS).

6. Conclusions

From the previous analysis, it follows that non-linear quantum-gravity perturbations of the
DeSitter space–time arising in vacuum are actually permitted in the framework of CQG-theory giving
rise, in turn, to non-perturbative momentum quantum-modified Einstein field equations. This occurs
provided they are determined in terms of sequences of phase-shifted periodic perturbations of equal
amplitude and prescribed frequency. The theoretical background is provided by the Hamiltonian
representation of the quantum hydrodynamic equations in the context of the manifestly-covariant
theory of quantum gravity. As a result, new quantum modifications of the EFE have been obtained,
which involve also a new analytical estimate for the cosmological constant (CC), denoted here
as ΛS. The latter has been shown to arise by a quantum-driven screening effect generated by the
same perturbations. We stress that the physical origin of the non-equilibrium periodic oscillations
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is intrinsically quantum. The underlying physical motivations are as follows. First, the effective
kinetic energy carried by the perturbations is drawn from the effective potential energy carried by the
quantum CC. As a consequence, the CC ΛCQG necessarily decreases when such perturbations are set
in. Second, the physical origin of the CC ΛCQG is purely quantum. In fact, according to Ref. [7], it is
ascribed exclusively to the Bohm quantum vacuum interaction occurring among gravitons. Third,
such occurrences can only arise provided ΛCQG is non-vanishing. Indeed, if we drop beforehand
the contribution of the quantum CC ΛCQG entering the quantum-modified Einstein Equations (17),
then the same oscillatory perturbations simply cannot exist. Fourth, physical implications concerning
the graviton rest-mass estimate in a cosmological deSitter space–time have been addressed, proving that
because of the screening effect of the CC, the same graviton rest mass might be higher than the one
previously obtained in Ref. [25] adopting the observationally-measured value of the CC. Finally,
a further interesting conclusion concerns the non-unitary generalization of CQG-theory reported in
Section 4. In fact, it shows that a quantum sink which is assumed spatially localized near the DeSitter
event horizon, does not change the quantum screening effect pointed out here. As a consequence,
the CC and graviton rest mass estimates determined in this way are unaffected, while the entropic
theorems pointed out in Ref. [34] remain equally unchanged.

Besides the foundations of QG and the axiomatic formulation of CQG-theory, the conclusions
reached here are meaningful in the context of QG, theoretical astrophysics and cosmology for their
potential physical relevance. The same conclusions corroborate and stress the importance of the
adoption of a first-principle QG approach like CQG-theory. In particular, the conceptual shortcomings
of the Wheeler–DeWitt equation, and implicitly of the related quantization theories based on that,
have been shown to be overcome in the context of CQG-theory. Finally, the first-principle formulation of
the momentum quantum-modified Einstein field equations based on a second-quantization approach
has been achieved, together with the discovery of the CC screening and mass-enhancement effects
which hold even in the case of quantum sink effects close to the DeSitter event horizon.
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