
symmetryS S

Article

Balance Adjustment of Power-Line Inspection Robot
Using General Type-2 Fractional Order Fuzzy
PID Controller

Yao Chen 1,†, Tao Zhao 1,†, Songyi Dian 1,†, Xiaodong Zeng 1,*,† and Haipeng Wang 2,†

1 College of Electrical Engineering, Sichuan University, Chengdu 610065, China;
2017223035189@stu.scu.edu.cn (Y.C.); zhaotaozhaogang@126.com (T.Z.); songyi_dian@126.com (S.D.)

2 Shandong Luneng Intelligence Technology Co., Ltd., Jinan 250002, China; shandongpwd@126.com
* Correspondence: xiaodong_zeng_scu@126.com
† These authors contributed equally to this work.

Received: 13 February 2020; Accepted: 6 March 2020; Published: 19 March 2020
����������
�������

Abstract: In this study, a general type-2 fractional order fuzzy PID (GT2FO-FPID) controller is
proposed to fulfil the balance adjustment of the Power-line Inspection (PLI) robot system. It is a
combination of Mamdani general type-2 fuzzy logic controller (GT2-FLC) and fractional PID controller.
Since the PLI robot system is an under-actuated system, it’s necessary to get complete information of
the system. However, when all state variables are treated as input to the controller, there is a problem
with the rule explosion. Because of this, the information fusion method is adopt to solve the problem
and simplify the controller design. At the same time, fractional-order integral-differential operators
and input-output scaling factors, which are taken as design variables and optimized by genetic
algorithm (GA). To assess the performance of proposed controller based on symmetry criterion, we
compared it against existing controllers, i.e., interval type-2 fractional order fuzzy PID (IT2FO-FPID),
type-1 fractional order fuzzy PID (T1FO-FPID), and conventional fractional order (FOPID) controllers.
Furthermore, to show the anti-inference ability of the proposed controller, three common perturbed
process are tested. Finally, simulation results show that the GT2FO-FPID controller outperforms other
controllers in the presence of external perturbations on the PLI robot system.

Keywords: general type-2 fuzzy controller; fractional order controller; inspection robot; under-actuated
nonlinear system

1. Introduction

Fractional calculus has been around for over 300 years. It is a generalization of the integrals of
ordinary differentials and non-integer (arbitrary) orders [1]. This theory is constantly being improved
by various scholars, and now many studies on fractional modeling and fractional controllers have been
published. Thanks to the extra degrees of freedom offered by fractional calculus, objects can be better
defined, described and modeled [2]. Moreover, the fractional controller contain extra flexibility, which
makes the control performance better. Therefore, it has extraordinary significance to study fractional
order control theory.

Nowadays, there is a growing body of research on fractional-order controllers because they
provide the controller an extra degree of freedom to improve system’s performance. The first research
on fractional order PIλDµ controllers was proposed by Podlubny in 1999. He proved that applying a
fractional PIλDµ controller can make the system achieve better performance [3]. However, the increase
in parameters has made controller design and parameter tuning more complicated. [4] proposed a
method to adjust the parameters of PIλDµ controller and the effectiveness of the method was proven
by experiments. The literature [5] analyzed the fractional order PIλDµcontroller optimization process
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based on GA and showed the effectiveness of the proposed method by simulation. In [6], a a set of
tuning rules for fractional order PID controllers are presented. With respect to applications of fractional
order controllers, there are multiple researches, for example, [7] demonstrated the analog fractional
order PIλ controllers are stable and more accurate in simple temperature control applications and
more complex motor control. [8] introduced and studied the application of fractional order controller
in automatic voltage regulator (AVR) system, and optimized by particle swarm optimization (PSO)
algorithm. Finally, the experimental results show the effectiveness of the controller under external
disturbance. From the related literature mentioned above, it can be observed that the fractional order
PID controller is outperforms the conventional PID controller in most of the cases.

With the advancement of fractional order PID controllers, many researchers have attempted to
combine the fuzzy logic controller (FLC) with the fractional order PID controller to meet higher control
requirements. Literature [9] proposed a hybrid fuzzy fractional sliding mode controller (FFOSMC).
The controller using the PDλ sliding surface is compared with a controller using a conventional PID
sliding surface, and the superiority of the proposed controller is demonstrated by the coupled double
pendulum system. In [10], the fractional order fuzzy PID (FOFPID) controller is investigated and apply
it to a two-link planar rigid robotic manipulator to implement track tracking. Through a series of
numerical simulations, this paper concludes that the proposed controller is superior to other controllers
in trajectory tracking, interference suppression and noise suppression. [11] proposed FOFPID for a
rotary servo system. The performance of the proposed controller for is compared with typical PID
and PIλDµ controller. The system response diagram shows that the proposed controller has been
improved in various performance aspects. In [12], a design of the FOFPID is considered, the fuzzy logic
control acts as the tuner for the parameters of the PIλDµ controller, thus the parameters of the whole
controller can be changed according to the system changes and better convergence. Although the
combination of fuzzy logic controller (FLC) and PIλDµ controller has a great improvement in system
performance, it is uncertain whether the effectiveness of the controller can be maintained when faced
with more uncertainty.

There is no doubt that the Power-line Inspection (PLI) robot will encounter a lot of uncertainty
when working on high voltage lines, including wire vibration cased by external disturbance, machine
wear caused by long hours of work, structural uncertainty caused by inaccurate modeling, etc.
Therefore, it’s very significant to improve the controller’s anti-interference ability. However, the type-1
fuzzy logic controller (T1-FLC) is usually not effective when the controlled object is full of uncertainty,
because it has limited capability to handle uncertainties [2]. In [13,14], five sources of uncertainties
in type-1 fuzzy logic system (T1-FLS) are listed as: (1) Since the sensor measurements are affected by
high noise levels from different sources, the uncertainty of FLC input is translated into the uncertainty
of the antecedents’ membership function (MF). (2) The uncertainty of the control output is translated
into uncertainties in the consequents’ MFs of the FLC. (3) The language labels of the antecedents and
the antecedents of FLC can also be uncertain, as different people have different understandings of the
language. (4) Uncertainties related to changes in the operating conditions of the controller can also
translate into uncertainties in the antecedents’ and/or consequents’ MFs. However, the T1-FLS cannot
handle the five kinds of uncertainties directly because of its crisp MF.

Furthermore, the type-2 fuzzy logic system (T2-FLS), proposed by Zadeh in 1975 [15], can handle
kinds of uncertainties directly because its MF is itself fuzzy. The interval type-2 fuzzy logic system
(IT2-FLS), as the special case of the T2-FLS, is widely used in a variety of control applications because
of its effectiveness in anti-interference and simpler calculations [16–23]. More recently the general
type-2 fuzzy logic system (GT2-FLS) has been proposed, and entering higher order or type of fuzzy
logic is to build better uncertainty models [24]. In theory, it is expected that GT2-FLS will allow better
management of uncertainty [25,26]. However, the GT2-FLS require higher computation cost and
several efforts have been made to reduce the complexity of GT2-FLS [24]. For example, [27] proposed
the a complete representation framework, which is referred to as zSlices-based GT2-FLSs. [28] have
put forward a representation based on α-planes, which significantly reduces the complexity and
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computation of GT2-FLS. Of course, there are also a good volume of research work is available on
application of GT2-FLC. Paper [29] present a zSlices-based general type-2 fuzzy PI controller (zT2-FPI).
Numerical simulation indicates that the control performance of the proposed control method improves
both the transient state and disturbance rejection performances compared to the type-1 and interval
type-2 fuzzy PI controller counterparts. In [30], a self-adaptive autonomous online learning based on
GT2-FLS is proposed for decoding and navigation of brain-computer interface motion images of biped
humanoid robots, the effectiveness of the proposed method is demonstrated in a detailed brain-machine
interface experiment. [31] combines the with the improved backtracking search algorithm (MBSA)
technology to control traffic signal scheduling and phase sequence to ensure the smooth flow of traffic
flow with minimum waiting time and average queue length. From the application mentioned above,
we can see the superiority of the general type-2 fuzzy logic controller (GT2-FLC) in the presence of
uncertainties compared with the traditional counterparts. Paper [32] proposes a general type-2 fuzzy
PID controller, which is proven to be effective by acting on a nonlinear system. However, the proposed
controller is a combination of fuzzy controller and classical PID controller, and the fuzzy controller is
only used to set PID parameters, so the control potential of the controller is limited.

Therefore, the GT2FO-FPID controller are proposed to adjust the balance of the PLI robot in
this study. Whether it is an extension from interval to general or an extension of integer order PID
to fractional order PID, it means that the degree of freedom of the controller is increased and the
control performance is improved. However, the increase in controller parameters also increases the
difficulty of controller design, so the GA algorithm is used to select parameters to achieve an effective
control strategy.

The paper is organized as follows. Sections 1 and 2 introduce the basic concepts of GT2-FLS
and the PLI robot system. Section 3 shows the design of the GT2FO-FPID controller. In Section 4,
the simulation results and discussion are presented. The conclusion and future work are proposed in
Section 5.

2. General Type-2 Fuzzy Logic System

The commonly used fuzzy logic system can be divided into T-S fuzzy system [33–35] and
Mamdani system. The Mamdani system is adopted and introduced in this paper. This section
focuses on the basic mathematical concepts of GT2-FLS. As illustrated in Figure 1, the GT2-FLS can be
divided into these parts:

Figure 1. Structure of the GT2-FLS.

Next, we will divide it into several subsections to discuss the GT2-FLS in detail.

2.1. General Type-2 Fuzzy Sets

There are several mathematical definitions of a GT2-FLS, and the GT2-FS can be defined as
Equation (1) based on [30].

˜̃A = {((x, u), µÃ(x, u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]}, (1)
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where Jx is an interval set and as described as Equation (5), x is the partition of the primary MF, and u
is the partition of the secondary MF. In this case, Figure 2 shows the various elements of a GT2-FS,
whose secondary MF is a triangle function.
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Figure 2. Various elements of a GT2-FS.

As the Figure 2 shows, the footprint of uncertainty (FOU) is represented by the blue area and
defined as Equation (2). Moreover, the upper membership function (UMF) and the lower membership
function (LMF) are associated with the upper and lower boundaries of FOU(Ã), and they are denoted
as µÃ(x) and µ

Ã
(x), which are defined as Equations (3) and (4), respectively. Note that in GT2-FS

the uncertainty is depicted by a volume, which demonstrates that the GT2-FS is more capable of
handling uncertainty.

FOU(Ã) =
⋃
∀x∈X

Jx = {(x, u) : u ∈ Jx ⊆ [0, 1]} (2)

µÃ(x) = FOU(Ã) ∀x ∈ X (3)

µ
Ã
(x) = FOU(Ã) ∀x ∈ X (4)

Note that Jx is an interval set, as follows:

Jx = {(x, u) : u ∈ [µ
Ã

, µ̄Ã]} (5)

2.2. Rule Base

The rules of a GT2-FLS have two different canonical structures, Zadeh and TSK. The structure
of the Zadeh rule are used and introduced in this paper. In the proposed method, the error and the
change in error are antecedents, so the specific general type-2 (GT2) Zadeh rule is written as

Rl : IF e is
˜̃

Fl
1 and ∆e is

˜̃
Fl

2, THEN y is
˜̃

Gl , where l = 1, . . . M, (6)

where Rl is a specific rule, the
˜̃Fl
1 and

˜̃Fl
2 are inputs’ MF on rule l, ˜̃Gl is outputs’ MF on rule l. Both ˜̃F

and ˜̃G are GT2-FS and described as Figure 2.

2.3. Fuzzy Inference Engine

The focus of this subsection is on results just for singleton fuzzification and convex MFs.
As illustrated in Figure 3, for each rule, when x1 = x′1, only the vertical slice of the rule-antecedent
GT2 FS F̃l

i , F̃l
i (x′i), is activated. It can be denoted by α-cut as Equation (7) [36].
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Figure 3. When x1 = x′1, the triangle secondary MF is activated.

F̃l
i (x′i)⇔= µ

F̃l
i (x′i)

(u) = sup
α∈[0,1]

[α/[aα(x), bα(x)]] (7)

Moreover, for a GT2 Mamdani fuzzy system, the level α firing set, Fl
α(x′), is

Fl
α(x
′) ≡ α/[ f l

α
(x′), f

l
α(x
′)] (8)

and

f l
α
(x′) ≡ Tp

i=1al
i,α(x′i)

f
l
α(x
′) ≡ Tp

i=1bl
i,α(x′i)

(9)

Because the GT2-FS’s secondary MF is a triangle function as in Figure 2, we use the vertical-slice
representation of its GT2-FSs to reduce computation complexity. So, the formula for the α-cuts of
triangle secondary MFs [36]: al

i,α(x′i) = µ
F̃l

i
(x′i) + w[µ

F̃l
i
(x′i)− µ

F̃l
i
(x′i)]α

bl
i,α(x′i) = µ

F̃l
i
(x′i)− (1− w)[µ

F̃l
i
(x′i)− µ

F̃l
i
(x′i)]α

, (10)

where w is the position weight and determines the shape of the triangle secondary MFs.

2.4. Type-Reduction and Defuzzification

The center-of sets (COS) type-reduction as well as average of end-points defuzzification are
performed in this study. To begin, the centroids of the M GT2 Zadeh rule consequent GT2 FSs are
computed by Equation (11),  CG̃l = sup

∀α∈[0,1]
CG̃l

α

CG̃l
α
= α/[cl(G̃l

α), cr(G̃l
α)]

, (11)

where CG̃l
α

is the centroid of α-plane G̃l
α a raised to level-α. It should be noted that these centroids do

not depend upon x′, so these centroids can be computed and stored after the design of the GT2-FLS
has been completed [37].

Next, the M CG̃l
α

and the level α firing set Fl
α(x′) are used to compute

YCOS,α(x′) = α/[yCOS
l,α (x′), yCOS

r,α (x′)], (12)
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and yCOS
l,α (x′), yCOS

r,α (x′) can be computed by Equation (13).
yCOS

l,α (x′) =
∑L

i=1 cl(G̃l
α) f

i
α(x
′)+∑M

i=L+1 cl(G̃l
α) f i

α
(x′)

∑L
i=1 f

i
α(x′)+∑M

i=L+1 f i
α
(x′)

yCOS
r,α (x′) =

∑R
i=1 cr(G̃l

α) f i
α
(x′)+∑M

i=R+1 cr(G̃l
α) f

i
α(x
′)

∑R
i=1 f i

α
(x′)+∑M

i=R+1 f
i
α(x′)

, (13)

where f i
α
(x′) and f

i
α(x
′) are end-points of the level α firing interval for the ith rule and computed by

Equation (9).
At last, we can conclude that the defuzzified output of the GT2-FLC can be denoted as

Equation (14).
YCOS(x′) =

⋃
α∈[0,1]

YCOS,α(x′) =
⋃

α∈[0,1]

α/[yCOS
l,α (x′), yCOS

r,α (x′)] (14)

3. PLI Robot System

The PLI robot system covered in this section is cited from [38]. Figures 4 and 5 show the overall
structure and modeling framework of the PLI robot, respectively. It should note that there is a
counter-weight to balance the PLI robot system. This self-balancing mechanism balances the robot by
adjusting the center of gravity of the counter-weight.

Figure 4. The overall structure and Line-loading mode of the Power-line Inspection (PLI) robot.

(a) 3D model (b) Model in the X1O1Z1 plane

(c) Model in the X1O1Y1 plane

Figure 5. The overall framework and corresponding modeling parameters of the PLI robot.
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Mathematical Model of PLI Robot System

Firstly, as shown in Figures 4 and 5, θ1(t) is the tilt angle between the robot body and the X1 axis,
and θ2(t) is the angle at which the weight adjusts the center of mass (COM) of the robot to achieve
equilibrium rotation. h1 is the vertical distance between the COM of the PLI robot and the cable,
and h20 is the distance from the COM of the counter-weight box to the Y1O1Z1 plane at θ1 = 0. u2(t) is
the torque produced by the active joint attached to the weight block. τ1(t) is the external disturbance.

Secondly, the dynamic model of PLI robot system is established by the Euler-Lagrange equation,
and the Lagrangian is given as Equation (15).

L = K− P, (15)

ui =
d
dt

[
∂L
∂θ̇i

]
− ∂L

∂θi
i = 1, · · ·, m (16)

where ui is the torque acting on the ith generalized coordinate, K is the kinetic energy of the PLI robot,
P is the potential energy of the PLI robot. The K and P can be denoted as Equations (17) and (18).

K =
m1h2

1θ̇2
1

2
+

m2l2θ̇2
2

2
+

m2[d2 + (−h20 + lsinθ2)]θ̇
2
1

2
(17)

P = −m1gh1sinθ1 + m2g[−hcosθ1(h20 + lsinθ2)sinθ1], (18)

where g is the acceleration of gravity. From Table 1, we can get

m1h1 = m2h20, (19)

from Equations (18) and (19), P can be rewritten as Equation (20).

P = m2g(−d cos θ1 + l sin θ2 sin θ1). (20)

Table 1. Parameters of the PLI robot system.

Symbol m1 (kg) m2 (kg) h1 (m) h20 (m) d (m) l (m)

value 63 27 0.18 0.42 0.5 0.5

Substituting Equations (17) and (20) into Equation (16), and then substituting Equation (16) into
Equation (15) to derive the dynamic equations of the PLI robot system. Therefore, the dynamic
equations are as follows:

τ1 = [m1h1
2 + m2(d2 + (−h20 + l sin θ2)

2)θ̈1] + 2m2l(−h20 + l sin θ2)(cos θ2)θ̇1ϑ̇2

+ m2gd sin θ1 + m2gl sin θ2 cos θ1 (21)

u2 = m2l2θ̈2 −m2l(−h20 + lsinθ2)(cosθ2)θ̇
2
1 + m2glcosθ2sinθ1

To better describe the dynamic process, the state variable vector is defined as follows:

x = [x1 x2 x3 x4]
T = [θ1 θ̇1 θ2 θ̇2]

T . (22)
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The parameters of the PLI robot are shown in Table 1. Therefore, the state space model of the PLI
robot are as follows:

ẋ1 = x2

ẋ2 =
τ1 − 2m2l(−h20 + l sin x3)(cos x3)x2x4

[m1h1
2 + m2(d2 + (−h20 + l sin x3)2)]

− m2gd sin x1 + m2gl sin x3 cos x1

[m1h1
2 + m2(d2 + (−h20 + l sin x3)2)]

ẋ3 = x4 (23)

ẋ4 =
u2 + m2l(−h20 + l sin x3)(cos x3x2

2)

m2l2 − m2gl cos x3 sin x1

m2l2

4. Design of GT2FO-FPID Controller

The description of design and implementation of the GT2FO-FPID controller is presented in this
section. The GT2-FLS is used to design the GT2FO-FPID controller in the MATLAB environment.

4.1. Approximations of Fractional Order Operation

In the development of fractional calculus theory, the definition of fractional calculus of many
functions appears, such as the Cauchy integral formula directly extended by integer calculus,
Grünwald-Letnikov (GL), Riemann-Liouville (RL) and Capotu definitions etc. Cauchy, GL and RL
integral formulas are directly extended from integral of integer order. Among them, GL is the most
direct numerical method to solve fractional calculus, because its coefficients w(α)

j in Equation (26)
can be calculated by simple recursive formulas (Equation (27)). Cauchy and RL formulas are more
complicated, which will increase the computational complexity of the controller. Therefore, in this
study, the GL definition is used to define and calculate fractional calculus, as shown in Equation (24).

aDα
t f (t) = lim

h→0

1
hα

[(t−a)/h]

∑
j=0

(−1)j

(
α

j

)
f (t− jh), (24)

where

(
α

j

)
is the binomial coefficient. It should note that the aDα

t has three circumstance as

described as Equation (25).

aDα
t =



dα

dtα R(α) > 0

1

∫ t
a (dτ)−α R(α) < 0

, (25)

where a is initial conditions and α is fractional order operator, α ∈ R. R stands for Real.
In this study, the GL definition is used to approximate the fractional calculus, and given by

Equations (26) and (27).

aDα
t f (t) = lim

h→0

1
hα

[(t−a)/h]

∑
j=0

(−1)j

(
α

j

)
f (t− jh)

≈ 1
hα

[(t−a)/h]

∑
j=0

w(α)
j f (t− jh),

(26)

w(α)
0 = 1, w(α)

j = (1− α + 1
j

)w(α)
j−1, j = 1, 2, ... (27)
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where w(α)
j = (−1)j

(
α

j

)
is the polynomial coefficient of the function (1− z)α, the coefficient can be

directly obtained by the following recursive formula. Assuming that the step size h is small enough,
the approximation of the numerical differential of the function can be directly obtained by the formula
Equation (27), and it can be proved that the precision of the formula is o(h) [39].

4.2. Structure of PIλDµ Controller

The PIλDµ controller output u(t) can be depicted by Equation (28).

u(t) = Kpe(t) + Kd
dµ

dtµ (e(t)) + Ki
d−λ

dt−λ
(e(t)), µ, λ > 0, (28)

where Kp, Kd, Ki are proportional gain, derivative gain, integral gain, respectively. µ and λ are fractional
order derivative value and fractional order integral value, respectively.

As illustrated in Figure 6, there are four cases for the common PID controllers: (1) The conventional
PD controller when (µ, λ) = (0, 1); (2) The conventional PI controller when (µ, λ) = (1, 0);
(3) The conventional PID controller when (µ, λ) = (1, 1); (4) A proportional gain can be realized
when (µ, λ) = (0, 0). It should note that all these common types of PID controllers are the special cases
of the PIλDµ controller. Moreover, it can be intuitively seen that the PIλDµ controller is a generalization
of the integer order PID controller, and the PIλDµ controller has two degrees of freedom more than the
integer order PID controller, so its flexibility is better.

Figure 6. PID controller with fractional orders.

4.3. Structure of GT2FO-FPID Controller

In this section, the structure and design strategy of the proposed controller are introduced.
The overall frame of the GT2FO-FPID controller is shown in the Figure 7. As illustrated in Figure 7,
there are six structural parameters, and we optimize the parameters by the GA algorithm.

Figure 7. The close loop diagram of a general type-2 fractional order fuzzy PID (GT2FO-FPID)/interval
type-2 fractional order fuzzy PID (IT2FO-FPID)/type-1 fractional order fuzzy PID (T1FO-FPID) controllers.

Firstly, it can be observed that there is a module for information fusion from the Figure 7. Since the
controlled object is an under-actuated system, it is necessary to obtain all the information of the
system to achieve better control. However, when all four state information is input as the system, it is
inevitable to encounter a rule explosion problem. Therefore, the information fusion involved in [40] is
used to solve the problem.

Secondly, the specific process of information fusion is as follows [40]:
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(a) Construct the state feedback gain matrix. Using the quadratic optimal control theory, the state
feedback matrix K is calculated by selecting the appropriate weighting matrix Q, R to satisfy the
condition that the quadratic performance index J of the system model is minimized.

J =
∫ ∞

0
[xT(t)Qx(t) + uT

2 (t)Ru2(t)]dt (29)

K = [Kx1 Kx3 Kx2 Kx4 ], (30)

where T represents the transposition of the matrix, Kx1 , Kx2 , Kx3 , Kx3 are the feedback coefficients of x1,
x2, x3, x4, respectively. The controller can be adjusted to obtain the desired response by changing the
non-zero elements in the Q matrix, the greater the value of the non-zero elements indicating the more
significant the effect of the corresponding state variable on the system.

(b) Construct the fusion function Fx using the state feedback gain matrix. In view of the fact that
the four state information is directly used as the input of the controller, the problem of rule explosion
occurs, so the information state fusion is first reduced by information fusion. Considering that the
main control variable is x1, x1 and x2 are selected as the control principals of the system, x3 and x4 are
used as control sub-elements of the system, and according to the correlation and the fusion with the
principal elements, they are merged into the two control principals.

Therefore, the process of the fusion function and the input-output equation are as follows:

u2 = K · x
= Kx1 · x1 + Kx2 · x2 + Kx3 · x3 + Kx4 · x4

= Kx1 [x1 +
Kx3

Kx1

· x3] + Kx2 [x2 +
Kx4

Kx2

· x4] (31)

= Kx1 · x̃1 + Kx2 · x̃2,

and then the fusion function Fx is as follows:

Fx =

[
1 0

Kx3
Kx1

0
0 1 0 Kx4

Kx2

]
. (32)

(c) The four state variables fusion into two variables:[
e

ec′

]
= Fx× xT , (33)

It can be observed from the above equation that information fusion not only achieves system
dimensionality reduction but also contains all state information of the system. It also should note that
only the e is used when controlling the PLI robot system.

Thirdly, as Figure 7 shows, e(t) and ec(t) are the inputs of the controllers. Each input is divided
into three groups of linguistic variables, i.e., small (S), middle (M), big (B) as Figures 8–13. The input
membership functions of type-1, interval type-2, and general type-2 are illustrated by Figures 8–13,
respectively. It should note that the GT2-FSs’ secondary MFs are triangle functions. Furthermore, there
are five α-planes (α = 0, 0.25, 0.5, 0.75, 1) used to reduce the computational complexity of GT2-FSs.
The rule base is based on the expert’s knowledge and experience. We mainly design fuzzy rules based
on years of PID control experience. For example, at the beginning of control, the controller needs to
generate a large control signal to quickly start the control process. In order to generate a large control
signal, a large proportional gain kp, a large integral gain ki and a small differential gain kd are required.
When approaching the equilibrium point, a smaller proportional gain kp, a smaller integral gain ki and
a larger differential gain kd are needed to avoid deviation from the equilibrium state to construct a
smaller control signal. Therefore, the fuzzy rules are generated as shown in Table 2.
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Figure 8. Membership functions for the input e(t) with T1-FS.
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Figure 9. Membership functions for the input ec(t) with T1-FS.
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Figure 10. Membership functions for the input ec(t) with IT2-FS.
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Figure 11. Membership functions for the input ec(t) with IT2-FS.
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Figure 13. Membership functions for the input ec(t) with GT2-FS.

Table 2. Rule base.

x̃1

x̃2 kp ki kd

S M B S M B S M B

S M S M B S B M B M
M B M B B M B S B S
B M S M M S M M B M

Remark 1. Both the fractional order PID and the GT2-FLC are controllers with more degrees of freedom, which
means that selecting the appropriate parameters enables the controller to achieve better control performance.
Therefore, we combine these two controllers in anticipation of an improvement in control results.

Finally, the GT2FO-FPID controller is applied to the PLI robot system to achieve the balance.
The corresponding numerical simulation will be given in next section.

5. Simulation

In this section, the proposed controller’s performance and robustness are compared to other
controllers; IT2FO-FPID, T1FO-PID, and FOPID on the PLI robot system. Furthermore, the three kinds
of evaluation functions (ISE, IAE and ITAE) are used to assess the control performance of controllers
and are defined as:

ISE =
∫ ∞

0
e(t)2dt (34)

IAE =
∫ ∞

0
|e(t)|dt (35)

ITAE =
∫ ∞

0
|e(t)|tdt (36)
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The matrix Q, R and K1 are as follows:

Q = diag[250, 150, 150, 50], R = 10, (37)

K = [−9.4663− 6.773928 28.2025 7.8361], (38)

according to available state feedback matrix K1, Fx is

Fx =

[
1 0 18.7362 0
0 1 0 1.0622

]
. (39)

Therefore, the four state variables fusion into a e and ec′:

[
e

ec′

]
= Fx×


x1

x2

x3

x4

 . (40)

Moreover, the selection of the objective functions of the GA is as follows:

Obj_ f1 =
∫ ∞

0 |e1(t)|tdt

Obj_ f2 =
∫ ∞

0 |e2(t)|tdt

Obj_ f = ω1Obj_ f1 + ω2Obj_ f2

, (41)

where e1(t) is the difference between state variable x1 and its expected value, e2(t) is the difference
between state variable x3 and its expected value. The ω1 and ω2 are the weights of the corresponding
functions, respectively. In this study, both ω1 and ω2 are equal to 0.5. In order to obtain the optimal
parameters within the range, we took the objective function (Equation (41)) as the evaluation function
and iterated through GA algorithm for several times until the value of the evaluation function
converges. The main optimization parameters include: GE, GCE, GPD, GPI , λ and µ. The optimal
parameters for GT2FO-FPID, IT2FO-FPID, T1FO-FPID, FOPID controllers are shown in Table 3.

Table 3. Optimal parameters for GT2FO-FPID, IT2FO-FPID, T1FO-FPID, and fractional order fuzzy
PID (FOPID) controllers in all cases.

Controllers Type
Parameters

GE GCE GPD GPI λ µ

GT2FO-FPID 1.88 1.76 0.66 0.01 1.01 1.15
IT2FO-FPID 0.01 0.01 0.50 0.01 0.80 1.25
T1FO-FPID 2.64 0.68 0.53 0.45 0.92 0.01

FOPID 50.01 10.00 1.00 0.80 1.30 1.30

The original position is x = [0.3 0− 0.3145 0]T and the task of control is to return the PIL robot
to its balance position x = [0 0 0 0]T through the self-balancing mechanism. To comprehensively
compare the performance of several controllers, there are four simulation tasks performed the PLI
robot system.

5.1. Case 1: Normal Case

In this case, we assumed that the external interference τ1 = 0N· m, and compared the performance
of these several controllers. It can be observed from Figures 14 and 15 and Table 4 that the overshoots
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of GT2FO-FPID and IT2FO-FPID controllers were smaller and the settle times were shorter than
other controllers.
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Figure 14. System output response of the PLI robot for normal case.
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Figure 15. System output response of the PLI robot for normal case.

Table 4. Performance index results for normal case.

Performance x1 x3

Index FOPID T1FO-FPID IT2FO-FPID GT2FO-FPID FOPID T1FO-FPID IT2FO-FPID GT2FO-FPID

ISE 0.0425 0.0479 0.0516 0.0443 0.0173 0.0161 0.203 0.013
IAE 0.3185 0.332 0.2837 0.2916 0.2302 0.1877 0.1817 0.164

ITAE 0.5387 0.4973 0.255 0.3453 0.4726 0.326 0.213 0.2323

5.2. Case 2: External Disturbance

In this case, we added two external disturbances as Figure 16 (τ1 = 10 N/50 N). As shown in
Figures 17–20, with the increase of external interference, the GT2FO-FPID always maintained the best
performance, including smaller amplitude swing after interference and faster return to the balance
position after interference disappeared. It can be observed from Tables 5 and 6 that the parameters of
the GT2FO-FPID controller were the best.
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Figure 16. The external disturbance.
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Figure 17. System output response of the PLI robot for external disturbance τ1 = 10 N.
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Figure 18. System output response of the PLI robot for external disturbance τ1 = 10 N.
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Figure 19. System output response of the PLI robot for external disturbance τ1 = 50 N.
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Figure 20. System output response of the PLI robot for external disturbance τ1 = 50 N.
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Table 5. Performance index results for external disturbance τ1 = 10 N.

Performance x1 x3

Index FOPID T1FO-FPID IT2FO-FPID GT2FO-FPID FOPID T1FO-FPID IT2FO-FPID GT2FO-FPID

ISE 0.0674 0.0677 0.0791 0.0624 0.0293 0.0223 0.0301 0.0170
IAE 0.5884 0.5479 0.5188 0.4759 0.4034 0.3211 0.3240 0.2506

ITAE 3.4889 2.8400 2.7343 2.2592 2.4462 1.8743 1.7791 1.1752

Table 6. Performance index results for external disturbance τ1 = 50 N.

Performance x1 x3

Index FOPID T1FO-FPID IT2FO-FPID GT2FO-FPID FOPID T1FO-FPID IT2FO-FPID GT2FO-FPID

ISE 0.6962 0.6483 0.7800 0.5791 0.2877 0.1360 0.2323 0.1218
IAE 1.6255 1.5699 1.5518 1.3700 1.1442 0.7570 0.9225 0.6576

ITAE 14.7873 13.8458 13.6874 11.7064 10.9172 6.7755 8.4116 5.7021

5.3. Case 3: Uncertainty in Mass

To more fully verify the robustness of the proposed controller, a simulation of parameter
perturbation was performed. In this case, we put all the controllers in equilibrium and continued for
one second before performing the simulation of mass parameter perturbation. Figure 21 illustrates the
step change in mass (∆m1 = 80 kg, ∆m2 = 70 kg). As shown in the Figures 22 and 23 and Table 7, FOPID
and T1FO-FPID controllers had large fluctuations after adding square wave interference, and the
IT2FO-FPID controller fluctuation was small, while the GT2FO-FPID controller showed the strongest
robustness. Furthermore, we increased the variation of mass (∆m1 = 90 kg, ∆m2 = 80 kg). It can be
observed from Figures 24 and 25 and Table 8 that the GT2FO-FPID controller still maintained its
control superiority. In a word, the GT2FO-FPID controller exhibited excellent robustness and showed
superiority in real applications.
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Figure 21. Uncertainty in mass (∆m1 = 80 kg, ∆m2 = 70 kg).
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Figure 22. System output response of the PLI robot with uncertainty in mass (∆m1 = 80 kg, ∆m2 = 70 kg).
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Figure 23. System output response of the PLI robot with uncertainty in mass (∆m1 = 80 kg, ∆m2 = 70 kg).
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Figure 24. System output response of the PLI robot with uncertainty in mass (∆m1 = 90 kg, ∆m2 = 80 kg).
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Figure 25. System output response of the PLI robot with uncertainty in mass (∆m1 = 90 kg, ∆m2 = 80 kg).

Table 7. Performance index results for uncertainty in mass (∆m1 = 80 kg, ∆m2 = 70 kg).

Performance x1 x3

Index FOPID T1FO-FPID IT2FO-FPID GT2FO-FPID FOPID T1FO-FPID IT2FO-FPID GT2FO-FPID

ISE 0.0458 0.0524 0.0518 0.0444 0.0198 0.0196 0.0205 0.0130
IAE 0.4174 0.4559 0.3045 0.3051 0.3265 0.3113 0.2016 0.1758

ITAE 1.9357 2.2453 0.5391 0.5272 1.8253 2.0714 0.4839 0.3895

Table 8. Performance index results for uncertainty in mass (∆m1 = 90 kg, ∆m2 = 80 kg).

Performance x1 x3

Index FOPID T1FO-FPID IT2FO-FPID GT2FO-FPID FOPID T1FO-FPID IT2FO-FPID GT2FO-FPID

ISE 0.0494 0.0566 0.0520 0.0445 0.0224 0.0228 0.0206 0.0131
IAE 0.4599 0.5021 0.3120 0.3114 0.3678 0.3575 0.2088 0.1812

ITAE 2.5408 2.9033 0.6438 0.6131 2.4092 2.7289 0.5831 0.4624
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5.4. Case 4: Random Disturbance

Figures 26 and 27 are the outputs of the PLI robot system in the face of random signal interference
(τ1 = rands(1)). According to the system response diagram and Table 9, we can draw the conclusion
that the controller proposed in this paper could still maintain the best control performance in the face
of random interference.
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Figure 26. System output response of the PLI robot with random disturbance.
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Figure 27. System output response of the PLI robot with random disturbance.

Table 9. Performance index results for random disturbance.

Performance x1 x3

Index FOPID T1FO-FPID IT2FO-FPID GT2FO-FPID FOPID T1FO-FPID IT2FO-FPID GT2FO-FPID

ISE 0.0450 0.0506 0.0521 0.0445 0.0181 0.0170 0.0205 0.0130
IAE 0.4648 0.4819 0.3488 0.3257 0.3096 0.2711 0.2200 0.1768

ITAE 2.8277 2.8882 1.2784 0.8732 1.7259 1.6870 0.8235 0.4333

6. Conclusion and Future Work

6.1. Conclusions

This paper presents a controller combining GT2-FLC with FOPID controller. We are committed to
using the advantages of GT2-FLC controller to overcome various uncertainties and the multi-degree
of freedom of FOPID controller to improve the performance of the controller. In order to fully verify
the proposed controller, we carried out simulation under various interference conditions. In the face
of external square wave interference, it can be observed that the GT2FO-FPID controller can still
maintain its superiority when the interference signal increases from 10 N to 50 N. In the case of internal
parameter perturbation, the GT2FO-FPID controller has almost no fluctuation. In the face of random
interference, the performance of the IT2FO-FPID controller and T1FO-FPID controller is not ideal,
only the GT2FO-FPID controller can still return to the equilibrium position quickly and accurately.
Through this series of numerical simulation, we can conclude that the proposed controller has the best
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anti-interference ability, especially in the case of internal parameter perturbation. Therefore, we can
believe that in real life, the controller proposed in this paper can better achieve the balance control of
PLI robot, even if there are a variety of uncertainties.

6.2. Future Work

In future work, we hope to implement the proposed method in real world, verify its effectiveness,
and adjust it according to the actual situation. Moreover, when designing input membership functions
and rules, we first design through experience, and then slowly adjust, lacking wide applicability.
Therefore, in future work, we hope that the system can learn input membership functions and rules
and optimize it to improve the adaptability and intelligence of the system in the real world.
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