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Abstract: This manuscript introduces two new chaotic oscillators based on autonomous Boolean
networks (ABN), preserving asymmetrical logic functions. That means that the ABNs require
a combination of XOR-XNOR logic functions. We demonstrate analytically that the two ABNs
do not have fixed points, and therefore, can evolve to Boolean chaos. Using the Lyapunov
exponent’s method, we also prove the chaotic behavior, generated by the proposed chaotic oscillators,
is insensitive to incommensurate time-delays paths. As a result, they can be implemented using
distinct electronic circuits. More specifically, logic-gates–, GAL–, and FPGA–based implementations
verify the theoretical findings. An integrated circuit using a CMOS 180nm fabrication technology is
also presented to get a compact chaos oscillator with relatively high-frequency. Dynamical behaviors
of those implementations are analyzed using time-series, time-lag embedded attractors, frequency
spectra, Poincaré maps, and Lyapunov exponents.

Keywords: chaotic oscillator; lyapunov exponents; poincare map; integrated circuit; fpga; time-delay;
boolean networks

1. Introduction

Chaos behavior is one of the most studied topics in nonlinear dynamics in recent years. Such
interest relies mainly on its extreme sensitivity to the initial conditions. From a real-world application
point of view, the random-like patterns generated by chaotic oscillators are currently pointed out
as the core for obtaining significant engineering applications, for instance, secure-communications
schemes [1–7]; radars [8–10]; sonars [11,12]; liquid mixing [13,14]; adaptive logic gates [15,16]; true
random number generators (TRNGs) [17,18]; collective phenomena in physics and biology [19,20];
navigation and control of autonomous mobile robots [21–23]; Internet of Things [24–29]; and so forth.
Thereupon, the cutting edge chaos-based applications may need reliable, robust, compact, and faster
chaos oscillators.

A remarkable solution to obtain chaotic behavior consists of exploiting the delay paths in
autonomous Boolean networks (ABNs) [30–34]. Kauffman proposed the Boolean networks in 1969 as a
mathematical framework for studying gene regulatory networks. The mathematics describing ABNs
has shown that they could display aperiodic patterns if the Boolean functions have instantaneous
response times, the link time-delays are incommensurate, and their nodes perform asymmetric Boolean
operations, such as the combination of logic exclusive-OR (XOR) and XNOR functions.
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In the context of ABNs, deterministic chaos, also known as Boolean chaos, was initially
demonstrated by using Boolean functions implemented with electronic logic circuits (logic gates
and field-programmable gate arrays FPGAs) [10,35–38]. At circuit level, the basic principle for
obtaining Boolean chaos depends on three main characteristics; the asymmetry between the logic
states, the short-pulse rejection phenomenon, and, most importantly, the degradation effect [30,31].

As is well-known, the incommensurate delay between two different nodes of an ABN is the
critical parameter to obtain chaotic behaviors since it induces the degradation effect [30–34]. Rosin et al.
analyzed two ABNs, one composed of a logic XOR function and two delays τnk and τnl , and the other
one with a logic XNOR function and three delays τnk , τnl , and τnm [38]. They showed that Boolean
chaos arises in an FPGA-based implementation when the delays for each of the three delay paths
are τnk ≥ 2.8 ns, τnl ≥ 1.7 ns, and τnm ≥ 0.56 ns, respectively. To attain the time-delays, they required
18 extra logic NOT gates to connect the nodes of ABN. Besides, if those time-delays reduce below the
minimum, the ABN does not show chaos and evolves to periodic oscillations only, as was analyzed
in Ref. [35]. Park et al. presented an ABN composed of a logic XOR gate and ring oscillator [39].
The proposed logic circuit synthesized on an application-specific IC (ASIC), but the design is not
straightforward because it also demands specific incommensurate delays in the feedback path to
observe Boolean chaos.

Based on the discussion mentioned above, we note a possible benefit of using ABNs can be to get
Boolean chaos oscillators with relatively high oscillation frequencies and small form factors since they
depend on logic functions only. However, we also found that the proposed ABNs have high sensitivity
to the time-delay among network nodes for generating chaos behavior. From a practical point of view,
that condition is very complicated to satisfy since the time-delays are heavily related to the electronics
technology chosen for implementation. Due to the electronic logic gates being heterogeneous, they do
not have the same intrinsic time-delay. As a consequence, the dynamical behaviors of the ABN can be
affected by placing the oscillator on a different area into an integrated circuit or FPGA. In conclusion,
the previously reported Boolean chaos oscillators may not be suitable for physical realizations with
multiple hardware approaches.

In this paper, we propose two ABNs with three and two nodes, respectively. The nodes perform
the logic XOR and XNOR operations. This asymmetric approach avoids fixed points in the ABNs,
and therefore, their dynamics can converge to chaotic oscillations. By applying the Lyapunov exponent
method, we experimentally demonstrate that the Boolean chaos oscillators do not require specific
incommensurate time-delays to show chaotic behaviors. Indeed, the Boolean chaos was observed
under a wide range of the time-delays for the ABNs nodes. We prove our findings by implementing
the proposed ABNs using various logic electronic circuits without any modification neither of the
proposed networks nor adding additional path delays. Three discrete physical realizations using
commercial logic gates, a Generic Array Logic (GAL), and FPGA are presented. Besides, we design an
integrated circuit realization at 180nm fabrication technology.

The structure of the manuscript is as follows. Section 2 introduces the two ABNs and gives the
mathematical demonstrations of their equilibrium points. Section 3 shows the analysis based on the
Lyapunov exponents to determine the insensibility to time-delays. Section 4 presents the Lyapunov
exponents for three different discrete implementations to prove that the ABNs are not affected by
the technology. Section 5 introduces a straightforward methodology to design an integrated circuit
of the Boolean chaos oscillators. Time-series, phase space reconstruction, Lyapunov exponents, and
Poincare maps validate the observed chaos behavior. Finally, the last section concludes the paper.

2. Mathematical Preliminaries

A Boolean network consists of a number of logical nodes interconnected through direct or indirect
links. These are nonlinear networks requiring a mathematical base for analysis. Among the present
models there are: the Kauffman (N-K) networks, Boolean differential equations, and piecewise-linear
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differential equations [33,34]. This work uses the Boolean differential equations to develop important
mathematical considerations.

2.1. Boolean Differential Equations

Let us consider a system with state variables {v1, v2, . . . , vn}, vi ∈ R, i = 1, . . . , n. If a Boolean
variable xi is related to each state vi, depending on a set of thresholds σi ∈ R. Then, the set of Boolean
variables x = {x1, x2, . . . , xn} gives a simple qualitative description of the system with 2n possible
states. By adding the time dependence through a set of delays {τij}, i = 1, . . . , n, j = 1, . . . , n, τij > 0,
where τij is the time it takes for xj to affect xi, there is an associated time delay for each pair of state
variables not necessarily obeying τij = τji. In this manner, the feedbacks among the Boolean variables
can be described by a system of Boolean differential equations as follows [33,34]:

x1(t) = f1(x1(t− τ11), x2(t− τ12), . . . , xn(t− τ1n)),

x2(t) = f2(x1(t− τ21), x2(t− τ22), . . . , xn(t− τ2n)), (1)
...

xn(t) = fn(x1(t− τn1), x2(t− τn2), . . . , xn(t− τnn)),

with fi : Bn → B, i = 1, . . . , n, being a set of Boolean functions where B = {0, 1}. The system (1)
determines the dynamics of a Boolean network considering time delays, thereby defining an
Autonomous Boolean Network (ABN) [33,34]. The dynamics of the ABN given by Equation (1) is
numerically solved once the Boolean functions are defined with initial conditions on an interval
xi(t) = xi0(t) for t0 − τ ≤ t ≤ t0, i = 1, . . . , n, where τ = max{τij} is the memory length of the system.

2.2. Boolean Chaos

In an ideal ABN, the transitions of the signals are arbitrarily fast and the number of transitions
increases with time, following a power law. These increasingly fast dynamics result in an
unlimited growth of frequency over time, referred to as an ultraviolet catastrophe [30]. However,
that phenomenon does not occur in nature because the information-transmitting links and the
processing nodes (for instance real logic gates) have a maximum operation frequency, which are
physically realized. Hence, they cannot transmit or generate signals above a certain frequency [31]. As a
result, the nonideal behaviors of real logic devices are responsible for the origin of chaos in ABNs [30,31].
Those behaviors are (i) Short-pulse rejection (SPR), known as pulse filtering, preventing pulses shorter
than a minimum duration from passing through the gate (Theorem 1). (ii) The asymmetry between
the logic states, making the propagation delay time through the gate depending on whether the
transition is a fall or rise. (iii) The degradation effect triggering a change in the events propagation
delay time when they appear in rapid succession. Among them, the degradation effect is the main
nonideal behavior source of deterministic chaos in an ABN [32], since Boolean chaos originates from a
history-dependent delay [30,31], as defined Lemma 1.

Theorem 1. For a symmetric ABN consisting of a single XOR logic operation with two self-inputs having
delays τ1 and τ1, and with τspr sufficiently small not collapsing to the always-off state occurs before t = τ2,
the trajectory will never reach the always-off state.

Lemma 1. For a class of experimental ABN containing at least one XOR connective and feedback loop,
deterministic chaos may arise if and only if the degradation effect, which is exhibited at some level in any real
ABN, is presented.

On the other hand, if the ABN has equal delays, the links will produce only regular oscillations.
In addition, the fixed points caused by using only symmetric logic functions in the network nodes
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conduct that the dynamics will always collapse into a low or high logic state, respectively. Theorem 2
and Lemma 2 postulates the conditions. As a reference, the complete proofs of Theorems and Lemmas
can be found in [31,35].

Theorem 2. For a symmetric ABN consisting of a single exclusive-OR (XOR) logic operation with two
self-inputs having delays τ1 and τ2, the attractors are always periodic.

Lemma 2. The experimentally realized ABNs should not include a Boolean fixed point, for which all Boolean
functions are satisfied simultaneously.

2.3. Lyapunov Exponents for ABNs

One of the most reliable tools to demonstrate chaotic behavior is computing the Lyapunov
exponent’s spectrum [1–29]. A positive Lyapunov exponent is a signature of chaos [40]. It is defined
as the exponential divergence of trajectories with nearly identical initial conditions. For the ABNs
case, since the states are discrete, indicating a phase space composed just by 2N states, the Lyapunov
exponent’s needs to be computed from distance measures tailored for Boolean systems [41].

Zhang et al. proposed a method to estimate the largest Lyapunov exponent using the Boolean
distance definition [30]. The approach works as follows. (i) Acquire experimentally a long time series
from an output voltage of the ABN. (ii) Convert that voltage to a Boolean variable x(t). (iii) Given any
two segments of starting at times ta and tb, define a Boolean distance with d(s) = 1

T
∫ s+T

s x(t′ + ta)⊕
x(t′ + tb)dt′, where T is a fixed parameter, ⊕ is the XOR logic operation, and the Boolean distance
d(s) evolves as a function of the time s. (iv) Search in x(t) for all the pairs ta and tb corresponding to
the earliest times in each interval T over which d(0) < 0.01. v. Finally, v) compute ln〈d(s)〉, where 〈〉
means an average over all matching (ta, tb) pairs.

As a conclusion, the divergence ln〈d(s)〉 increases exponentially, as expected for an adequate
definition of distance between trajectories in a chaotic system [40].

3. The Proposed Boolean Chaos Oscillators (BCOs) and Their Fixed Points

Motivated by Ref. [30], this work introduces two ABNs composed by three and two nodes,
respectively. The nodes of ABNs perform asymmetric logic functions, i.e., a combination of Boolean
operations XOR and XNOR. We detail the proposed ABNs as follows.

3.1. BCO-1

Figure 1a shows the first Boolean chaos oscillator (BCO). It consists of three nodes where each
node has three inputs and one output that propagates to three different nodes. Nodes A and B
perform the XOR logic operation while node C executes the XNOR. Expressing BCO-1 in the form of
Equation (1), we obtain the following system of Boolean delay equations:

Xa(t) = Xa(t− τaa)⊕ Xb(t− τab)⊕ Xc(t− τac),

Xb(t) = Xa(t− τba)⊕ Xb(t− τbb)⊕ Xc(t− τbc), (2)

Xc(t) = Xa(t− τca)⊕ Xb(t− τcb)⊕ Xc(t− τcc)⊕ 1,

with Boolean functions fi : B3 → B, i = 1, . . . , 3, and ⊕ the logic XOR operation. The signal
propagation time from node j to node i is τij for i, j = a, b, c.
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BA C

(a)

1

Xa Xb Xc

τac τab τaa τbc τba τbb τcb τca τcc

A B C

Input A B C

000 0 0 1

001 1 1 0

010 1 1 0

011 0 0 1

100 1 1 0

101 0 0 1

110 0 0 1

111 1 1 0

(b)

Figure 1. (a) Autonomous Boolean networks (ABN) for the proposed Boolean chaos oscillator (BCO-1).
(b) An implementation of BCO-1 using electronic logic gates and its look-up table.

Theorem 3. For an autonomous Boolean network given by the system of Equation (2), the orbits are always
oscillating [36].

Proof. A Boolean fixed point provokes nonoscillating dynamics due to some orbits eventually
collapsing into the fixed point. To demonstrate the proposed Boolean chaos oscillator converges
to sustained oscillations indefinitely, we must prove that there is not a fixed point. By contradiction,
we demonstrate this theorem. Let us assume that the BCO-1 has a fixed point (X∗a , X∗b , X∗c ), such that:

X∗a = Xa(t− τ),

X∗b = Xb(t− τ),

X∗c = Xc(t− τ),

for t >> τ = max{τaa, τab, τac, τba, τbb, τbc, τca, τcb, τcc}. In this manner, the system of Equation (2)
recast as:

Xa(t) = Xa(t)⊕ Xb(t)⊕ Xc(t), (3)

Xb(t) = Xa(t)⊕ Xb(t)⊕ Xc(t), (4)

Xc(t) = Xa(t)⊕ Xb(t)⊕ Xc(t)⊕ 1. (5)

By substituting Equations (3) and (4) into (5), we obtain:

Xc(t) = Xa(t)⊕ Xb(t)⊕ Xc(t)⊕ Xa(t)⊕ Xb(t)⊕
Xc(t)⊕ Xc(t)⊕ 1. (6)

Equation (6) implies Xc(t) = Xc(t). Since the Boolean space is 2n, the possible states for Xc(t)
are {1, 0}. Thus, “1” = “0”, or vice-versa indicates a contradiction which leads us to conclude that
Boolean network (2) does not have fixed points, and therefore, always oscillates.

3.2. BCO-2

Figure 2a shows the second Boolean chaos oscillator introduced in this work. The proposed
topology consists of two nodes, where each node has three inputs and one output connecting to
two different nodes. While node A performs the XOR logic operation, node B executes the XNOR.
Additionally, the ABN includes two logic NOT operations to obtain the opposed Boolean states for
both nodes. The set of Boolean delay equations for the BCO-2 are:
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Xa(t) = Xa(t− τaa)⊕ Xb(t− τab)⊕¬Xa(t− τaã),

Xb(t) = Xa(t− τba)⊕ Xb(t− τbb)⊕ (7)

¬Xb(t− τbb̃)⊕ 1,

with ⊕ and ¬ indicating the logic XOR and NOT operations, respectively. In addition, the Boolean
functions fi : B2 → B, i = 1, . . . , 2. Similarly to the previous case, it is necessary to prove that the
system (7) does not have a Boolean fixed point.

BA

(a)

1

Input A B

000 0 1

001 1 0

010 1 0

011 0 1

100 1 0

101 0 1

110 0 1

111 1 0

XbXa

τaa τbb

A B

τaã τab τbb̃τba

(b)

Figure 2. (a) ABN for the second Boolean chaos oscillator (BCO-2). (b) An implementation of BCO-2
using electronic logic gates and its look-up table.

Theorem 4. For an autonomous Boolean network given by the system of Equation (7), the orbits are always
oscillating [36].

Proof. We assume that the BCO-2 has the fixed point (X∗a , X∗b ), such that X∗a = Xa(t− τ) and X∗b =

Xb(t− τ), for t >> τ = max{τaa, τab, τaã, τba, τbb, τbb̃}. Therefore, system (7) is rewritten as:

Xa(t) = Xa(t)⊕ Xb(t)⊕¬Xa(t), (8)

Xb(t) = Xa(t)⊕ Xb(t)⊕¬Xb(t)⊕ 1, (9)

By inserting Equation (8) into (9), we obtain:

Xb(t) = Xa(t)⊕ Xb(t)⊕¬Xa(t)⊕ Xb(t)⊕
¬Xb(t)⊕ 1. (10)

Equation (10) means Xb(t) = Xb(t). This again implies a contradiction and it is possible to
claim that the autonomous Boolean network (7) does not have a fixed point and it will oscillate
permanently.

3.3. Boolean Sensitivity Caused by Asymmetric Logic Functions

As demonstrated in the previous subsection, the presented BCOs do not have fixed points.
In this manner, when an autonomous Boolean network is realized experimentally it should include
asymmetric Boolean functions to achieve chaotic dynamics [31,35]. As a result, the preference for
using logic XOR and XNOR functions in the proposed BCOs lies on the look-up table for these logic
operations. Firstly, the idea is considering an equal number of “1”s and “0”s as the output of the
XNOR operation to avoid converging into a physical Boolean fixed-point, i.e., where all entries of the
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look-up table have the same value, and hence inputs and outputs can be the same. From the look-up
tables in Figures 1b and 2b, the outputs are different for all inputs, including the cases “000” and “111”.
On the other hand, since the number of “0”s and “1”s in the look-up tables is equal, the proposed
BCOs can have a higher Boolean sensitivity E = 2Kρ(1− ρ) [30,35]. This is possible with randomly
chosen Boolean functions of bias ρ = 0.5 (equal number of zeros and ones) and high in-degree K (the
number of input connections to a node) or most effectively by using XOR and XNOR Boolean functions
as herein.

4. Boolean Chaos Robust to Different Incommensurate Time-Delays

The chaos-based applications demand the exploration of different typologies and implementations
to find those that are the most suitable. In addition, the chaotic behavior must be robust. It means
that the chaos should be generated consistently for a wide range of parameter values. In the ongoing
literature, the reported autonomous Boolean networks only show chaos in certain ranges of the
feedback delays [10,30,31,35–39], as was discussed in the Introduction section. At the experimental
level, those approaches incorporate an even number of logic NOT gates in the link to act as a time-delay
buffer to add extra signal propagation times. Then, the published works need several pairs of NOT
gates to satisfy the specific incommensurate time-delays for each one of their links connecting nodes.
Otherwise, the chaotic behavior converges to either periodic oscillations or stable dynamics in the
Boolean levels high or low.

Conversely, the proposed BCOs in Figures 1 and 2 do not require additional logic NOT
gates to generate chaotic oscillations. This means that the chaos behavior depends solely on the
incommensurate time-delays, arising only from the intrinsic delay associated with each XOR and
XNOR gate. In this manner, we state the following Lemma and Corollary.

Lemma 3. The Boolean chaotic oscillators of Figures 1 and 2 composed only by logic XOR-XNOR functions
evolve to sustained chaotic oscillations not only for different time-delays of the feedback path (additional pairs of
logic NOT gates) but also when the time-delays in their links are a function just of the intrinsic delay of each
XOR-XNOR gates (no extra logic NOT gates).

Corollary 1. As a consequence of Theorems 3 and 4, an autonomous Boolean network without fixed points
always presents periodic behavior if its delays are commensurate.

Proof. To demonstrate Lemma 3 and Corollary 1, we show the physical implementation of the BCOs
in Figures 1 and 2 using commercial off-the-shelf logic gates (74HCXXX family), as shown in Figure 3a.
The discrete implementation makes it possible to change the time-delay between feedback nodes easily.
Then, we study the dynamics of the proposed BCOs using the Lyapunov exponent method.

The scenario is as follows. First, we consider different cases for the incommensurate time-delays
of the links. Those time-delays were realized using a pair of two NOT gates wired in series. Thus,
from the experimental output signal of nodes C (BCO-1) and B (BCO-2) for each case in Tables 1 and 2,
respectively, we collect a long enough time series. For instance, the BCO-1 output signal of node C
for cases 1, 3, and 7 is given in Figure 4a,d,g, respectively. On the other hand, Figure 5a,d present the
results for the output signal of node B of BCO-2 for cases 1 and 5, respectively.

Next, we compute the largest Lyapunov exponent, λmax, applying the Boolean distance algorithm
introduced in Section 2.3. The results in Tables 1 and 2 shows the largest Lyapunov exponent, λmax,
is positive for all cases indicating the proposed BCOs generate robust Boolean chaos. Besides, the
chaotic behavior was also verified in the BCOs (both cases 1 in Tables 1 and 2, respectively), without
extra time-delays with exception from those incommensurate intrinsic delays of the logic XOR and
XNOR gates, i.e., the BCO-1 and BCO-2 do not include any logic NOT gates in the feedback paths.
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(a) (b) (c)
Figure 3. Experimental setup for BCOs in Figures 1 and 2 using (a) logic gates 74HCXXX, (b) GAL
22V10, and (c) FPGA Spartan6.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 4. Chaotic oscillations from the output voltage in the node C for BCO-1. The measurements
exhibit a 100 ns of time and a 2 V of voltage grid per square. Case 1 in Table 1 with (a) logic gates
74HCXXX, (b) GAL22V10, and (c) FPGA Spartan6. Case 3 in Table 1 with (d) logic gates 74HCXXX,
(e) GAL22V10, and (f) FPGA Spartan6. Case 7 in Table 1 with (g) logic gates 74HCXXX, (h) GAL22V10,
and (i) FPGA Spartan6.

(a) (b) (c)

(d) (e) (f)
Figure 5. Chaotic oscillations from the output voltage in the node B for BCO-2. The measurements
exhibit a 100 ns of time and a 2 V of voltage grid per square. Case 1 in Table 2 with (a) logic gates
74HCXXX, (b) GAL22V10, and (c) FPGA Spartan6. Case 5 in Table 2 with (d) logic gates 74HCXXX,
(e) GAL22V10, and (f) FPGA Spartan6.



Symmetry 2020, 12, 506 9 of 16

Tables 1 and 2 suggest the most suitable case for obtaining Boolean chaos is when no other delay
paths are incorporated in the links because the higher the time-delays, the lower the magnitude of
the largest Lyapunov exponent. From the physical implementation point of view, that is a remarkable
feature because we can get a small form factor with the proposed Boolean chaos oscillators. Moreover,
since the chaos generation does not depend on determined time-delays, the proposed BCOs can be
implemented with several hardware technologies, as demonstrated in the next subsection.

Table 1. Largest Lyapunov exponent (λmax) of the BCO in Figure 1 for different time-delays in the
feedback paths. The symbol “-” means no extra time-delay, while “

√
” refers to a time-delay composed

of two logic NOT gates.

Case Time-Delay Lyapunov Exponent

τaa τab τac τba τbb τbc τca τcb τcc λmax

1 - - - - - - - - - 0.2306
2 - - - - - - - -

√
0.2079

3
√

- - - - - - - - 0.2275
4

√
- - - - - - -

√
0.2057

5
√

- - -
√

- - -
√

0.2076
6

√ √ √
- - - - - - 0.2101

7 - - - - - -
√ √ √

0.2121
8

√ √ √
- - -

√ √ √
0.1774

9
√ √ √ √ √ √

- - - 0.1808
10

√ √ √ √ √ √ √ √ √
0.1896

11 -
√ √ √ √ √ √ √ √

0.1862
12 -

√ √ √ √ √ √ √
- 0.1707

Table 2. Lyapunov exponent of BCO in Figure 2 for different time-delays in the feedback paths.

Case Time-Delay Lyapunov Exponent

τaa τab τaã τbb τba τbb̃ λmax

1 - - - - - - 0.1644
2 - -

√
- - - 0.0960

3 - - - - -
√

0.1495
4

√
- -

√
- - 0.1442

5 -
√

- - - - 0.1525
6 - - - -

√
- 0.1448

Boolean Chaos Robust to Distinct Discrete Physical Implementation

This subsection presents three different physical implementations of the Boolean chaos oscillators.
The dynamics are affected by physical constraints and hardware differences. This may lead to
time-delay variations where the boolean chaos displays. Therefore, the BCO-1 and BCO-2 are
constructed with three different electronic devices (i) commercial-off-the-shelf logic gates (introduced
previously), (ii) a GAL, and (iii) an FPGA. The experiments in Figure 3 demonstrate the robust
generation of Boolean chaos. From the circuit conception, the implementations show the chaotic
behavior source is the degradation effect [32]. In addition, there are no additional procedures to
calculate the delay paths to achieve chaotic oscillations.

The implementation considers all cases of Tables 1 and 2, but for the sake of simplicity, the
Table 3 displays only the examples where the largest Lyapunov exponent is higher. In particular,
case 1 for both BCOs is of particular interest because they do not need extra time-delays for
generating chaos. More specifically, we use the GAL22V10 for realizing both BCOs, as given in
Figure 3b. The programming of the GAL was performed with VHDL language. Figure 4b,e,h give the
experimental results for the cases 1, 3, and 7 of BCO-1; while Figure 5b,e shows the results for cases 1
and 5 of BCO-2. For FPGA implementation, the Spartan 6 was employed (Figure 3c). The experimental
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results are shown in Figure 4c,f,i for cases 1, 3, 7 in Table 1, respectively. Figure 5c,f display the output
signal for cases 1 and 5 in Table 2, respectively.

The measurements exhibit a 100 ns of time and a 2V of voltage grid per square. For all the three
presented implementations, the output voltages (Figures 4 and 5) show the cumbersome temporal
oscillations without evident periodicity. This continuous-time evolution can be identified as Boolean
chaos. To verify the chaotic behavior, we compute the largest Lyapunov exponent for each implemented
case of the corresponding technology, as shown in Figure 6. Table 3 also shows that the Lyapunov
exponents for the three physical implementations have a similar value. This behavior suggests
the Boolean chaos of proposed BCOs is robust to the distinct physical implementations changing
the technology.

(a) Case 1 Table 1 (b) Case 3 Table 1 (c) Case 7 Table 1

(d) Case 1 Table 2 (e) Case 5 Table 2

Figure 6. The divergence ln〈d(s)〉 to determine the largest Lyapunov exponent of the attractor for cases
in Table 3 from each discrete physical implementation (Logic gates, GAL, FPGA).

Table 3. Largest Lyapunov exponent (λmax) for BCOs in Figures 1 and 2 implemented experimentally
with different design technologies considering the time-delays of Tables 1 and 2.

Logic Gates GAL FPGA

BCO-1
λmax (case 1, Table 1) 0.230 0.224 0.209
λmax (case 3, Table 1) 0.227 0.221 0.194
λmax (case 7, Table 1) 0.212 0.211 0.185

BCO-2

λmax (case 1, Table 2) 0.164 0.160 0.157
λmax (case 5, Table 2) 0.152 0.150 0.148

It is worth to noting that, although the intrinsic time-delays of the logic XOR and XNOR gates
change among the physical realizations, Case-1 for both BCOs continues generating chaotic behavior.
In agreement with Lemma 4, the fact that there is Boolean chaos, for various implementations without
extra time-delays in the feedback links, demonstrates that the proposed BCOs are not overly sensitive
to heterogeneous intrinsic time-delays.
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5. An Application Specific Integrated Circuit for the Proposed Boolean Chaos Oscillators

5.1. Chip Design

This section describes the integrated circuit-based implementation of the prospected BCOs in this
work. The Boolean chaos generators are described with Verilog, a Hardware Description Language
(HDL), using the UMC 180 nm Generic Core Cell Library. The BCO-1 hardware description in Figure 7a
uses one XNOR3S and two XOR3S cells from the Generic Core library. That verilogHDL code
synthesizes the three logic gates, whereas the Encounter tool (from Cadence Design Systems) executes
a generic routing algorithm. Similarly, the BCO-2 of Figure 7b uses one XOR3S and one XNOR3S for
the description with the verilogHDL code. The integrated circuit was part of a multiprocess wafer
run and is shown in Figure 8 (Left). The size of BCO-1 is 75 µm× 60 µm while the BCO-2 has physical
dimensions of 32 µm× 26 µm. The area for biasing rails is considered in both scenarios. In any case,
it is possible to reduce the size with routing optimization.1

Xa Xb Xc

τac τab τaa τbc τba τbb τcb τca τcc

A B C

module osc2 v(A);
output A;
wire xa, xb, xc;
XOR3S g1(.O(xa), .I1(xa), .I2(xb), .I3(xc));
XOR3S g2(.O(xb), .I1(xa), .I2(xb), .I3(xc));
XNOR3S g3(.O(xc), .I1(xa), .I2(xb), .I3(xc));
assign A = xc;
endmodule

BCO1

(a)

1

module osc3 v(A);
output A;
wire xa, xb, xc;
XOR3S g1(.O(xa), .I1(xa), .I2(xa), .I3(xb));
XNOR3S g2(.O(xb), .I1(xb), .I2(xb), .I3(xa));
assign A = xb;
endmodule

XbXa

τaa τbb

A B

τaã τba τbb̃τba

BCO2

(b)

Figure 7. (a) Synthesis codes in VerilogHDL for (a) BCO-1, and (b) BCO-2, respectively.

1

BCO-1
60 µm

90 µmBCO-2

1

VDD Osc

D.U.T.

DSOS104AB2962A

Figure 8. Microphotography of the chip and the test-bench for the integrated circuit.

It is worth noting that the design process of the IC is straightforward, and it does not
depend on critical design considerations. However, all the design processes were executed in a
semiautomated way using the generic cells and routing tool from Cadence software and UMC 180 nm
fabrication technology. Therefore, this demonstrates, once again, the flexibility and robustness of the
proposed BCOs.

On the other hand, Figure 8 (Right) shows the test-bench for the integrated circuit. The chip-die is
mounted on an FR4 printed circuit board. It is biased with a low-noise VDD = 1.8 V voltage source
model B2962A while the oscilloscope DSOS104A captures the voltage time-series for further analysis.

5.2. Experimental Results of the Integrated BCO-1 and BCO-2

Now, we present the continuous-time behavior of both BCO-1 and BCO-2 on the integrated circuit.
Figure 9 shows the real-time obtained waveforms and the respective dynamical analysis considering:
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(i) time-series of the output voltage; (ii) frequency spectra; (iii) time-lag reconstructions of the attractors;
(iv) Poincaré mapping set; (v) and largest Lyapunov exponent.
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Figure 9. Chaotic dynamics measured experimentally from the integrated circuit of 180 nm at distinct
settings for both Boolean chaos oscillators. Top to bottom: Time-series, time-lag embedded attractor,
frequency spectrum, Poincaré map, the divergence ln〈d(s)〉 to determine the largest Lyapunov exponent
λmax of the attractor. (a) Experimental results for BCO-1 @ VDD = 3.3 V with λmax = 0.4496;
(b) Experimental results for BCO-1 @ VDD = 2.8 V with λmax = 0.4243; (c) Experimental results
for BCO-2 @ VDD = 3.3 V with λmax = 0.2492.
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Figure 9a presents the BCO-1 features for VDD = 3.3 V. The time-series shows a random evolution
since it has variable cycle amplitudes regarding maxima and minima, and the frequency content
is characterized for a predominant broad distribution and with strong content up to 200 MHz,
therefore suggesting chaotic oscillations. Besides, the time-lag embedded attractor (lag equal to
the first minimum of the time-lag mutual information function) exhibits a chaotic behavior in phase
space, whose underlying complexity can be more properly appreciated on the corresponding Poincaré
map for amplitudes of successive local maxima. In this manner, the arbitrarily chosen plane sections
the attractor in two and thereby enables the visualization of its complex geometry. We found that
the Poincaré map has a dense set of points, which has been identified as characteristic dynamics of
the chaotic behavior. To quantify these observations, we determine the largest Lyapunov exponent
(λmax) of the attractor. The result shows the time evolution of the ln〈d(s)〉. This divergence presents
an almost constant slope for the first part of the curve and then it saturates at a maximum value,
corresponding to the uncorrelated signals x(s + T + ta) and x(s + T + tb). Next, we estimate the value
of λmax, assuming that the divergence of the initially similar segments is exponential in the region of
constant slope. As a result, the average of all pairs of similar segments is our estimate of the largest
Lyapunov exponent for the BCO-1, giving λmax = 0.4496, which demonstrates that the CMOS Boolean
oscillator integrated at 180 nm is chaotic.

Figure 9b shows the dynamical analysis for the same BCO-1 but now with VDD = 2.8 V. This BCO-1
displays a clear chaotic attractor in the 0–4 V range and is validated with the Poincaré set. The results
for time-series, frequency spectrum up to 150 MHz, Poincaré map, and λmax = 0.4243 have a
similar response to the previous case. Therefore, we can conclude the BCO-1 is robust against bias
voltage variations.

The same test is included for the BCO-2 biased to VDD = 3.3 V. The circuit presents a chaotic
oscillation but the on-chip pad originates an explicit limitation of the voltage swing. This prototype
uses internal pad connections and the reduced swing is a consequence of the extended bonding and
absence of I/O cells. Therefore, the on-die probes represent an important load impedance and limit
output swing to 200 mV. Figure 9c shows the time evolution, spectral content up to 160 MHz, chaotic
attractor, and Poincaré map showing the expected results. Finally, Figure 9c also shows the largest
Lyapunov exponent, which has a slope less abrupt but still presents a positive exponent (λmax = 0.2492)
in spite of the small values of the continuous-time sequence.

5.3. Comparison with Similar Implementations

For the sake of reference, Table 4 highlights the principal features of the recent True Random
Number Generator (TRNG), systems based on chaotic circuits. The two new boolean chaotic oscillators
exhibit competitive numbers compared to the references [20,42]. The comparison includes the most
recent works with attempts to fully integrate the system-on-chip. The work in [20] presents a set of
inverted-based chaotic oscillators. The area and power consumption are affordable, but the system uses
additional off-chip biasing circuits. The chaotic circuit in [42] is fully integrated with the disadvantage
of increasing the circuit resources. This is the result of the multiattractor analog system requiring a
large bandwidth but the band limitation or frequency centroid is not reported. The two new boolean
chaotic oscillators in this work present a reduced circuit size and power dissipation, not considering
the chip input-output cells. The proposed boolean chaotic circuits present the most extended frequency
span content compared to the recent on-chip implementations.
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Table 4. Comparison of the principal features of recent TRNG based on chaotic systems.

This Work BCO-1 This Work BCO-2 [20] [42]

Chaos source Boolean chaos Boolean chaos Chaotic oscillation Multiattractor
Integrated Fully Fully Partially Fully

Technology 180 nm 180 nm 180 nm 180 nm
Size (µm)2 4500 832 28, 000 (315, 000× 383, 000)

Static power (µw) 0.2 0.09 25 3660
Speed limit (MHz) 200 160 10 NA

6. Conclusions

Two autonomous Boolean networks that generate Boolean chaos have been introduced. From
the mathematical model, it was shown that the logical states would never reach a fixed-point, and
therefore, will oscillate permanently. The proposed Boolean chaos oscillators exhibited no dependence
on incommensurate time-delays, as demonstrated by computing the Lyapunov exponents under
various scenarios for the delay paths. The correct physical implementations of the two Boolean chaos
oscillators are good evidence of the predicted conditions. Therefore, the BCOs are reliable and robust
to be implemented with multiple circuit implementations, both discrete as integrated.

In particular, the synthesis of the chaotic oscillators in an integrated circuit has shown the benefits
of a compact CMOS chaos generator with areas 0.0045 mm2 and 0.000 832 mm2 for BCO-1 and BCO-2,
respectively, as well as high-speed chaotic oscillations with relevant amplitude content up to 200 MHz.
Several dynamical analyses such as time-series, chaotic attractors, Poincaré maps, and Lyapunov
exponents validated the experimental results.

In this manner, the proposed Boolean chaos oscillators could be useful for various engineering
applications, for instance, random number generators, since the design is straightforward,
robust, compact, and can be implemented in many options of hardware without needing
special considerations.
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