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Abstract: In this paper, we deal with the asymptotics and oscillation of the solutions of fourth-order
neutral differential equations of the form

(
r (t) (z′′′ (t))α)′ + q (t) xα (g (t)) = 0, where z (t) :=

x (t) + p (t) x (δ (t)). By using a generalized Riccati transformation, we study asymptotic behavior
and derive some new oscillation criteria. Our results extend and improve some well-known results
which were published recently in the literature. Symmetry ideas are often invisible in these studies,
but they help us decide the right way to study them, and to show us the correct direction for future
developments. An example is given to illustrate the importance of our results.
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1. Introduction

To date, the oscillatory behavior of the solutions to differential equations has been discussed in
many papers. Among them, there are many papers about the oscillation of the solutions to functional
differential equations. In a related field, the asymptotic behavior of the solutions to delay and
neutral delay differential equations were discussed in many works, and there have been very fruitful
achievements see [1–28].

In this paper, our focus is on improving the criteria of oscillation of fourth-order neutral equations(
r (t)

(
z′′′ (t)

)α
)′

+ q (t) xα (g (t)) = 0, (1)

where t ≥ t0 and z (t) := x (t) + p (t) x (δ (t)). In this work, we assume:

Hypothesis 1. α ∈ {a/b : a, b ∈ Z+} , r ∈ C1 ([t0, ∞)) , r (t) > 0, r′ (t) ≥ 0 and

θ (t0) :=
∫ ∞

t0

r−1/α (s)ds < ∞; (2)

Hypothesis 2. p, q ∈ C ([t0, ∞)) , q (t) > 0, 0 ≤ p (t) < p0 < ∞,

Hypothesis 3. δ ∈ C1 ([t0, ∞)) , g ∈ C ([t0, ∞)) , δ′ (t) > 0, δ (t) ≤ t and limt→∞ δ (t) = limt→∞ g (t) = ∞.

By a solution of (1) we mean a function x ∈ C3 ([tx, ∞)) , tx ≥ t0, which has the property(
r (t) (z′′′ (t))α) ∈ C1 ([tx, ∞)) , and satisfies (1) on [tx, ∞). We consider only those solutions x of (1)
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which satisfy sup{|x (t)| : t ≥ T} > 0, for all T ≥ tx. A solution x of (1) is said to be non-oscillatory if
it is positive or negative, ultimately; otherwise, it is said to be oscillatory.

Delay differential equations are often studied in one of two cases∫ ∞

t0

r−1/α (s)ds = ∞ (3)

or (2) which it is said to be in canonical or noncanonical. For canonical, Moaaz et al. [21] proved that (1)
is oscillatory if

lim inf
t→∞

∫ t

δ−1(η(t))

( (
δ−1 (η (s))

)n−1

r1/α (δ−1 (η (s)))

)α

q (s) Pα
n (g (s))ds >

((n− 1)!)α

e
(4)

and

lim inf
t→∞

∫ t

δ−1(ζ(t))
δ−1 (ζ (s)) Rn−3 (s)ds >

1
e

, (5)

where Pn (t) = 1/p
(
δ−1 (t)

) (
1−

((
δ−1 (δ−1 (t)

))n−1 /
(
δ−1 (t)

)k−1 p
(
δ−1 (δ−1 (t)

))))
.

In [25], the authors proved that (1) is oscillatory if the first-order differential equation

y′ (t) + q (t) (1− p (δ (t)))α
(

λδn−1 (t)
(n− 1)!r1/α (δ (t))

)α

y (δ (t)) = 0,

is oscillatory, also

lim sup
t→∞

∫ t

t0

(
q (s) (1− p (δ (s)))α

(
λ1δn−2 (s) δ (s)

(n− 2)!

)α

− αα+1

(α + 1)α+1 δ (s) r1/α (s)

)
ds = ∞

and

lim sup
t→∞

∫ t

t0

(
q (s)

(
δn−2 (s) δ (s)
(n− 2)!

)α

− αα+1

(α + 1)α+1 δ (s) r1/α (s)

)
ds = ∞.

Now, we state some lemmas that will be useful in establishing our main results:

Lemma 1 ([18]). If the function x satisfies x(i) (t) > 0, i = 0, 1, ..., n, and x(n+1) (t) < 0, then

x (t)
tn/n!

≥ x′ (t)
tn−1/ (n− 1)!

.

Lemma 2 ([6] (Lemma 2.2.3)). Let x ∈ Cn ([t0, ∞) , (0, ∞)) . Assume that x(n) (t) is of fixed sign and not
identically zero on [t0, ∞) and that there exists a t1 ≥ t0 such that x(n−1) (t) x(n) (t) ≤ 0 for all t ≥ t1. If
limt→∞ x (t) 6= 0, then for every µ ∈ (0, 1) there exists tµ ≥ t1 such that

x (t) ≥ µ

(n− 1)!
tn−1

∣∣∣x(n−1) (t)
∣∣∣ for t ≥ tµ.

Lemma 3 ([10]). Let β be a ratio of two odd numbers, C > 0 and D are constants. Then

Dx− Cx(β+1)/β ≤ ββ

(β + 1)β+1
Dβ+1

Cβ
.

In this work, we obtain some new oscillation criteria for (1). The paper is organized as follows.
Firstly, we study the behavior of non-oscillatory solutions of (1) andwe obtain the sufficient conditions
which guarantee that every non-oscillatory solution of (1) tends to zero. Secondly, we will use the



Symmetry 2020, 12, 477 3 of 12

Riccati transformation technique to give some conditions for the oscillation of (1). Finally, an example
is provided to illustrate the main results.

2. The Behavior of Non-Oscillatory Solutions

In this section, we study the behavior of non-oscillatory solutions of (1) when p0 ∈ (0, 1). We use
an approach that leads to only three independent conditions, but we obtain sufficient conditions which
guarantee that every non-oscillatory solution of (1) tends to zero.

Definition 1. A solution x of (1) is said to be non-oscillatory if it is positive or negative; otherwise, it is said to
be oscillatory.

Lemma 4. Assume that x is an eventually positive solution of (1). Then, r (t) (z′′′ (t))α is non-increasing.
Moreover, we have the following cases:

(S1) : z′ (t) > 0, z′′ (t) > 0, z′′′ (t) > 0 and z(4) (t) < 0;
(S2) : z′ (t) > 0, z′′ (t) < 0, z′′′ (t) > 0 and z(4) (t) < 0;
(S3) : z′ (t) > 0, z′′ (t) > 0 and z′′′ (t) < 0;
(S4) : z′ (t) < 0, z′′ (t) > 0 and z′′′ (t) < 0.

Lemma 5. Let x be a positive solution of (1) with property (S1) or (S2). Then the equation

w′ (t) + (1− p0)
α q (t)

r (g (t))

(µ

6
g3 (t)

)α
w (g (t)) = 0, (6)

has a non-oscillatory solution.

Proof. Suppose the x is a positive solution of (1) with property (S1) or (S2). Then, we have that

z′ (t) > 0, z′′′ (t) > 0 and z(4) (t) < 0.

Thus, from Lemma 2, we obtain
z (t) ≥ µ

6
t3z′′′ (t) . (7)

From definition of z, we see that x (t) ≥ (1− p0) z (t), which with (1) gives(
r (t)

(
z′′′ (t)

)α
)′

+ (1− p0)
α q (t) zα (g (t)) ≤ 0. (8)

Hence, from (7), if we set w := r (z′′′)α > 0, then the differential inequality

w′ (t) + (1− p0)
α q (t)

r (g (t))

(µ

6
g3 (t)

)α
w (g (t)) ≤ 0.

From [4] (Corollary 1), we have that (6) also has a positive solution, and this completes the proof.

Lemma 6. Let x be a positive solution of (1) with property (S3). Then the equation(
r (t)

(
ω′ (t)

)α
)′

+ (1− p0)
α q (t)

(µ

2
g2 (t)

)α
ωα (t) = 0, (9)

has a non-oscillatory solution.

Proof. Suppose the x is a positive solution of (1) with property (S3). Using Lemma 2, we obtain

z (t) ≥ µ

2
t2z′′ (t) . (10)
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As in the proof of Lemma 6, we can obtain that (8). Next, if we set G := r (z′′′/z′′)α < 0, then we get

G′ (t) ≤ − (1− p0)
α q (t)

zα (g (t))
(z′′ (t))α − αr−1/α (t) G1+1/α (t) .

Hence, from the fact that z′′′ < 0 and (10), we find

G′ (t) + (1− p0)
α q (t)

(µ

2
g2 (t)

)α
+ αr−1/α (t) G1+1/α (t) ≤ 0. (11)

Therefore, there exists a function G ∈ C1 ([t0, ∞) ,R) such that (11) holds. It follow from [1] that (9) has
a non-oscillatory solution, and this completes the proof.

Theorem 1. Assume that the differential equations (6) and (9) are oscillatory. Then every non-oscillatory
solution of (1) tends to zero if ∫ ∞

t0

(
1

r (u)

∫ t

t0

q(s)ds
)1/α

du = ∞. (12)

Proof. Assume the contrary that x is a positive solution of (1) with property limt→∞ x (t) 6= 0. From
Lemma 4, we have cases (S1) − (S4). Using Lemmas 5 and 6 with the fact that the differential
Equations (6) and (9) are oscillatory, we conclude that x satisfies case (S4). Then, since z is a positive
decreasing function, we get that limt→∞ z (t) = c ≥ 0. Suppose the contrary that c > 0. Thus, for all
ε > 0 and t enough large, we have c ≤ z(t) < c + ε. Choosing ε < (1− p0) (c/p0), we obtain

x(t) = z(t)− p0(t)x(δ(t)) > c− p0z(δ(t))

> L(γ + ε) > Lz(t), (13)

where L = (c− p0(c + ε)) / (c + ε) > 0. Hence, from (1), we have(
r (t)

(
z′′′ (t)

)α
)′

= −q (t) xα (g (t)) ≤ −Lαq (t) zα (g (t))

≤ −Lαεαq (t) .

Integrating this inequality from t1 to t, we get

z′′′ (t) ≤ −Lε

(
1

r (t)

∫ t

t1

q(s)ds
)1/α

.

By integrating from t1 to t, we obtain

z′′ (t) ≤ z′′ (t1)− Lε
∫ t

t1

(
1

r (u)

∫ t

t1

q(s)ds
)1/α

du.

Letting t → ∞ and taking into account (12), we get that limt→∞ z′′(t) = −∞. This contradicts the
fact that z′′ (t) > 0. Therefore, c = 0; moreover the fact x (t) ≤ z (t) implies limt→∞ x (t) = 0,
a contradiction. This completes the proof.

Corollary 1. Assume that (12) holds. Then every non-oscillatory solution of (1) tends to zero if
∫ ∞

t0
q (s)ds = ∞,

lim inf
t→∞

∫ t

g(t)

q (s) g3α (s)
r (g (s))

ds >
6α

eµα (1− p0)
α (14)
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and

lim sup
t→∞

∫ t

t0

(
(1− p0)

α θα (s) q (s)
(µ

2
g2 (s)

)α
−
(

α

α + 1

)α+1 1
r1/α (s) θ (s)

)
ds > 0. (15)

Proof. It is well-known from [3] (Theorem 2) and [2] (Corollary 2.8) that (14) and (15) imply oscillation
of (6) and (9), respectively.

Lemma 7. Assume that x is an eventually positive solution of (1). If z is an increasing and

p (t)
(n−1)/2

∑
k=0

2k

∏
r=1

p
(

δi (t)
)
< 1, (16)

then
x (t) ≥ (1− p̂ (t)) z (t) , (17)

for any odd positive integer n, where

p̂ (t) := p (t)
(n−1)/2

∑
k=0

2k

∏
r=1

p
(

δi (t)
)

.

Proof. From the definition of z (t), we obtain

x (t) = z (t)− p (t) x (δ (t))

= z (t)− p (t) z (δ (t)) + p (t) p (δ (t)) x
(

δ2 (t)
)

= z (t)− p (t) z (δ (t))− p (t) p (δ (t)) p
(

δ2 (t)
)

z
(

δ3 (t)
)
+ p (t) p (δ (t)) p

(
δ2 (t)

)
p
(

δ3 (t)
)

x
(

δ4 (t)
)

≥ z (t)−
(n−1)/2

∑
k=0

2k

∏
r=0

p
(

δi (t)
)

z
(

δ2k+1 (t)
)
+

n

∏
r=0

p
(

δi (t)
)

x
(

δn+1 (t)
)

≥ z (t)−
(n−1)/2

∑
k=0

2k

∏
r=0

p
(

δi (t)
)

z
(

δ2k+1 (t)
)

, (18)

for t ≥ t2, where t2 ≥ t0 sufficiently large, and any odd positive integer n. Since δ2k+1 (t) ≤ δ2k (t),
we find

z
(

δi (t)
)
≤ z (t) , for i = 0, 1, ..., n,

which with (18) gives

x (t) ≥
(

1−
(n−1)/2

∑
k=0

2k

∏
r=0

p
(

δi (t)
))

z (t) .

The proof is complete.

By replacing p̂ (t) instead of p in the previous results, we can get the following corollary:

Corollary 2. Assume that (12) holds. Then every non-oscillatory solution of (1) tends to zero if
∫ ∞

t0
q (s)ds = ∞,

lim inf
t→∞

∫ t

g(t)
(1− p̂ (g (s)))α q (s) g3α (s)

r (g (s))
ds >

6α

µαe

and

lim sup
t→∞

∫ t

t0

(
(1− p̂ (g (s)))α θα (s) q (s)

(µ

2
g2 (s)

)α
−
(

α

α + 1

)α+1 1
r1/α (s) θ (s)

)
ds > 0.
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3. New Oscillation Criteria

For convenience, we denote:

Pk (t) : =
1

p (δ−1 (t))

1−

((
δ−1 (t)

)k−1 p
(
δ−1 (δ−1 (t)

)))−1

(δ−1 (δ−1 (t)))1−k

 , for k = 2, n,

Θ (s) : =
αα+1

(α + 1)α+1
rα
(
δ−1 (g (s))

)
r1/α (s) θ (s)

(
(δ−1 (g (s)))′

)α , θ (t) =
∫ ∞

t0

r−1/α (s)ds

and

Θ̃ (s) =
αα+1

(α + 1)α+1
2αrα

(
δ−1 (g (s))

)
r1/α (s) θ (s) µ1

(
(δ−1 (g (s)))′ (δ−1 (g (s)))2

)α .

Also, we define the Riccati substitutions

ω (t) :=
r (t) (z′′′ (t))α

(z′′ (δ−1 (g (t))))α (19)

and

ξ (t) :=
r (t) (z′′′ (t))α

zα (δ−1 (g (t)))
. (20)

At studying the asymptotic behavior of positive solutions, there are three Cases (S1)− (S4). We
recall an existing criterion for Cases (S1) and (S2) in the following lemma:

Lemma 8 ([21]). Assume that x be an eventually positive solution of (1). If (4) and (5) hold, then z is neither
satisfied (S1) nor (S2).

Lemma 9. Assume that x be an eventually positive solution of (1) and(
δ−1

(
δ−1 (t)

))n−1
<
(

δ−1 (t)
)n−1

p
(

δ−1
(

δ−1 (t)
))

. (21)

Then

x (t) ≥
z
(
δ−1 (t)

)
p (δ−1 (t))

− 1
p (δ−1 (t))

z
(
δ−1 (δ−1 (t)

))
p (δ−1 (δ−1 (t)))

. (22)

Proof. Assume that x be an eventually positive solution of (1) on [t0, ∞). From the definition of z (t),
we see that

p (t) x (δ (t)) = z (t)− x (t)

and so
p
(

δ−1 (t)
)

x (t) = z
(

δ−1 (t)
)
− z

(
δ−1 (t)

)
.

Repeating the same process, we obtain

x (t) =
1

p (δ−1 (t))

(
z
(

δ−1 (t)
)
−
(

z
(
δ−1 (δ−1 (t)

))
p (δ−1 (δ−1 (t)))

−
x
(
δ−1 (δ−1 (t)

))
p (δ−1 (δ−1 (t)))

))
,

which yields

x (t) ≥
z
(
δ−1 (t)

)
p (δ−1 (t))

− 1
p (δ−1 (t))

z
(
δ−1 (δ−1 (t)

))
p (δ−1 (δ−1 (t)))

.

Thus, (22) holds. This completes the proof.
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Lemma 10. Assume that x is an eventually positive solution of (1) and(
r (t)

(
z′′′ (t)

)α
)′
≤ −q (t) Pα

1 (g (t)) zα
(

δ−1 (g (t))
)

, if z satisfies (S3) (23)

and (
r (t)

(
z′′′ (t)

)α
)′

+ q (t) Pα
2 (g (t)) zα

(
δ−1 (g (t))

)
≤ 0, if z satisfies (S4) . (24)

Proof. Let case (S3) holds. From Lemma 1, we have z (t) ≥ t
2 z′ (t) and hence the function t−1z (t) is

nonincreasing, which with the fact that δ (t) ≤ t gives(
δ−1 (t)

)
z
(

δ−1
(

δ−1 (t)
))
≤
(

δ−1
(

δ−1 (t)
))

z
(

δ−1 (t)
)

. (25)

Combining (22) and (25), we see that

x (t) ≥ 1
p (δ−1 (t))

(
1−

(
δ−1 (δ−1 (t)

))
δ−1 (t) p (δ−1 (δ−1 (t)))

)
z
(

δ−1 (t)
)

= P2 (t) z
(

δ−1 (t)
)

. (26)

From (1) and (26), we obtain(
r (t)

(
z′′′ (t)

)α
)′
≤ −q (t) Pα

n (g (t)) zα
(

δ−1 (g (t))
)

. (27)

Thus, (23) holds. Assume that Case (S4) holds. Since δ−1 (t) ≤ δ−1 (δ−1 (t)
)

. From (22), we see that

x (t) ≥ 1
p (δ−1 (t))

(
1− 1

p (δ−1 (δ−1 (t)))

)
z
(

δ−1 (t)
)

= P2 (t) z
(

δ−1 (t)
)

, (28)

which with (1) yields (
r (t)

(
z′′′ (t)

)α
)′

+ q (t) Pα
2 (g (t)) zα

(
δ−1 (g (t))

)
≤ 0.

Thus, (24) holds. This completes the proof.

Lemma 11. Assume that x be an eventually positive solution of (1) and (S3) holds. If we have the function
ω ∈ C1[t, ∞) defined as (19), then

ω′ (t) ≤ −q (t) Pα
1 (g (t))

(
λ

2

(
δ−1 (g (t))

)2
)α

− α

(
δ−1 (g (t))

)′
r1/α (t) r (δ−1 (g (t)))

ω
α+1

α (t) , (29)

for all t > t1, where t1 large enough.

Proof. Let x is an eventually positive solution of (1). From Lemma (2), we get

z
(

δ−1 (g (t))
)
≥ λ

2

(
δ−1 (g (t))

)2
z′′
(

δ−1 (g (t))
)

, (30)

for every λ ∈ (0, 1) and all sufficiently large t. Recalling that r (t) (z′′′ (t))α is decreasing, we get

r
(

δ−1 (g (t))
) (

z′′′
(

δ−1 (g (t))
))α
≥ r (t)

(
z′′′ (t)

)α .
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This yields (
z′′′
(

δ−1 (g (t))
))α
≥ r (t)

r (δ−1 (g (t)))
(
z′′′ (t)

)α . (31)

From the definition of ω (t), we see that ω (t) < 0 for t ≥ t1. By differentiating, we find

ω′ (t) =
(
r (t) (z′′′ (t))α)′

(z′′ (δ−1 (g (t))))α − α
r (t) (z′′′ (t))α z′′′

(
δ−1 (g (t))

) (
δ−1 (g (t))

)′
(z′′ (δ−1 (g (t))))α+1 .

From (19), (30) and (31), we get

ω′ (t) ≤ −q (t) Pα
1 (g (t))

zα
(
δ−1 (g (t))

)
(z′′ (δ−1 (g (t))))α − α

r (t)
(
δ−1 (g (t))

)′
r (δ−1 (g (t)))

(z′′′ (t))α+1

(z′′ (δ−1 (g (t))))α+1

≤ −q (t) Pα
1 (g (t))

(
λ

2

(
δ−1 (g (t))

)2
)α

− α

(
δ−1 (g (t))

)′
r1/α (t) r (δ−1 (g (t)))

ω
α+1

α (t) .

The proof is complete.

Lemma 12. Assume that x be an eventually positive solution of (1) and (S4) holds. If we have the function
ζ ∈ C1[t, ∞) defined as (20), then

ζ ′ (t) ≤ −q (t) Pα
2 (g (t))− α

µ1
(
δ−1 (g (t))

)′ (
δ−1 (g (t))

)2

2r1/α (δ−1 (g (t)))
ξα+1 (t) , (32)

for all t > t1, where t1 large enough.

Proof. Let x is an eventually positive solution of (1). From the definition of ξ (t), we see that ξ (t) <
0 for t ≥ t1. By differentiating, we find

ξ ′ (t) ≤ −q (t) Pα
2 (g (t))− α

r (t) (z′′′ (t))α (
δ−1 (g (t))

)′ z′ (δ−1 (g (t))
)

zα+1 (δ−1 (g (t)))
. (33)

From Lemma 2 and (31), we get

z′
(

δ−1 (g (t))
)
≥ µ1

2

(
δ−1 (g (t))

)2
(

r (t)
r (δ−1 (g (t)))

)1/α

z′′′ (t) , (34)

for all µ1 ∈ (0, 1) and every sufficiently large t. Thus, by (20), (33) and (34), we get

ξ ′ (t) ≤ −q (t) Pα
2 (g (t))− α

µ1
(
δ−1 (g (t))

)′ (
δ−1 (g (t))

)2

2r1/α (δ−1 (g (t)))
ξα+1 (t) .

The proof is complete.

Theorem 2. Assume that (4) and (5) hold. If

∫ ∞

t0

(
q (s) Pα

1 (g (s))
(

λ

2

(
δ−1 (g (t))

)2
)α

θα (s) ds−Θ (s)
)

ds = ∞ (35)

and ∫ ∞

t0

(
q (s) Pα

2 (g (s)) θα (s) ds− Θ̃ (s)
)

ds = ∞, (36)

for some µ, λ ∈ (0, 1), then every solution of (1) is oscillatory.
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Proof. Assume the contrary that x is a positive solution of (1). From Lemma 4, we have cases
(S1)− (S4). From Lemmas 8, z is neither satisfied (S1) nor (S2). Suppose that case (S3) holds. From
Lemma 11, we get that (29) holds. Multiplying this inequality by θα (t) and integrating the resulting
inequality from t1 to t, we get

θα (t)ω (t)− θα (t1)ω (t1) + α
∫ t

t1

r
−1
α (s) θα−1 (s)ω (s) ds

≤ −
∫ t

t1

q (s) Pα
1 (g (s))

(
λ

2

(
δ−1 (g (t))

)2
)α

θα (s) ds

− α
∫ t

t1

θα (s)
(
δ−1 (g (s))

)′ g′ (s)
r1/α (s) r (δ−1 (g (s)))

ω
α+1

α (s) ds. (37)

We set

D := r
−1
α (s) θα−1 (s) , C :=

θα (s)
(
δ−1 (g (s))

)′ g′ (s)
r1/α (s) r (δ−1 (g (s)))

, y := −ω (s) .

Using Lemma 12, we find

r
−1
α (s) θα−1 (s)ω (s)−

θα (s)
(
δ−1 (g (s))

)′ g′ (s)
r1/α (s) r (δ−1 (g (s)))

ω
α+1

α

≤ αα+1

(α + 1)α+1
rα
(
δ−1 (g (s))

)
r1/α (s) θ (s)

(
(δ−1 (g (s)))′

)α .

From (37), for every λ ∈ (0, 1) , and all sufficiently large t, we obtain

∫ t

t1

(
q (s) Pα

1 (g (s))
(

λ

2

(
δ−1 (g (t))

)2
)α

θα (s) ds−Θ (s)
)

ds ≤ θα (t1) g (t1) + 1,

but this contradicts (35). The proof is complete. Let case (S3) holds. Using Lemma 12, we have that
(32) holds. Multiplying this inequality by θα (t) and integrating the resulting inequality from t1 to t,
we get

θα (t) ξ (t)− θα (t1) ξ (t1) + α
∫ t

t1

r
−1
α (s) θα−1 (s) ξ (s) ds

≤ −
∫ t

t1

q (s) Pα
2 (g (s)) θα (s) ds− α

∫ t

t1

µ1θα (s)
(
δ−1 (g (s))

)′ g′ (s) (δ−1 (g (s))
)2

2r1/α (s) r (δ−1 (g (s)))
ξ

α+1
α (s) ds.

We set

D := r
−1
α (s) θα−1 (s) , C :=

µ1θα (s)
(
δ−1 (g (s))

)′ g′ (s) (δ−1 (g (s))
)2

2r1/α (s) r (δ−1 (g (s)))
, y := −ξ (s) .

Applying Lemma 3, for every µ1 ∈ (0, 1) , we obtain

r
−1
α (s) θα−1 (s) ξ (s)−

µ1θα (s)
(
δ−1 (g (s))

)′ g′ (s) (δ−1 (g (s))
)2

2r1/α (s) r (δ−1 (g (s)))
ξ

α+1
α

≤ αα+1

(α + 1)α+1
2αrα

(
δ−1 (g (s))

)
r1/α (s) θ (s) µ1

(
(δ−1 (g (s)))′ (δ−1 (g (s)))2

)α ,
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which implise that

∫ t

t1

(
q (s) Pα

2 (g (s)) θα (s) ds− Θ̃ (s)
)

ds ≤ θα (t1) g (t1) + 1,

but this contradicts (36). The proof is complete.

Example 1. Consider the equation(
t2
(

x (t) + 16x
(

t
2

))′′′)′
+ q0x

(
t
2

)
= 0, (38)

where t ≥ 1, q0 > 0. We note that r (t) = t2, p (t) = 16, δ (t) = g (t) = 1/2t and q (t) = q0. Moreover,
we get

P1 (t) =
7

128
, P2 (t) =

1
32

, θ (t) =
1
t

, Θ (t) =
t
4

and
Θ̃ (t) =

1
2t

.

Thus, we find

∫ ∞

t0

(
q (s) Pα

1 (g (s))
(

λ

2

(
δ−1 (g (t))

)2
)α

θα (s) ds−Θ (s)
)

ds

=

(
7q0

256
− 1

4

) ∫ ∞

t0

sds

= ∞ if q0 > 9.14

and ∫ ∞

t0

(
q (s) Pα

2 (g (s)) θα (s) ds− Θ̃ (s)
)

ds

=

(
q0

32
− 1

2

) ∫ ∞

t0

1
s

ds

= ∞ if q0 > 16.

Therefore, applying Theorem 2, we have that every solution of (38) is oscillatory if q0 > 16.

Example 2. Consider the equation(
t2
(

x (t) + 4x
(

t
2

))′′′)′
+ q0x

(
t
2

)
= 0, (39)

where t ≥ 1, q0 > 0. We note that r (t) = t2, p (t) = 4, δ (t) = g (t) = 1/2t and q (t) = q0. Thus, it’s easy
to see that (4) and (5) are satisfied. Moreover, we have

P1 (t) =
1
8

, P2 (t) =
3
16

.

Hence, Condition (35) and (36) become
q0 > 4 (40)

and
q0 >

8
3

, (41)
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respectively. It’s easy to see that (40) implies (41). Therefore, by Theorem 2, we conclude that (39) is oscillatory if
(40) holds.

Remark 1. The results of this paper can be extended to the more general equation of the form(
r (t)

(
z(n−1) (t)

)α)′
+ q (t) xβ (g (t)) = 0.

The statement and the formulation of the results are left to the interested reader.

Remark 2. One can easily see that the results obtained in [25] cannot be applied to Theorem 2, so our results
are new.

4. Conclusions

This paper is concerned with oscillatory behavior of a class of fourth-order delay differential
equations. Using a Riccati transformation, a new asymptotic criterion for (1) is presented. In future
work, we will aim to present a new comparison theorem that compares the higher-order Equation (1)
with first-order equations. There are numerous results concerning the oscillation criteria of first order
equations, which include various forms of criteria such as Hille/Nehari, Philos, etc. This allows us to
obtain various criteria for the oscillation of (1). Further, we can try to get some oscillation criteria of (1)
if z (t) := x (t)− p (t) x (δ (t)).
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