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Abstract: The presented study analyzes the usage of the didactic efficiency of multiple representations
in a computer environment in learning absolute value functions and equations. It is known that the
axis of symmetry of the graph of the absolute value function is the y-axis. The research was applied
at the University of Novi Sad, Serbia. The data were collected by testing a group of 226 students:
major chemistry and physics students at the beginning of their common calculus course. The students
worked individually in two groups: the experimental and control group. The experimental group
of students practiced using GeoGebra software, and the control group of students practiced using
paper and pencil. At the end of the experiment, which lasted for two weeks (six school classes),
both groups were tested with a post-test of knowledge without using a computer. It can be concluded
that GeoGebra software had a positive influence on the students’ achievements in solving absolute
value equations.

Keywords: multiple representation; GeoGebra software; computer learning environment; absolute
value equations; absolute value functions

1. Introduction

The absolute value is an important topic because of the intrinsic epistemological significance of
its concept. This significance lies in the theoretical foundation of numbers and their applications [1].
What we can learn from teaching this topic [2–4] is a more important purpose of teaching any
mathematical concept [1].

The concept of absolute value is one of the concepts that students have problems with at all levels
of mathematical education [5]. A lot of research has been conducted to identify the difficulties in
learning the absolute value. Most of the difficulties arise from the fact that students solve tasks as if the
absolute value does not exist [6]. Although they possess certain knowledge, students have difficulties
in geometric interpretations of absolute value [7]. Difficulties in solving absolute value expressions
and equations are also noticeable [8].

The study of linear and quadratic absolute value functions and equations is significant to early
high school mathematics and have applications in higher mathematics. The concept of function is also
an important field of research in mathematics education [9–11].

Nevertheless, students continue to go to colleges with a poor understanding of this topic [12,13].
The graphs of functions could be a great support in studying equations, if they were not considered as
independent concepts.

This paper presents an analysis of the process of teaching and learning absolute value functions
and equations on a calculus course at the Faculty of Science of University of Novi Sad.
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The traditional teaching of mathematics is focused mostly on algebraic representations. Students
see graphical and algebraic representation as separate entities [14] and they have difficulty in translating
between and among them [15,16]. To try and resolve this issue, numerous researchers are making
an effort to discover the causes to overcome students’ difficulties in this topic [17–20].

GeoGebra is a visual-dynamic and interactive software that enables the values of parameters of
the given functions to be changed simultaneously in the algebraic and graphical representations [21,22].
Different representations make it different approaches possible in order to solve the same problem and
help students in enhancing mathematical thinking [23].

The research in this paper aims to examine the efficiency of the dynamic GeoGebra software on
the students’ achievement in learning the absolute value concept. The contribution of this research
can be observed through a general literature overview and promoting the students’ understanding of
mathematical problems using technology in a school environment.

2. Theoretical Background

2.1. Multiple Representations

According to the National Research Council, “because of the abstract nature of the mathematics,
people have access to mathematical ideas only through the representations of those ideas” [24]. In order
to overcome the difficulties in teaching mathematics, the National Council of Teachers of Mathematics
(NCTM) recommends the activities of students and teachers in learning/teaching mathematics with the
help of multiple representations [25].

In mathematical education, multiple representations are defined as the presentation of
mathematical relations in different ways [26]. Representations are divided into internal, mental
constructions, or external objects such as tables, graphs, algebraic expressions, mathematical equations,
geometric figures, etc. [27]. There is a two-way interaction between these representations. The extent
and level of students’ knowledge depend on the quantity and quality of relationships between internal
and external representations [27,28]. Students’ errors are usually explained either as a product of
a poor handling of representations or a lack of coordination between the two representations [29].
When it comes to learning, the use of the different multiple representations contributes to the resolution
of intrinsic ambiguities within the representation system [30].

The traditional teaching of mathematics implies that students learn to understand external
representations and use them in solving mathematical problems [31]. Such teaching is focused mostly
on algebraic representations.

In teaching focused on algebraic representations, students see graphic and algebraic representation
as separate entities and they have difficulties connecting them into a single whole. The advantage
of a visual versus an algebraic approach to problem solving is seen in the following: intensifying
student intuition [32], improving the problem solving skills [33], and solving cognitive conflicts
between symbolic and intuitive solutions [34]. A serious obstacle to student learning is the students’
unwillingness to use visual aspects of mathematics, in particular, functions [35].

Although it is versatile and powerful in teaching, the visual aspect of graphic representations
can sometimes cause difficulties in learning mathematical contents [36,37]. Students can sometimes
dismiss the visual approach because to them, it might seem more cognitively demanding than the
algebraic approach [34] or they cannot identify the information relevant to solving the task and is
provided by the graphic representation [38]. Inadequate mental images that prevent mathematical
generalization can lead to cognitive conflicts [39].

With the help of representations, students are enabled to interpret situations and to understand
the relations implanted in problems. It is considered that the representations are very important in
cognitive processes in developing mathematical concepts [40]. With this in mind, researchers are
making efforts to explain the deeper structure of the transition between representations.
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According to Janvier, the translation processes are “the psychological processes involved in going
from one mode of representation to another, for example, from an equation to a graph” [41]. The authors
agree that the representational translations have an influence on mathematical comprehension and the
success of problem-solving [42]. However, studies show that students have difficulty in performing
mathematical translations between and among mathematical representations [43–45]. Furthermore,
they identify the type of student errors [46,47], techniques they use [48], and different student ability in
translating process [15]. Students’ errors are explained as a failure in translating between verbal, tabular,
graphical, and algebraic mathematical representations [49,50]. Moreover, students have difficulty with
particular translations [18,51].

Static representations cannot be dynamically altered by students and connections between multiple
representations are often unseen [17]. The advantage of dynamic representations in relation to static is
that students dynamically interact with any particular representation. In this way, they learn through
multiple interconnected representations [52,53].

However, it has been found that students may work within a representation and at the same
time, they do not understand a mathematical concept that is studied [54]. For example, they may to
memorize keystrokes, actions, and commands in a computer environment, but cannot understand
a concept in full.

In this paper, the use of multiple representations aims to enable the construction of mathematical
concepts through the transfer of a structure from one representational domain to another as well
as within the representational domain itself, thus facilitating a better understanding of the problem
(in this research, the absolute value functions and equations).

Consequently, our task was to create the conditions in which students can develop the ability to
choose the most appropriate approach for solving a particular problem.

2.2. Multiple Representations in Computer Based Environment

The new Net generations refuse to read large amounts of text and feel better in an environment
richer in images than text [55], therefore, new interactive learning environments compatible with their
learning needs, experiences, and skills are needed. A learning environment, in which students can
visualize, construct, and manipulate is described by Moreno-Armella [56].

Graphic calculators are an instrument more efficient than pen and paper for learning absolute
values [57]. Modeling mathematical phenomena are the best and the most effective ways for students
to understand the mathematical ideas [58].

Numerous researchers have reported on the use of modern technology in improving the quality
of representations [59,60]. Software packages that simultaneously connect different representations of
the same object are increasingly topical. The change in one representation causes simultaneous change
in other representations of the same object. These are dynamic software packages that allow for the
formation of multiple representations [61,62].

A dynamic and interactive mathematical learning environment provides a unique opportunity
for teachers to expand their students’ knowledge and understanding of mathematics, especially in
areas that are dynamic in nature and otherwise difficult to understand [63]. The GeoGebra software
package is one of them. Students should be informed about technological resources and when and
how to use them.

2.3. GeoGebra Software Package

GeoGebra is a visual-dynamic and interactive software that enables creativity in the implementation
of modern methodological approaches in teaching [64]. In such a dynamically and interactive
environment, the student develops visualization skills and increases conceptual understanding [65,66].
GeoGebra, easily accessible via the website [67], provides a mathematics learning environment that
assimilates different mathematical representations [63].
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Recently, numerous researchers are reporting in favor of using GeoGebra software in mathematics
learning [21,64,68]. It has become the leading provider of dynamic mathematics software, supporting
science, technology, engineering and mathematics (STEM) education, and innovations in teaching and
learning worldwide.

This paper recognizes the simultaneous observation between and among algebraic and graphical
representations as well as instantly updating both representations as essential characteristics of
GeoGebra software.

2.4. Multiple Representations of Functions and Equations

The literature review of mathematics education shows that students have difficulty in solving
equations [69–71]. Introducing the absolute value concept into equations makes it additionally difficult
and creates complications in their solving. The graph of the function has a primary role in the graphical
approach to solving these equations.

The function concept is one of the most important concepts in calculus, thus, an important field of
research in mathematics education. The study of linear and quadratic functions is significant to early
high school mathematics and have applications in higher mathematics.

For the reasons stated above, this paper studied the application of modern technology with
the goal to improve the quality of translations between multiple representations in learning the
equations by using the graph of the functions. The results [72] showed how knowledge about different
representations is interconnected with knowledge about different approaches to functions.

Through studying functions, students can make connections between algebraic (e.g., equations)
and graphical (e.g., graph of a function) representations of functions and apply them in solving
equations. In a graphical sense, the equations are viewed as two functions on opposite sides of the
sign of equality. The points of intersection of these graphs of the functions represent solutions of
the equation.

This study observed the students’ work and analyzed the students’ achievements in a GeoGebra
environment in the domains of learning the functions and equations.

2.5. Research Question

Generally, the aim of this paper was to assist students in performing mathematical translations
between and among mathematical representations and thus improve the students’ understanding of
the absolute value equations concept. It will be considered whether students can learn to be cognitively
more effective in using representations for solving mathematical problems.

The main goal of the paper was to examine the efficiency of dynamic and interactive mathematics
software (GeoGebra software in our case) on the students’ achievement in learning the absolute
value concept.

The research question is: Does the use of dynamic mathematics software help in learning absolute
value equations?

3. Materials and Methods

3.1. Background and Participants

In this paper, an experiment with parallel groups was conducted (experimental and control
group) on a sample of 252 students of the University of Novi Sad: major chemistry and physics at
the beginning of their common calculus course. The research was conducted during two school years
in 2017 and 2018. Both groups of students were tested by the test of knowledge before and after the
practice lessons.

We were guided by the recommendations of the researchers [73–78] as well as our personal
experience in choosing software for student learning. GeoGebra software has proven to be a great
package for learning mathematical content because of its dynamical nature and ease of use [79].
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3.2. Instruments and Procedures

At the beginning of the experiment, all students were pre-tested, where their previous knowledge of
linear and quadratic absolute value functions and absolute value equations was checked (Appendix A).
The duration of the pre-test was 90 min. The students’ results from both groups in the pre-test were
analyzed and compared. Each student in the control group had a pair in the experimental group whose
number of points did not differ by more than two, according to the pre-test results [64]. For this reason,
the number of students in both groups was 113 students, 226 in total, and the other 26 students who
were tested did not have a pair and were not taken into account in this assessment. The difference
between the groups was not statistically significant, with the significance level of 0.05.

Both groups of students practiced the tasks given in Appendix B. The control group of students in
2017 practiced tasks without the use of a computer (paper and pencil). The experimental group of
students in 2018 practiced the same tasks using a computer. Students were given six school classes to
practice the tasks (45 min per class). For this activity, the students could have won a maximum of five
points. Students could also ask their teachers for help.

Taking into account the timetable of the university, the maximum number of six classes was
planned for the students’ exercises. Two weeks after learning, all the students had a post-test of
knowledge, given in Appendix C. Both groups of students had a post-test individually, without the
help of computers. The teachers of the course, within their exam, graded the students’ post-test.
The post-test results were analyzed and are presented in the Results section.

The statistical analyses were performed using the program STATISTICA 10 (StatSoft, Inc.,
Tulsa, OK, USA).

3.2.1. Instruments and Procedures of the Tests

To evaluate the students’ achievement in solving absolute value equations, the post-test was used.
The tests (pre-test and post-test) of knowledge contained five tasks.

Notice that the absolute value graph has one axis of symmetry that passes through the vertex.
Generally, the graph of an absolute value function of the form

y = a|x− b|+ c, (1)

can involve translations, reflections, stretches, or compressions. The parameter a a is responsible
for stretching vertically and openness of the graph (up or down), and the b and c parameters are
responsible for shifting horizontally and vertically, respectively.

In the first task, the translation of the graph of absolute value functions was checked. Translations
are considered as a transformation that shifts a graph horizontally or vertically, but does not change
the overall shape or orientation. The students’ task was to find the algebraic equation based on the
graph of linear and quadratic absolute value functions and vice versa.

In the second task, we needed to add the graphs of functions (Equation (2)):

y =
∣∣∣ f (x)∣∣∣, y = f (|x|), (2)

to the graph of the parent function f (x). To get y =
∣∣∣ f (x)∣∣∣, reflect all the parts of f (x) that are below the

x-axis with respect to the x-axis. To get y = f (|x|), remove the left half of graph y = f (x), (for x ≤ 0),
take the right hand part of y = f (x) (for x ≥ 0) and reflect it with respect to the y-axis.

To summarize, the first and second task evaluate the students’ knowledge about transformations
of absolute value functions.

The third, fourth, and fifth task evaluate the students’ knowledge about linear and quadratic
absolute value equations in the form:

a|x− b|+ c = p,
∣∣∣a(x− α)2 + β

∣∣∣ = p,
∣∣∣ax2 + bx + c

∣∣∣ = p. (3)
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Each task was worth six points. The student could score a maximum of 30 points in the pre-test and
30 points in the test of knowledge. The pre-test was organized as part of the initial testing at the beginning
of the school year. The knowledge post-test was organized as a part of the preliminary examination.

3.2.2. Instruments and Procedures of Students’ Practice Work

It is known that students have difficulties in linking algebraic and graphic representations of
functions [80]. Authors who support the principle of graphic representations believe that functions
should be graphically presented whenever possible and that simpler examples should be the starting
point, for example:

f (x) ± c, a f (x), f (x± b),
∣∣∣ f (x)∣∣∣, f (|x|). (4)

Similarly [35], we prepared the learning material for the students, presented in Appendix B.
The students’ task was to sketch linear and quadratic absolute value functions and solve linear and
quadratic absolute value equations in the form

a|x− b|+ c = d, |a|x− b|+ c| = d,
∣∣∣x2 + bx + c

∣∣∣, x2 + b|x|+ c = d, (a, b, c, d ∈ R), (5)

using multiple representations (i.e., the connection between algebraic and graphical representations).
Within graphic representations (GR), in this paper, students used linear and quadratic absolute

value functions. In the framework of algebraic representations (AR), students used the definition of
absolute value and solving equations.

3.2.3. Instruments and Procedures of Students’ Practice Work in a GeoGebra Environment

Solving tasks from practice lessons in the experimental group was organized in a GeoGebra
environment, according to the model presented in Figure 1.
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Figure 1. The process of task solving for the experimental group of students.

The experimental group of students who practiced in the GeoGebra environment within the AR
used CAS and Algebra view, and Graphics view within the GR. The Slider option was used to cause
transformations of functions by assigning a different value of the parameters. The Trace On option
(simultaneously displaying on screen a family of functions created by changing the parameter values)
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and the possibility of changing the colors (different color for each function) is a significant benefit that
GeoGebra can provide in the learning process.

Although GeoGebra is a great intuitive software that is easy to use, the students could ask for
help from their teacher on creating their GeoGebra tasks.

3.3. Analysis of Students’ Practice Work on the Tasks

This section describes the students’ activities and presented papers from the practice lessons.
After the completed exercises (six classes), the control group of students submitted papers in written
form (on paper), and the experimental group in the form of ggb files.

Exercise tasks were conceptualized as functions and equations with parameters. Thus, students
had to use the Slider tool in the GeoGebra environment. The first step was the construction of the
Slider tool in graphical view. A few students without previous experience with GeoGebra software
did it with the help of their teacher. In the input field, they typed the algebraic representations of
functions with parameters. Using the Slider option, they chose the parameter value and obtained the
linked algebraic and graphical representations of functions simultaneously on the screen. Additionally,
students could see what happened to the graphs of the functions, and how one changed to another for
the chosen parameter values. At the same time, they also used CAS, Graphics, Algebra view, and the
Trace on option. GeoGebra provided opportunities to compare the solutions in CAS and Graphical
view, and the students did not have to do any calculations at all, as CAS did it for them. Changing the
colors of the graphs of the functions made it easier to keep track of them in different views, so in this
way, they researched.

Students from the control group were very careful in the selection of parameter values.
The parameter value was usually ±1 (Figure 2). In calculating and drawing graphs of functions,
a lot of time was spent and there were also mistakes. They had many difficulties in investigating the
transformations of functions, especially in the inability to have the process of generalization.
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For example, student A from control group sketched the graph of the function point by point, using
algebraic and graphical representations (Figure 2). The selected parameter values were b ∈ {−1, 1},
d ∈ {1, 0}.

Student A from the experimental group solved the same task using the Slider option in GeoGebra
software. The selected parameter values were b ∈ {−6, −2, 0, 2, 4, 6} and d ∈ {−1, 1, 0}, which was
greater than the student from the control group (Figure 3). The student assigned the different colors for
the graphs of the function. This made it easier for him to keep track of the appropriate algebraic and
graphical representations in view (by color).
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The second task was difficult for the control group of students, especially in graphic representations.
Student B from the control group solved only one example. The student assigned the parameters in
the equation so that its solutions would be integers (Figure 4).
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Figure 4. (a) solution of student B from group C on task 2a; (b) solution of student B from group C.
on task 2b.

Student B from the experimental group solved many more tasks and investigated cases for different
values of parameters (Figure 5). Nevertheless, the student had less cognitive effort than student B from
the control group as it was easier for them because they worked in the GeoGebra environment.
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Students also submitted several papers, presented below, which clearly indicate previous
experience in working with GeoGebra software (Figure 6).

It was noticed that students in the experimental group solved more examples in the practice
lessons. The statistical analysis is given in Section 4.3.
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4. Results

4.1. Data Analysis

The results were analyzed using an ANOVA and the least-significant difference (LSD) test to
detect any significant differences among means [81]. The significance level was 0.05 for all statistical
analyses. The statistical analyses were performed using the program STATISTICA 10 (StatSoft, Inc.,
Tulsa, OK, USA).

4.2. Statistical Analysis of the Pre-Test Results

Analysis of the pre-test results showed that there was no statistically significant difference between
the tested groups (experimental and control) at the level of significance of 0.05 (t (226) = 0.0354;
p = 0.9639) (Table 1).

Table 1. Statistical results of the pre–test.

Group
Number of
Students

Arithmetic
Means

Standard
Deviation

Test of Difference between
Arithmetic Means

n M SD t p (2-tailed)

Experimental 113 15.310 5.978
0.0453 0.9639Control 113 15.345 5.764

In the pre-test, the average numbers of points were 15.310 (51.03% from the maximum of 30) in
the experimental group and 15.345 (51.15% from the maximum of 30) in the control group.

4.3. Statistical Analysis from Exercise Results

This section presents the statistical analysis of the results of the successfully completed tasks
in the practice lessons (Table 2). The experimental group of students completed more examples on
average than in the control group of students, which was expected. There was no statistically significant
difference within the groups between tasks.
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Table 2. Statistical results of the average number of correct answers on the exercise tasks.

Group/Task 1. Task 2. Task

Experimental 3.8 3.0
Control 1.5 1.2

p p < 0.00001 p < 0.00001

4.4. Statistical Analysis of the Post-Test Results for Each Task

This section presents analysis the posttest result by tasks. The number of correct answers was
compared between groups by each task. The post-test results are given in percentage in Table 3.
Percentage within columns (rows) with different letters were significantly different according to the
least significant difference (LSD) at the 0.05 level of probability.

Table 3. The percentage of correct answers for each task.

Group/Task 1. Task 2. Task 3. Task 4. Task 5. Task

Experimental 74.9% Ab 62.8% Ac 86.7% Aa 61.1% Ac 61.1% Ac
Control 71.8% Aa 46.0% Bb 76.1% Ba 45.1% Bb 38.9% Bb 1

1 Capital letters show significant differences between groups (p < 0.05). Lower case letters show significant
differences between tasks within a single group.

It was shown that the students from the experimental group had better achievements than the
control group of students, except in the first task. There was no statistically significant difference
between the groups in the first task.

The students had the best achievements in the third task. The smallest difference in results between
groups was in this task (10.6%) (Table 3). The differences between groups in the second, fourth, and
fifth tasks were significant at the level p < 0.01 (Figure 7). There was no difference in these tasks
within groups.
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4.5. Statistical Analysis of the Post-Test by Groups of Tasks

The post-test tasks were separated into two groups: A and B. Tasks in group A implied
transformations of linear and quadratic absolute value functions (tasks: 1, 2). The tasks in group B
implied solving linear and quadratic absolute value equations (tasks: 3, 4, 5). The average number of
points scored per groups of tasks is presented in Table 4.
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Table 4. Average number of points per group of tasks.

Group/Group of Tasks A B

Experimental 4.13 Aa 4.18 Aa
Control 3.53 Ba 3.20 Ba

The experimental group of students had better achievements in both groups of tasks (A and B)
on average. However, the biggest difference between groups was in the group B tasks (at p < 0.01).
There was no statistically significant differences within the groups of tasks.

4.6. Statistical Analysis of Post-Test Results of the Group B of Tasks by Representations

In an attempt to better understand the nature of the problem, equation solutions from the angle of
representations were considered. Tasks in group B were split into three subgroups:

(1) (B1) The frequency of using algebraic representation in solving the task (AR);
(2) (B2) The frequency of using graphic representations in solving the task (GR); and
(3) (B3) The frequency of using algebraic and graphic representations in the solving task (AGR).

The frequency of using representations (AR/GR/AGR) in solving the group B tasks is shown in
percentage in Table 5.

Table 5. The frequency of using representations in percentage.

Group/Task 3. 4. 5.

Representations AR GR AGR AR GR AGR AR GR AGR
Experimental 37.8% 48.0% 14.3% 43.1% 49.2% 7.7% 10.1% 68.1% 21.7%

Control 65.1% 32.6% 2.3% 58.5% 40.0% 1.5% 61.4% 34.1% 4.5%
abs(E-C) 27.4% 15.4% 12.0% 15.4% 9.2% 6.2% 51.2% 34.0% 17.2%

p 0.0002 0.034 0.0041 0.0801 0.2891 0.0949 0.0000 0.0004 0.0000

The biggest difference in choosing representations was in the fifth task in applying GR. The smallest
difference was in the fourth task in applying AGR (Table 5). Additionally, most of all students from the
experimental group used GR, while the control group of students mostly used AR (Table 6). The biggest
difference between the groups was in AR (Table 6).

Table 6. Frequency of using the representations in percentage.

Group/Representations AR GR AGR

Experimental 30.3% 55.1% 14.6%
Control 61.6% 35.5% 2.8%

abs(E-C) 31.3% 19.6% 11.8%

p 0.0001 0.00001 0.00001

The frequency of using representations in solving tasks (B group) can be seen in Table 6
in percentage.

Figure 8 shows the use of algebraic and graphical representations in solving absolute
value equations.

There is a significant difference (p < 0.01) between the groups in all representations in solving
tasks from group B (Figure 8).
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4.7. Statistical Global Analysis of the Post-Test Results

The students from the experimental group correctly answered 69.32% (20.8 points),
and the experimental group of students correctly did 55.61% (16.7 points) of the task. In both
groups, there were students who achieved the maximum number of points (30), and in the control
group, there were students with zero points. The highest frequency in the experimental group of
students was about 22 points, and in the control group, it was about 17 points.

Distributions of the points for the tests are presented with a graph in Figure 9 The number of
points (from 0 to 30, in intervals of five) is presented by the x-axis, and the number of students who
achieved the corresponding points is presented by the y-axis.

Symmetry 2020, 12, x FOR PEER REVIEW 13 of 21 

 

 
Figure 8. The percentage of using AR/GR/AGR in solving group B tasks. 

There is a significant difference (p < 0.01) between the groups in all representations in solving 
tasks from group B (Figure 8). 

4.7. Statistical Global Analysis of the Post-Test Results 

The students from the experimental group correctly answered 69.32% (20.8 points), and the 
experimental group of students correctly did 55.61% (16.7 points) of the task. In both groups, there 
were students who achieved the maximum number of points (30), and in the control group, there 
were students with zero points. The highest frequency in the experimental group of students was 
about 22 points, and in the control group, it was about 17 points. 

Distributions of the points for the tests are presented with a graph in Figure 9 The number of 
points (from 0 to 30, in intervals of five) is presented by the x-axis, and the number of students who 
achieved the corresponding points is presented by the y-axis. 

It can be remarked that the blue line (experimental group) was significantly under the red line 
(control group) below 21 points; after 21 points, the red line was under the blue line (Figure 9). In the 
experimental group, five students obtained the maximum points, and in the control group, four 
students achieved the maximum points. The test results are shown in Table 7. 

 
Figure 9. Distributions of the number of students according to the number of points on the test. Figure 9. Distributions of the number of students according to the number of points on the test.

It can be remarked that the blue line (experimental group) was significantly under the red line
(control group) below 21 points; after 21 points, the red line was under the blue line (Figure 9).
In the experimental group, five students obtained the maximum points, and in the control group,
four students achieved the maximum points. The test results are shown in Table 7.

It can be concluded that the difference between the test results of the experimental group and the
control group was statistically significant at the level of significance of 0.05 and 0.01 (t (226) = 4.7797;
p = 0.00003).



Symmetry 2020, 12, 473 14 of 21

The effect size of the experimental factors was medium (Cohan’s d = 0.6359), meaning that
the obtained difference enabled a practical advantage of the experimental group compared to the
control group. In fact, it was shown that the students’ achievement in the study of linear and
quadratic absolute value functions and equations was better for students who had been practicing in
a GeoGebra environment.

Table 7. Statistical results of the test.

Group
Number of
Students

Arithmetic
Means

Standard
Deviation

Test of Difference between
Arithmetic Means Effect Size

n M SD t p (2-tailed) Cohan’s d

Experimental 113 20.796 6.486
4.7797 0.00003 0.6359Control 113 16.681 6.456

4.8. Analysis of the Post-Test Results by Representations

Based on the above statistical analysis of the post-test results, we considered student achievement
through the lens of multiple representations.

As described in Section 3.2.1, the students’ achievements in the transformations of functions with
parameters are evaluated in the first and the second task.

There were no statistically significant differences between groups in the first task, which was not
expected at the start of the experiment (Table 3). Students who practiced with GeoGebra software did
not have a better achievement in working with translations of functions as the others, like that in [74].
It seems that GeoGebra software had no influence on the translation between algebraic and graphical
representations in this task.

The reasons can be different and require deeper analysis of the learning process itself. One reason,
for sure, is the nature of the translation from graphical to algebraic representation. This translation
was more difficult than the translation from algebraic to graphical representations, for all students [18].
Considering this fact, more space should be given to the most difficult translations in the curriculum.

The experimental group of students had a better achievement in sketching the graph of functions
(Equation (2)) in the second task. They were better in translations between the two graphical
representations where understanding the reflection of the graphs of absolute value function was
applied. Although translation within the representations themselves was recognized as a less difficult
activity [18], the control group of students had problems with this.

In our opinion, practicing without a computer can exhaust the students’ strengths and frustrate
the process of generalization.

On the other hand, multiple representations in a computer environment are not very helpful
when they are automatically linked [19] and they can also cause overload [80].

The analysis of the students’ practical works in a computer environment (described in Section 4.3)
showed that students did more examples on average than the others, which was expected (Table 2).
Still, they could memorize keystrokes, actions, and commands in the computer environment without
understanding the essence of the problem.

However, the findings showed that students who practiced with GeoGebra software were able to
work successfully with the transformations of functions, as described in Table 4. This effect could be
due to the Slider option, enabling the students to view the dynamics of the graph changing. Therefore,
the number of completed tasks (as in Table 2) may not be essential, but what the students see, what is
happening between the graphs of functions, how one changes into the other, and when the parameters
change (see Section 3.3).

The other tasks evaluated the students’ achievement in learning absolute value equations.
After learning the transformations of functions without a computer, students were unable to establish
a translation between AR and GR like the others (Table 6). They mostly used AR in solving equations,
although it was cognitively more difficult for them in line [34]. They could use corresponding graphs
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of the function from the first and second task and in this way, solve the equations (see Appendix C).
However, the largest number of students solved the task by using AR as there was a problem in
implementing the graphic of function in solving equations.

Hence, Table 4 shows that students who practiced with GeoGebra software were able to work
successfully with absolute value equations.

Finally, statistical analysis of the paired-samples t-test showed that the scores on the post-test
were significantly better (t (226) = 4.7797, p = 0.00003) and confirmed the hypothesis that the use of
GeoGebra software had a positive effect on the students’ achievements in learning absolute value
functions and equations (Table 7).

5. Discussion

This research showed that after learning the transformation of functions in the GeoGebra
environment, students were able to work successfully on the concept of equations.

Although there was no difference in working on translations, in line with [74], students who
practiced with GeoGebra were better at working on the reflections of functions. Generally, they had
better achievements in working with transformations of functions than the others (Table 4), which is in
line with [22].

Based on a review of the use of representations in solving equations (Table 6), it can be concluded
that students could successfully use function graphs in solving equations. They could connect the
function and equation concepts and implement it in solving equations, as described in Table 6. It seems
that students could learn to be cognitively more effective in solving mathematical problems, in terms
of solving absolute value equations.

In general, it was shown that multiple representations in a computer environment were more
helpful to the students’ achievement than the multiple representations without using computers,
which is in line with [82,83]. In this research, it seems that GeoGebra has made the translations between
and among representations simpler and more understandable. Considering this fact, more space
should be given to the most difficult transitions in the curriculum.

On the other hand, students practiced in the GeoGebra environment, which performed the given
tasks for them. They did not have to sketch the graphs of the functions, the computer did it for
them. In fact, the students’ activities were connected to the use of software and they could memorize
procedures without understanding the essence of the problem.

In our opinion, teachers can be of key assistance to students in overcoming these difficulties and
can organize situations that are convenient for creating multiple representative activities (i.e., organizing
productive coordination between the situation and representation). Using techniques of examination,
they can instruct students to take into consideration information that are given by representations,
or those that are not given.

The results of this research match the studies that have shown that students who use technology in
learning have positive gains in learning outcomes over students who learned without technology [84,85].

6. Conclusions

This research aimed to examine the efficiency of a dynamic computing environment, in our
case GeoGebra, on student achievement in learning equations. Based on the presented research
problem, results, and discussion, it can be concluded that the main research question was confirmed.
The participants were generally able to work successfully on the absolute value equations concept after
learning the transformations of functions with help of technology (GeoGebra software in our case).
However, it seems that GeoGebra did not help in the translation of functions over the course of learning
provided by the curriculum in this research.

Nevertheless, the possibility of seeing what is happening in the course of the dynamic change of the
graph of functions when changing the parameter is a benefit that GeoGebra provided. Thus, GeoGebra
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software can provide better support for students in the field of visualizing the graphs of functions
rather than paper and pencil.

It is recommended that transformations of absolute value functions are practiced earlier at middle
school level and their connection with other mathematical concepts. Future research could be directed
to a better understanding of the students’ activities during the translation process applied to the
concept of function in a GeoGebra environment.

Author Contributions: As the first author, M.J. was responsible for investigation, methodology, and writing—original
draft preparation; Đ.T. was responsible for supervision and writing—review and editing. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Tasks for the Pre-Test

1. Match the graphs with the corresponding equations.
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Appendix A. Tasks for the Pre-Test 

1. Match the graphs with the corresponding equations. 

   
a) b) c) 

   
d) e) f) 

( ) ( ) 11 2
1 −−= xxf , ( ) 12 +−= xxf , ( ) 12

3 −= xxf , ( ) 14 −= xxf , ( ) ( ) 11 2
5 +−−= xxf , 

( ) 16 +−= xxf . 

2. Sketch the graphs of the functions ( )xf3 , )(5 xf  on the corresponding graphs of the functions 

in the previous task. 
3. A function is defined as ( ) 1+−= xxf . Write down the x-intercept. 

4. Find the value of parameter p so that the equation px =+− 1  has two solutions? Explain. 

5. How many solutions are there to the equation 1)(3 =xf ? Explain. 

f1(x) = (x− 1)2
− 1, f2(x) = −|x| + 1, f3(x) = x2

− 1, f4(x) = |x− 1|, f5(x) = −(x− 1)2 + 1,
f6(x) = −|x|+ 1

2. Sketch the graphs of the functions
∣∣∣ f3(x)∣∣∣, f5(|x|) on the corresponding graphs of the functions in

the previous task.
3. A function is defined as f (x) = −|x|+ 1. Write down the x-intercept.
4. Find the value of parameter p so that the equation −|x|+ 1 = p has two solutions? Explain.
5. How many solutions are there to the equation

∣∣∣ f3(x)∣∣∣ = 1? Explain.

Appendix B. Tasks for the Practice

1. Sketch the graphs of the functions f1, f2, f3, f4, f5. Solve equations fi = d, i = 1, 2, 3, 4, 5 by
using algebraic and graphical representations a, b, c, d ∈ R.
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(1) f1(x) = a |x|
(2) f2(x) = |x− b|
(3) f3(x) = |x|+ c
(4) f4(x) = a|x− b|+ c
(5) f5(x) = |a|x− b|+ c|

2. Sketch the graphs of the functions f6, f7. Solve equations f6,7 = d by using algebraic and graphical
representations, a, b, c, d ∈ R

(6) f6(x) =
∣∣∣ax2 + bx + c

∣∣∣
(7) f7(x) = ax2 + b|x|+ c

Appendix C. Tasks for the Post-Test

1. Find the equations of the functions f2, f3, f4, f5 and sketch the graphs of f1, f6
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