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Abstract: Aiming at the problems of poor efficiency of the intelligent fault diagnosis method of
the main reducer and the poor effectiveness of multichannel data fusion, this paper proposes a
multichannel data fusion method based on deep belief networks and random forest fusion for fault
diagnosis. Multiple deep belief networks (MDBNs) are constructed to obtain deep representative
features from multiple modalities of multichannel data. Random forest can fuse deep representative
features achieved from MDBNs to construct the model of multiple deep belief networks fusion
(MDBNF). The proposed method is applied to fault diagnosis of the main reducer and evaluation of
the performance. Multiple deep belief network model fusions (MD BN F) are constructed to improve
the multichannel data fusion effect. Single sensory data, multichannel data, and two intelligent
models based on support vector machine and deep belief networks are used as comparison in the
experiments. The results indicate that the classification accuracy of the test set collected by sensor
1 and sensor 2 is 88.35% and 88.73%, respectively. The comparison results show that the method
has good convergence. The data fusion of the proposed diagnostic model can effectively improve
the correlation between the collected vibration signals and the failure mode, thereby improving the
diagnostic performance by nearly 8%, representing improved diagnostic accuracy.

Keywords: intelligent fault diagnosis; main reducer; deep belief network; random forest; multichannel
data fusion

1. Introduction

As the crucial part of the rear axle, the condition of the main reducer has a direct impact on the level
of vibration, safety and comfort, and any fault of the main reducer may lead to production downtime,
economic loss and human injury [1,2]. Vibration signals generated during the running process can
effectively reflect the variance of condition. Therefore, fault diagnosis based on vibration signals
is the most-used way of machinery condition monitoring and fault diagnosis [3]. McLaughlin et al.
utilized bi-spectrum analysis based on modulating signal to acquire features of gear vibration signal [4].
Marnatha et al. employed vibration signals and statistical parameters to detect local fault of helical
gear tooth [5]. Yang et al. employed ensemble empirical mode decomposition to extract features of
gear vibration signals [6]. Jena et al. used active noise cancellation and adaptive wavelet transform in
gear fault diagnosis [7].

The first step of machinery fault diagnosis is to monitor valid condition symptom [8,9]. Due to
the configuration complexity and failure diversity of mechanical system, it’s difficult to determine
the best position of sensors for monitoring. Meanwhile, the relationship between fault patterns and
condition symptoms is complex and non-linear mapping [10]. Collecting vibration signals from
single-channel sensors may encounter the limitations of installation position and direction of sensor
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so as to decrease the diagnostic accuracy [11,12]. Based on this, it is necessary to employ multiple
sensors along different transmission paths to collect multichannel vibration signals. However, fault
diagnosis based on multichannel data suffers from two challenges. Firstly, due to the heterogenicity
of multichannel data, using traditional shallow structure to extract features from multiple types of
sensory data will decrease the diagnostic accuracy [13,14]. Secondly, how to effectively fuse the features
extracted from multichannel data is another challenge [15].

Due to the complicated running environment, the collected condition symptom is always interfered
by paroxysmal noise and vibration disturbance originated by other components and obstacles [16].
The second step of fault diagnosis is to achieve deep representative features which are sensitive to
fault patterns from multichannel vibration signals. Recently, deep learning is widely used to extract
fault-sensitive features from statistical parameters for fault diagnosis using deep structure [17,18].
Tamilselvan et al. used deep learning to implement health state classification [19]. Feng et al. employed
deep neural networks to mine characteristic of rotating machinery with massive data [20].

Deep representative features extracted from multichannel data represent multiple modalities of
raw vibration signals, and may lead to different fault-sensitivity of these modalities of features [21].
The third step of fault diagnosis is to fuse deep representative features of multiple modalities from
multichannel data and obtain the final diagnostic result. The most-used fusion methods include
K-nearest-neighbor (KNN), support vector classification (SVC) and random forest [22]. Li et al. used
supervised bounded component analysis to detect gear cracks of wind turbines with vibration signals
collected from multichannel sensors [11]. Duro et al. proposed a multi-sensor data fusion framework
for machine monitoring [12].

Aiming to solve the challengers of fault diagnosis based on multichannel data, this paper proposes
a multichannel data fusion method based on multiple deep belief networks (MDBNs) and random
forest fusion for fault diagnosis. Firstly, multichannel vibration signals are collected using multiple
sensors to implement reliable monitoring. Secondly, multiple modalities features are extracted from
multichannel data using different preprocessing techniques. Then, MDBNs are constructed to obtain
deep representative features from multiple modalities of multichannel data. Finally, we fuse deep
features form MDBNs using random forest to construct the model of multiple deep belief networks
fusion (MDBNF).

The rest of the paper is organized as follows: the deep learning and fusion of deep representative
features from multichannel data is presented in Section 2; application of intelligent fault diagnosis for
the main reducer is presented in Section 3; in Section 4, fault diagnosis experiments of the main reducer
are carried out to evaluate the efficiency of the proposed method; finally, conclusions are addressed in
Section 5.

2. Deep Learning and Fusion of Deep Representative Features

2.1. Deep Belief Networkwith Gaussian-Bernoulli RBM

A deep belief network (DBN) is a typical form of deep learning network and contains a visible layer,
multiple hidden layers and an output layer. The visible layer is used to input data and then transmit
data through hidden layers to achieve non-linear transform as the process of deep learning [20,21].
The structure of DBN is a stack of restricted Boltzmann machines (RBMs), which is composed of a
visible layer and a hidden layer with binary stochastic units [22]. In order to deal with real-valued
input data that can’t be normalized into {0, 1}, we propose to use Gaussian-Bernoulli RBM (GRBM) [23]
in which the visible units are Gaussian neurons to constitute DBN. The architecture of GRBM is shown
in Figure 1.
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Figure 1. Architecture of Gaussian-Bernoulli restricted Boltzmann machine (GRBM). 
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Figure 1. Architecture of Gaussian-Bernoulli restricted Boltzmann machine (GRBM).

In Figure 1, Vi and hi ∈ {0,1} are visible units and hidden units. Vector a and b represent the biases
of hidden layer and visible layer, wij represents weight between the ith visible unit and the jth hidden
unit. Nv and Nh separately represent the number of visible units and hidden units. Considering the
standard deviation of visible units, the joint energy of visible and hidden layer units of GRBM is given
as follows:

E(v, h;θ) =
Nv∑
i=1

(Vi − bi)
2

2σ2 −

Nh∑
j=1

a jh j −
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i=1

Nh∑
j=1
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where θ = {w, b, a} are the model parameters and σi represents the standard deviation of the ith visible
unit. The joint probability distribution of visible vector v and hidden vector h is defined as follows:

P(v, h;θ) =
1

Z(θ)
exp(−E(v, h;θ)) (2)

Z(θ) =
∑

V

∑
h

exp(−E(v, h;θ)) (3)

where Z(θ) is the normalization factor, which depends on θ. For a specific GRBM structure
without interlayer connections, the visible vector v and hidden vector h are conditional independent.
The probabilities of visible vector v can be given:

P(v;θ) =
1
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The conditional probabilities of the ith visible unit Vi and the jth hidden unit h j are expressed
as follows:
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where x is a real number and g(·) represents the logistic function.
By stacking L GRBMs, a DBN is constructed with L hidden layers (h(1), h(2), . . . , h(L)) in which

input layer and h(1) form GRBM1, h(1) and h(2) form GRBM2, h(L−1) and h(L) form GRBM L.
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The training of the DBN consists of two procedures: pretraining and fine-tuning [24]. The first
procedure is unsupervised pretraining of a stack of GRBMs one-by-one. The lower layer of each
GRBM is used as the input layer of next GRBM and the parameters containing weight and biases of
each GRBM are optimized independently. Once the previous GRBM finishes the pretraining, the next
GRBM starts pretraining. The second procedure is supervised fine-tuning of the whole networks by
back propagation algorithm. In this procedure, all of the hidden layers are considered as a whole and
model parameters are adjusted to decrease the training error [25].

2.2. Deep Learning of Multichannel Data Using MDBNs

Through several nonlinear transformations in the form of a stack of GRBMs, a DBN can effectively
extract the deep representative features. In order to obtain reliable data to ensure diagnostic accuracy,
we propose to use multiple sensors to collect multichannel vibration signals as the input data of
diagnostic model.

Srivastava et al. proposed a multimodal learning method with deep Boltzmann machines
by direct combination of multiple modalities [26]. However, the calculation cost of direct linear
combination of input data with different modalities is too high, and the execution time will be increased.
The combination process may occupy a large memory space and bring contradictions and conflicts [27].
Based on this, we construct multiple deep belief networks (MDBNs) in which each DBN is used to
obtain deep representative features of vibration signal collected from one channel.

As shown in Figure 2, the architecture of MDBNs consists of several structures of DBNs (expressed
as DBN1, DBN2, . . . , DBNM) wherein DBNi is used to learn deep representative features of the vibration
signals collected from the ith channel of M channels expressed as Channel 1, Channel 2, . . . , Channel
M. By using MDBNs, after multiple non-linear hierarchical transformations of the input data from
multichannel, the deep representative features of the raw data are acquired.
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Figure 2. Architecture of multiple deep belief network (MDBN).

With the input data of multichannel represented as X(1), X(2), . . . , X(M), the output of the ith DBN
is expressed as:

pi =
(
p(i)1 , p(i)2 , . . . , p(i)NiL

)
(7)

where i=1,2, . . . , M and NiL represents the number of the output units of the ith DBN. With the
proposed MDBNs, each channel data X(i) is converted into deep representative features expressed as pi.
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In order to obtain final diagnostic result, the output vector
(
p1, p2, . . . , pM

)
of MDBNs with M

independent DBN structure needs to be used as the input of the diagnostic model. The output vector
of MDBNs is expressed as follows:(

p1, p2, . . . , pM
)
=

(
p(1)1 , . . . , p(1)N1L

, . . . , p(i)1 , . . . , p(i)NiL
, . . . , p(M)

1 , . . . , p(M)
NML

)
(8)

2.3. Random Forest Fusion of Deep Representative Features

With the representative features of each DBN in the form of Equation (7), diagnostic model could
acquire a result f i as condition pattern corresponding to the vibration signal collected from the ith
channel. However, results of multiple DBNs corresponding to multichannel vibration signals may
be contradictory, such as: f i , f j. The difficulty comes in determining which DBN’s result is valid.
Therefore, we fuse the output of each DBN together to form the input of diagnostic model.

In order to effectively fuse deep representative features in the form of Equation (8) extracted from
multichannel vibration signals by using MDBNs, we propose to use random forest to fuse these features
and achieve the final result. By using the fusion strategy, we can obtain the final result expressed
as follows:

f = F
(
p(1)1 , p(1)2 , . . . , p(1)N1L

, . . . , p(i)1 , p(i)2 , . . . , p(i)NiL
, . . . , p(M)

1 , p(M)
2 , . . . , p(M)

NML

)
(9)

where F(·) represents the fusion function.
As shown in Figure 3, the fusion model based on random forest consists of K decision trees

expressed as
{
T1, T2 . . . , TK

}
with the output of K decision trees as the diagnostic results. Each decision

tree is composed of several splits and nodes in which splits lead the direction of output and nodes
determine the output of this decision tree in the form of a specific class c̃. The output of K decision
trees is generated to codetermine the output vector of the fusion model expressed as follows:

C =
{
c̃1, . . . , c̃k, . . . , c̃K

}
(10)

where c̃k is the class assigned by the kth decision tree Tk. With the output vector C, the final diagnostic
result is produced by majority voting operation:

f = majorityvote
{
c̃1, . . . , c̃k, . . . c̃K

}K
1 (11)
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3. Application to Intelligent Fault Diagnosis of Main Reducer

The proposed multichannel data fusion method based on multiple deep belief networks and
random forest fusion is applied to construct an intelligent fault diagnostic model of MDBNF. The model
includes five modules: collecting multichannel vibration signal using multiple sensors, preprocessing
of the collected signals to generate multiple modalities features, deep learning of multiple modalities
features using MDBNs, fusion of deep representative features obtained from MDBNs, making
diagnostic decision.

3.1. Multiple Modalities Features of Multichannel Vibration Signal

Multiple modalities features of multichannel vibration signal can be extracted using different
preprocessing techniques, such as time domain analysis, frequency domain analysis and time-frequency
domain analysis. Considering the complementarity of these techniques, we utilize all these techniques
to achieve multiple modalities features of multichannel vibration signal.

Time domain analysis technique is easy to implement and independent to rotating speed.
Frequency domain analysis technique is superior to time domain analysis technique for early-stage
and distributed faults [28–31]. Therefore, we employ eight statistical parameters including kurtosis,
crest factor, variance, standard deviation, RMS, skewness, mean and impulse indicator [32] expressed
as follows to implement the preprocessing of time domain and frequency domain signals.

K(x) =
1
n

n∑
i=1

(x(i))4 (12)

C(x) =
max

∣∣∣x(i)∣∣∣√
1
n
∑n

i=1(x(i))
2

(13)

V(x) =
1
n
(x(i))2 (14)

SD(x) =
1
n

n∑
i=1

∣∣∣x(i) − x
∣∣∣ (15)

R(x) =

1
n

n∑
i=1

√∣∣∣x(i)∣∣∣2

(16)

S(x) =
1
n
(x(i))3 (17)

Mean(x) =
1
n

n∑
i=1

∣∣∣x(i)∣∣∣ (18)

I(x) =
max

∣∣∣x(i)∣∣∣(
1
n
∑n

i=1

∣∣∣x(i)∣∣∣)2 (19)

where x(i) is the signal and n is the length of x(i). Additionally, we use wavelet package transform
(WPT) to decompose the vibration signal for time-frequency domain analysis and to extract more
condition parameters. With the maximum decomposition level of J, we calculate the wavelet coefficients
and use twoJ energies of the Jth level as condition parameters of time-frequency domain.
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In this way, multiple modalities features of vibration signal consist of eight statistical parameters
of the time domain, eight statistical parameters of the frequency domain and twoJ condition parameters
of the time-frequency domain expressed as follows:

z1 = s(x) (20)

z2 = s( f (x)) (21)

z3 =
[
E(J, 1), E(J, 2), . . . , E

(
J, 2J

)]
(22)

where z1, z2 and z3 separately represent parameters of time domain, frequency domain and
time-frequency domain.

For multichannel vibration signal, multiple modalities features are expressed as Z = [Z1, . . . ,Zi,
. . . ZM] in which Zi = [z1

i,z2
i,z3

i] represents multiple modalities features of vibration signal collected
from the ith sensor.

3.2. The Proposed Diagnostic Model of MDBNF

With the multiple modalities features of multichannel vibration signal in the form of multiple
statistical parameters, the proposed diagnostic method constructs MDBNs model as shown in Figure 2
to obtain deep representative features of multiple modalities from multichannel data which are sensitive
to fault patterns.

For each DBN in MDBNs, a greedy and layer-to-layer unsupervised learning is executed to
implement non-linear mapping and model advanced abstraction of raw signal collected from each
sensor. After the pretraining of DBN model, fine-tune the parameters of model in supervised way
by using back-propagation algorithm to improve the diagnostic accuracy. After the unsupervised
pretraining and supervised fine-tuning process, the model of DBN is well trained and generated using
training samples. The output the each DBN model is a deep representative feature vector expressed as
Equation (7) of one channel data.

In order to process multichannel vibration signals collected from multiple sensors, multiple DBNs
constitute the model of MDBNs to obtain deep representative features of multichannel data. With the
output vector of MDBNs expressed as Equation (8), a fusion model as shown in Figure 3 is constructed
to fuse the multiple modalities of deep representative features, and then make the diagnostic decision
using Equation (11).

After the MDBNs model is well trained by training sample, it can be used to diagnose fault
pattern of main reducer by using vibration measurement of from multiple sensors. The structure of the
proposed diagnostic model of MDBNF for main reducer is shown as Figure 4.

The procedure of the proposed diagnostic model of MDBNF for main reducer is described
as follows:

Step 1: Collect multichannel vibration signals of main reducer from M sensors expressed as X1(t),
X2(t), . . . , XM(t). Define fault patterns for fault diagnosis.

Step 2: Preprocess the collected signals to generate multiple modalities features expressed
as Z1, Z2, . . . , ZM uusing several statistical parameters of time domain, frequency domain and
time-frequency domain.

Step 3: Construct the model of MDBNs consisting of multiple DBN structures to implement deep
learning of multichannel data, and generate deep representative features expressed as Equation (8).

Step 4: Use fusion model based on the random forest method to fuse deep representative features
of MDBNs, and obtain the output vector expressed as Equation (10).

Step 5: With the output of fusion model, the final diagnostic decision is making by using Equation (11).
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4. Experiment and Discussion

4.1. Experiment Setup

The experiments are carried out on a main reducer fault diagnosis test rig which consists of a
control cabinet part used to control the rotating speed and rotating time, a drive part used to start the
driving motor and a fixture part used to simulate the running states of main reducer under certain
rotating speed. The main reducer test rig is shown in Figure 5. In order to implement reliable condition
monitoring of the main reducer to collect multichannel data for fault diagnosis, we install two sensors
on the tested main reducer in horizontal direction and vertical direction as shown in Figure 6.

The common faults of the main reducer occur in the pair of gears, including gear error, gear burr,
gear hard point, misalignment, gear tooth broken and gear crack, as listed in Table 1. Seven condition
patterns were simulated at the rotating speed of 1200 rps (revolutions per second) with the sampling
frequency of 12 kHz. They contained six fault patterns and the normal condition. We ensured that the
sampling frequency is higher than the gear meshing frequency so that effective information of fault
can be reserved during sampling.

For each condition pattern, we repeated10 tests to collect enough data to represent the pattern.
In each test, 20 signals with the duration of 0.2 s were collected. In this way, for each sensor,
1400 vibration signals corresponding to seven condition patterns were acquired in which 1050 signals
were used as the training set to train MDBNs model and 350 signals were used as the testing set
to test the performance of the model. The collected multichannel vibration signals are expressed
as X1(t) =

[
x1

1(t), x1
2(t), . . . , x1

1400(t)
]

and X2(t) =
[
x2

1(t), x2
2(t), . . . , x2

1400(t)
]
. Each experiment was

executed for 50 trials.
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Table 1. Condition pattern description.

Fault Pattern Condition Patterns

C1 Normal status
C2 Gear error
C3 Gear burr
C4 Gear hard point
C5 Misalignment
C6 Gear tooth broken
C7 Gear crack

For each condition pattern, vibration signals collected from two sensors are shown in Figure 7.
The simulations of the experiments were implemented in Matlab 7.0 on the computer with CPU of
3.4 GHz and RAM of 4 GB.
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Figure 7. Multichannel data of main reducer: (a) vibration signals collected from sensor 1, (b) vibration
signals collected from sensor 2.

4.2. Data Preprocessing

In the preprocessing procedure of raw vibration signals to extract condition parameters,
the maximum decomposition level of WPT is 6, and it employs Daubechies wavelet of order 4
(db4) as mother wavelet of WPT. Then, 26 coefficients are obtained by using WPT and the energy of
each coefficient is combined to form a set of condition parameters. In this way, multiple modalities
features for the vibration signal collected from each sensor with the dimension of 80 are extracted and
stored in a matrix of 1400 rows (number of samples) and 80 columns (number of features).

In order to implement deep learning of multiple modalities features extracted from vibration
signal of two sensors, two feature sets of 1050 training samples corresponding to seven condition
patterns are expressed as Z1 =

[
Z1

1, Z1
2, . . . , Z1

1050

]
and Z2 =

[
Z2

1, Z2
2, . . . , Z2

1050

]
, in which Z1

i and Z2
i are

composed of 80 features extracted from the ith vibration signal, and Z1 and Z2 are used to construct
the MDBNs model with two DBNs.

4.3. Model Design

The model of DBN was developed using the principles described in Section 2.1. For vibration
signals collected from two sensors, we developed a deep learning model of MDBNs containing two
DBNs named DBN1 and DBN2. The number of hidden layers of DBN1 and DBN2 relevant to learning
performance and computation burden was set to 2. The number of the hidden neurons for the first
hidden layer was set to 50, and the number of hidden neurons for the second hidden layer was set to 30.

In order to train each DBN of MDBNs, the number of pretraining epoch was set to 100, and the
number of fine-tuning epochs was set to 200. The dimension of the output vector of MDBNs was 30,
which means that the dimension of input for the fusion model was 30. In order to construct the fusion
model based on random forest, the number of decision trees was set to 10.
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4.4. Experimental Results and Discussions

4.4.1. Results of the Proposed Model of MDBNF

The well-trained diagnostic model of MDBNF was used for main reducer fault diagnosis. By using
a testing of 350 samples collected from each sensor corresponding to seven condition patterns,
342 samples were correctly classified, which means that the classification accuracy of the proposed
diagnostic model is 97.72%. Additionally, the classification accuracy for different fault patterns is
shown in Table 2. Table 2 indicates that the proposed diagnostic model is available for effectively
diagnosing seven fault patterns of the main reducer, and is completely suitable for diagnosing normal
status with the classification accuracy of 100%.

A set of detailed diagnostic result of MDBNF in one trial is shown in Figure 8 for intuitive
presentation. The detailed diagnostic result in Figure 8 shows that the vast majority of samples in the
testing set can be correctly classified by the proposed model of MDBNF.

Table 2. Classification accuracy for different fault patterns.

Fault Patterns
Diagnostic Result

Accuracy
C1 C2 C3 C4 C5 C6 C7

C1 50 0 0 0 0 0 0 100%
C2 0 49 0 1 0 0 0 98%
C3 0 0 49 0 0 1 0 98%
C4 0 1 0 48 0 0 1 96%
C5 0 0 1 0 49 0 0 98%
C6 0 0 0 0 1 49 0 98%
C7 0 1 0 0 0 1 48 96%
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Figure 8. The diagnostic result of MDBNF.

The superiority of the proposed diagnostic model is to employ vibration signals collected from
multiple sensors so as to significantly enhance the reliability and sensitivity between captured symptom
and fault patterns. With the multichannel data, a fusion model based on random forest was used to
fuse the multiple modalities features extracted from these multichannel data.
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4.4.2. Principal Component Analysis of the Deep Representative Features

To verify the ability of MDBNs for deep learning of fault-sensitive features, we utilized principal
component analysis (PCA) to visualize the deep representative features obtained from MDBNs.
The dimension of output vector of MDBNs is 30.PCA was carried out on 30 features of each sample,
and the top three principal components of the feature vector of testing setare shown in Figure 9.
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As shown in Figure 9, most points corresponding to the same fault pattern are clustered together,
and points corresponding to different fault patterns are mostly separated to some extent. Considering
that the section of features only have the top three principal components of feature vector with the aim
of visualization, so that some useful information have been neglected. Although the points obtained
by PCA can’t be used to directly achieve superior classification accuracy of several fault patterns,
the entire deep representative feature obtained from MDBNs is fault-sensitive and is quite qualified
for classification. The result revealed that the proposed MDBNs could adaptively mine the deep
representative characteristics of the main reducer.

4.4.3. Effectiveness of the Fusion Model

In order to validate the effectiveness of the fusion model for multichannel data in the proposed
diagnostic model, by using a typical testing sample composed of x1′

268(t) and x2′
268(t) collected from two

sensors, we conducted a comparison experiment which includes three situations: the first situation is
to directly use deep representative features p1 of the testing sample x1′

268(t) outputted from DBN1 as
input of classifier, the second situation is to directly use deep representative features p2 of the testing
sample x2′

268(t) outputted from DBN2 as input of classifier, the third situation is to use fusion model

based on random forest to fuse the output of the entire MDBNs expressed as
(
p1, p2

)
to acquire the final

diagnostic result by majority voting operation. The output of above three situations and comparison
results of classification accuracy testing set are shown in Figure 10.

According to Figure 10a–c, the diagnostic results of directly using deep representative features
p1 and p2 of the testing sample x1′

268(t) and x2′
268(t) are totally incorrect, namely C5 and C3. However,

the output of fusion model for
(
p1, p2

)
could reflect the actual fault pattern of the testing sample,
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namely C6. Without fusion of multichannel data, the output of the classifier with input of deep
representative features p1 and p2 outputted from DBN1 and DBN2 are inferior to the output of fusion
model. The results reveal that the vibratory measurements using a single sensor may result in wrong
fault patterns; the proposed diagnostic model with data fusion can lead to correct classification results.
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Figure 10. Comparison experiment results: (a) classifier output for p1 of x1′
268(t); (b) classifier output

for p2 of x2′
268(t); (c) output of fusion model for

[
p1, p2

]
; (d) comparison result of classification accuracy

for testing set.

As shown in Figure 10d, without data fusion, classification accuracy of testing set collected from
sensor 1 and sensor 2 are 88.35% and 88.73%. The comparison result indicates that the multichannel
data fusion of the proposed diagnostic model can effectively improve the relevance between collected
vibration signals and fault patterns so as to enhance the diagnostic performance by nearly 8%.

4.4.4. Comparison of Different Diagnostic Models

In order to validate the superiority of the proposed diagnostic model based on MDBNs and data
fusion of multichannel data, we implemented a set of experiments of comparing some state-of-the-art
methods in the field of fault diagnosis by using the same sample set.

The compared diagnostic models include: (1) the proposed diagnostic model of MDBNF,
(2) diagnostic model with MDBNs structure and KNN fusion, (3) diagnostic model with MDBNs
structure and support vector classification (SVC) fusion, (4) diagnostic model with deep learning of
single sensory data and without data fusion, (5) diagnostic model with shallow learning of representative
features of multichannel data, (6) diagnostic model with shallow learning of representative features of
single sensory data. Twenty trials are carried out for each model. The average classification accuracies
of all comparison diagnostic models in the experiments are shown in Table 3.
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Table 3. Average classification accuracy of different diagnostic models.

No. Data Type Learning Level Diagnostic Models Accuracy

(1) Multichannel Deep learning MDBNF 97.72%
(2) Multichannel Deep learning MDBNs with KNN fusion 94.63%
(3) Multichannel Deep learning MDBNs with SVC fusion 95.79%
(4) Single-channel Deep learning DBN 88.58%
(5) Multichannel Shallow learning SVM 73.16%
(6) Single-channel Shallow learning SVM 74.37%

From Table 3, we can conclude as follows:

(1) With the same deep learning architecture of MDBNs, average classification accuracies of diagnostic
models that use KNN and SVC to fuse deep representative features of multichannel data have
reached 94.63% and 95.79%. However, the performances of these two models are still inferior to
the proposed model of MDBNF that uses random forest fusion for multichannel data with the
accuracy of 97.72%. It indicates that random forest fusion with majority voting strategy is better
than simple classification strategy of KNN and SVC.MDBNF can fuse deep features outputted
from DBNs with the input of multichannel data to obtain the final result in higher layer.

(2) Without using multiple sensors to collect vibration signals, the performance of the DBN model
with deep learning of single sensory data is 88.58%, which is not ideal and inferior to models
with multichannel data fusion. It indicates that sensory data in different channels may contain
various failure-sensitive characteristics. Therefore, multichannel data could exhibit more complete
characteristic information of the main reducer.

(3) The classification accuracies of models based on SVM with shallow learning of representative
features are the worst, namely 73.16% and 74.37%, no matter which kind of data is selected.
It indicates that deep learning architecture indeed extracts more fault-sensitive features of main
reducer than shallow learning and could effectively establish non-linear relationships between
vibration measurements and fault patterns of main reducer.

(4) Compared with all the peer models, the performance of the proposed diagnostic model of
MDBNF with multichannel data is superior to other models for main reducer fault diagnosis.
This phenomenon indicates that multichannel data and deep learning architecture can improve
the reliability and accuracy for fault diagnosis.

5. Conclusions

In this paper, a multichannel data fusion method based on a deep belief network and random
forest fusion is proposed for fault diagnosis of the main reducer. Collecting vibration signals with
a single sensor may encounter limitations in the location and orientation of the sensor installation.
To track this issue, multiple channels of data were collected by using multiple sensors to display more
complete feature information. Then, we were able to construct the structure of multiple deep belief
networks (MDBN) to deeply learn representative features from multichannel data. Finally, an MDBNF
model was established to randomly fuse multiple features of MDBN to obtain the final diagnosis result.
In order to confirm the effectiveness and efficiency of the proposed diagnostic model, we implemented
a set of comparison experiments by using a main reducer fault test rig. The experiment results verify
the effectiveness of the proposed method, which achieves the best testing accuracy among all the
comparative methods in the experiments.

The method proposed in this paper is effective, but there are still some limitations in the number
of sensors, sensor types and operating conditions. Our future work will focus on testing the diagnostic
model of MDBNF based on a multichannel data fusion method on more sensor quantity, sensor types
and operation conditions. Furthermore, with the purpose of offering reasonable maintenance proposal,
it is meaningful to investigate more effective approaches that can correctly diagnose the severity of
several fault patterns after fault recognition.
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