
symmetryS S

Article

On Modified Interval-Valued Variational Control
Problems with First-Order PDE Constraints

Savin Treanţă
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Abstract: In this paper, a modified interval-valued variational control problem involving
first-order partial differential equations (PDEs) and inequality constraints is investigated.
Specifically, under some generalized convexity assumptions, we formulate and prove LU-optimality
conditions for the considered interval-valued variational control problem. In order to illustrate the
main results and their effectiveness, an application is provided.
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1. Introduction

In recent years, saddle-point optimality criteria and the modified objective function method in
optimization problems have been investigated. In this regard, we mention the works of Sposito and
David [1], Smith and Vandelinde [2], Duc et al. [3], Li [4] and Santos et al. [5]. In order to solve the
initial optimization problem and the corresponding duals, many researchers have been interested in
obtaining new and easier methods by considering some associated optimization problems. For instance,
Antczak [6], by a modification of the objective function, formulated an equivalent vector programming
problem for the considered multiobjective programming problem having invex objective and constraint
functions. Bhatia [7] introduced higher-order strong convexity associated with Lipschitz functions in
order to derive the optimality conditions for a multiobjective optimization problem. Jayswal et al. [8],
by using the second-order η-approximation method, investigated a class of vector optimization
problems involving second-order invex functions. Singh et al. [9] formulated Lagrange-type dual
model for a mathematical programming problem with equilibrium constraints and derived weak
and strong duality results under convexity assumptions. Quite recently, Borisov and Cardone [10]
studied the spectrum of a quadratic operator pencil with a small PT-symmetric periodic potential
and a fixed localized potential. Under some invexity and (ρ; b)-quasi-invexity assumptions of the
involved functionals, Treanţă [11] established some efficiency conditions for a class of variational
control problems with data uncertainty. In this paper, taking into account the applications of interval
analysis in various fields and motivated and inspired by the above mentioned works, we extend
the previous studies for a new class of interval-valued variational control problems with mixed
constraints involving first-order partial differential equations (PDEs). Specifically, based on a class of
interval-valued variational control problems recently introduced by Treanţă [11], we formulate and
prove LU-optimality conditions in the considered first-order PDE-constrained modified interval-valued
variational control problem. More precisely, the main novelty of this paper (compared to Treanţă [11])
is the modified objective function approach for first-order PDE-constrained interval-valued variational
control problems governed by multiple integral functionals. It can be easily observed that the
modified interval-valued variational control problem is simpler to study than the initial interval-valued

Symmetry 2020, 12, 472; doi:10.3390/sym12030472 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-8209-3869
http://www.mdpi.com/2073-8994/12/3/472?type=check_update&version=1
http://dx.doi.org/10.3390/sym12030472
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 472 2 of 10

variational control problem. Consequently, the present study provides important mathematical tools
and ideas for further research in various fields.

The paper is structured as follows. Section 2 contains notations, definitions and the preliminary
results to be used in the sequel. Section 3 includes the main results of the present paper.
Concretely, a modified interval-valued variational control problem governed by first-order partial
differential equations and inequality constraints is introduced. Under invexity and pseudo-invexity
hypotheses, some connections between the original interval-valued variational control problem and
the modified interval-valued variational control problem are established. In order to illustrate the
mathematical development and its effectiveness, we present an application. Finally, Section 4 gives the
conclusions of the present study.

2. Notations and Preliminaries

In this section, we introduce the notations, working hypotheses and the preliminary results to be
used throughout the present paper. Thus, we consider:

* Ω ⊂ Rm is a compact domain and t = (tα), α = 1, m is a point in Ω;
* let X be the space of piecewise smooth state functionsx : Ω→ Rn with the norm

‖ x ‖=‖ x ‖∞ +
m

∑
α=1
‖ xα ‖∞, ∀x ∈ X ,

where xα denotes
∂x
∂tα

;

* also, denote by U the space of piecewise continuous control functions u : Ω→ Rk with the uniform
norm ‖ · ‖∞;

* for P := Ω×Rn ×Rk, we define the following continuously differentiable functions

X =
(

Xi
α

)
: P → Rnm, i = 1, n, α = 1, m,

Y =
(
Yβ

)
: P → Rq, β = 1, q;

* dv := dt1dt2 · · · dtm represents the volume element on Rm ⊃ Ω;
* we assume that the continuously differentiable functions

Xα =
(

Xi
α

)
: P → Rn, i = 1, n, α = 1, m,

fulfill the complete integrability conditions, that is,

Dζ Xi
α = DαXi

ζ , α, ζ = 1, m, α 6= ζ, i = 1, n,

where Dζ is the total derivative operator;
* for w =

(
w1, ..., wp

)
, l =

(
l1, ..., lp

)
in Rp, the following convention will be used throughout

the paper:
w = l ⇔ wi = li, w ≤ l ⇔ wi ≤ li,

w < l ⇔ wi < li, w � l ⇔ w ≤ l, w 6= l, i = 1, p.

In the following, in order to formulate and prove the main results included in this paper,
we present the invexity and pseudo-invexity associated with a multiple integral functional.

Consider a continuously differentiable function

h : J1(Rm,Rn)×Rk → R, h = h (t, x(t), xα(t), u(t)) ,
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where J1(Rm,Rn) is the first-order jet bundle associated to Rm and Rn. For x ∈ X and u ∈ U ,
we introduce the following scalar functional

H : X × U → R, H (x, u) =
∫

Ω
h (t, x(t), xα(t), u(t)) dv.

Taking into account Treanţă [12], according to Treanţă and Arana-Jiménez [13,14] and following
Mititelu and Treanţă [15], we formulate the next definitions. Further, we use the notation

(Λxu) =
(

t, x(t), u(t), x0(t), u0(t)
)

.

Definition 1. If there exist
η : Ω×Rn ×Rk ×Rn ×Rk → Rn,

η = η (Λxu) = (ηi (Λxu)) , i = 1, n,

of C1-class with η (Λx0u0) = 0, ∀t ∈ Ω, η|∂Ω = 0, and

ξ : Ω×Rn ×Rk ×Rn ×Rk → Rk,

ξ = ξ (Λxu) =
(
ξ j (Λxu)

)
, j = 1, k,

of C0-class with ξ (Λx0u0) = 0, ∀t ∈ Ω, ξ|∂Ω = 0, such that for every (x, u) ∈ X × U :

H (x, u)− H
(

x0, u0
)

≥
∫

Ω

[
hx

(
t, x0(t), x0

α(t), u0(t)
)

η + hxα

(
t, x0(t), x0

α(t), u0(t)
)

Dαη
]

dv

+
∫

Ω

[
hu

(
t, x0(t), x0

α(t), u0(t)
)

ξ
]

dv,

then H is said to be invex at
(

x0, u0
)
∈ X × U with respect to η and ξ.

Definition 2. If there exist
η : Ω×Rn ×Rk ×Rn ×Rk → Rn,

η = η (Λxu) = (ηi (Λxu)) , i = 1, n,

of C1-class with η (Λx0u0) = 0, ∀t ∈ Ω, η|∂Ω = 0, and

ξ : Ω×Rn ×Rk ×Rn ×Rk → Rk,

ξ = ξ (Λxu) =
(
ξ j (Λxu)

)
, j = 1, k,

of C0-class with ξ (Λx0u0) = 0, ∀t ∈ Ω, ξ|∂Ω = 0, such that for every (x, u) ∈ X × U :

H (x, u)− H
(

x0, u0
)
< 0

⇒
∫

Ω

[
hx

(
t, x0(t), x0

α(t), u0(t)
)

η + hxα

(
t, x0(t), x0

α(t), u0(t)
)

Dαη
]

dv

+
∫

Ω

[
hu

(
t, x0(t), x0

α(t), u0(t)
)

ξ
]

dv < 0,

or, equivalently, ∫
Ω

[
hx

(
t, x0(t), x0

α(t), u0(t)
)

η + hxα

(
t, x0(t), x0

α(t), u0(t)
)

Dαη
]

dv
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+
∫

Ω

[
hu

(
t, x0(t), x0

α(t), u0(t)
)

ξ
]

dv ≥ 0⇒ H (x, u)− H
(

x0, u0
)
≥ 0,

then H is said to be pseudo-invex at
(

x0, u0
)
∈ X × U with respect to η and ξ.

Further, let K be the set of all closed and bounded real intervals. Denote by A = [aL, aU ] a closed
and bounded real interval, where aL and aU indicate the lower and upper bounds of A, respectively.
Throughout this paper, the interval operations can be performed as follows:

(1) A = B =⇒ aL = bL and aU = bU ;
(2) if aL = aU = a then A = [a, a] = a;
(3) A + B = [aL + bL, aU + bU ];
(5) −A = −[aL, aU ] = [−aU ,−aL];
(5) A− B = [aL − bU , aU − bL];
(6) k + A = [k + aL, k + aU ], k ∈ R;
(7) kA = [kaL, kaU ], k ∈ R, k ≥ 0;
(8) kA = [kaU , kaL], k ∈ R, k < 0.

Definition 3. ([11]) Let A, B ∈ K be two closed and bounded real intervals. We write A �LU B if and only if
aL ≤ bL and aU ≤ bU .

Definition 4. ([11]) Let A, B ∈ K be two closed and bounded real intervals. We write A ≺LU B if and only if
A �LU B and A 6= B.

Definition 5. ([11]) A function f : P → K, defined by

f χxu(t) = [ f Lχxu(t), f Uχxu(t)], t ∈ Ω,

where χxu(t) := (t, x(t), u(t)), f Lχxu(t) and f Uχxu(t) are real-valued functions and satisfy the condition
f Lχxu(t) ≤ f Uχxu(t), t ∈ Ω, is said to be interval-valued function.

Now, we introduce the following class of interval-valued variational control problems, where the

objective functional F (x, u) =
∫

Ω
f χxu(t)dv, (x, u) ∈ X × U , is considered as interval-valued

(for more details, see Treanţă [11]):

(CP) min
(x,u)

{∫
Ω

f χxu(t)dv =

[∫
Ω

f Lχxu(t)dv,
∫

Ω
f Uχxu(t)dv

]}
subject to

∂xi

∂tα
(t) = Xi

αχxu(t), i = 1, n, α = 1, m, t ∈ Ω, (1)

Yχxu(t) ≤ 0, t ∈ Ω, (2)

x(t)|∂Ω = ϕ(t) = given, (3)

where f : P → K is an interval-valued function and f L, f U : P → R are continuously differentiable
real-valued functions.

Define the set D of all feasible solutions (domain) in (CP) as

D := {(x, u) |x ∈ X , u ∈ U satisfying (1), (2), (3)} .

Definition 6. ([11]) A feasible solution (x0, u0) ∈ D in interval-valued variational control problem (CP) is
called LU-optimal solution if there exists no other feasible solution (x, u) ∈ D such that F(x, u) ≺LU F(x0, u0).
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The next result formulates necessary LU-optimality conditions for a feasible point in (CP). In the
following, summation over the repeated indices is assumed.

Theorem 1. (Necessary LU-optimality conditions, [11]) Under constraint qualification assumptions,
if (x0, u0) ∈ D is an LU-optimal solution in (CP), then there exists the piecewise smooth functions
θ : Ω → R2, θ(t) = (θL(t), θU(t)), µ : Ω → Rq and λ : Ω → Rnm, with µ(t) = (µβ(t)) ∈ Rq, λ(t) =
(λα

i (t)) ∈ Rnm, such that:

θL(t)
∂ f L

∂xi χx0u0(t) + θU(t)
∂ f U

∂xi χx0u0(t) + λα
i (t)

∂Xi
α

∂xi χx0u0(t) (4)

+µβ(t)
∂Yβ

∂xi χx0u0(t) +
∂λα

i
∂tα

(t) = 0, i = 1, n,

θL(t)
∂ f L

∂uj χx0u0(t) + θU(t)
∂ f U

∂uj χx0u0(t) + λα
i (t)

∂Xi
α

∂uj χx0u0(t) (5)

+µβ(t)
∂Yβ

∂uj χx0u0(t) = 0, j = 1, k,

µβ(t)Yβχx0u0(t) = 0 (no summation), (θ(t), µ(t)) � 0, (6)

for all t ∈ Ω, except at discontinuities.

Definition 7. ([11]) The LU-optimal solution (x0, u0) ∈ D in (CP) is said to be a normal LU-optimal solution
if θ(t) > 0.

3. Main Results

This section includes the main results of the present paper. More precisely, we define a modified
interval-valued variational control problem associated with (CP) and, under some invexity and
pseudo-invexity assumptions, we establish LU-optimality conditions for the considered interval-valued
optimization problems.

For an arbitrary given feasible solution (x0, u0) ∈ D in (CP) and for η, ξ defined as in Definitions 1
and 2, we introduce a modified interval-valued variational control problem associated with (CP), as follows:

(CPη,ξ(x0, u0)) min
(x,u)

∫
Ω
( fxχx0u0(t)η + fuχx0u0(t)ξ) dv

subject to

∂xi

∂tα
(t) = Xi

αχxu(t), i = 1, n, α = 1, m, t ∈ Ω,

Yχxu(t) ≤ 0, t ∈ Ω,

x(t)|∂Ω = ϕ(t) = given,

where ∫
Ω
( fxχx0u0(t)η + fuχx0u0(t)ξ) dv

:=
[∫

Ω

(
f L
x χx0u0(t)η + f L

u χx0u0(t)ξ
)

dv,
∫

Ω

(
f U
x χx0u0(t)η + f U

u χx0u0(t)ξ
)

dv
]

.

Remark 1. We observe that the set of all feasible solutions for the considered modified interval-valued control
problem (CPη,ξ(x0, u0)) is D, as well.
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Definition 8. A point (x̂, û) ∈ D is said to be an LU-optimal solution for (CPη,ξ(x0, u0)) if∫
Ω
( fxχx0u0(t)η (Λxu)) dv +

∫
Ω
( fuχx0u0(t)ξ (Λxu)) dv

�LU

∫
Ω
( fxχx0u0(t)η (Λx̂û)) dv +

∫
Ω
( fuχx0u0(t)ξ (Λx̂û)) dv,

for every (x, u) ∈ D.

The concept of a normal LU-optimal solution associated with the modified interval-valued control
problem (CPη,ξ(x0, u0)) has the same meaning as in Definition 7.

Further, under some invexity assumptions, we establish the equivalence between LU-optimal
solutions associated with (CP) and (CPη,ξ(x0, u0)).

Theorem 2. Consider (x0, u0) ∈ D is a normal LU-optimal solution in (CP) and∫
Ω

µβ(t)Yβχxu(t)dv,
∫

Ω
λα

i (t)
(

Xi
αχxu(t)−

∂xi

∂tα
(t)
)

dv are invex at (x0, u0) ∈ D with respect to η

and ξ. Then (x0, u0) ∈ D is an LU-optimal solution in (CPη,ξ(x0, u0)).

Proof. By hypothesis, the relations in Equations (4)–(6) , with θ(t) = (1, 1) (for instance), are satisfied
for all t ∈ Ω, except at discontinuities. By reductio ad absurdum, consider that (x0, u0) ∈ D is not
an LU-optimal solution in (CPη,ξ(x0, u0)). Thus, there exists (x, u) ∈ D such that∫

Ω
( fxχx0u0(t)η (Λxu)) dv +

∫
Ω
( fuχx0u0(t)ξ (Λxu)) dv

≺LU

∫
Ω
( fxχx0u0(t)η (Λx0u0)) dv +

∫
Ω
( fuχx0u0(t)ξ (Λx0u0)) dv.

Taking into account that
η (Λx0u0) = 0, ξ (Λx0u0) = 0, ∀t ∈ Ω,

we get ∫
Ω
( fxχx0u0(t)η (Λxu)) dv +

∫
Ω
( fuχx0u0(t)ξ (Λxu)) dv ≺LU [0, 0]. (7)

Since
∫

Ω
µβ(t)Yβχxu(t)dv is invex at (x0, u0) ∈ D with respect to η and ξ, we have

∫
Ω

µβ(t)Yβχxu(t)dv−
∫

Ω
µβ(t)Yβχx0u0(t)dv

≥
∫

Ω

(
µβ(t)

(
Yβ

)
x χx0u0(t)η (Λxu)

)
dv +

∫
Ω

(
µβ(t)

(
Yβ

)
u χx0u0(t)ξ (Λxu)

)
dv.

Using the feasibility of (x0, u0) and (x, u), the previous inequality becomes∫
Ω

(
µβ(t)

(
Yβ

)
x χx0u0(t)η (Λxu)

)
dv (8)

+
∫

Ω

(
µβ(t)

(
Yβ

)
u χx0u0(t)ξ (Λxu)

)
dv ≤ 0.

Also, using the feasibility of (x0, u0) and (x, u) and, as well, the invexity of∫
Ω

λα
i (t)

(
Xi

αχxu(t)−
∂xi

∂tα
(t)
)

dv, we get

∫
Ω

[
λα

i (t)
(

Xi
αχx0u0(t)−

∂xi

∂tα
(t)
)

x
η (Λxu)

]
dv
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+
∫

Ω

[
λα

i (t)
(

Xi
αχx0u0(t)−

∂xi

∂tα
(t)
)

xα

Dαη (Λxu)

]
dv

+
∫

Ω

[
λα

i (t)
(

Xi
αχx0u0(t)−

∂xi

∂tα
(t)
)

u
ξ (Λxu)

]
dv ≤ 0,

or, equivalently, ∫
Ω

[
λα

i (t)
(

Xi
α

)
x

χx0u0(t)η (Λxu)
]

dv−
∫

Ω
[λα

i (t)Dαη (Λxu)] dv

+
∫

Ω

[
λα

i (t)
(

Xi
α

)
u

χx0u0(t)ξ (Λxu)
]

dv ≤ 0,

or (using the property η|∂Ω = 0)∫
Ω

[
λα

i (t)
(

Xi
α

)
x

χx0u0(t) + Dαλα
i (t)

]
η (Λxu) dv (9)

+
∫

Ω

[
λα

i (t)
(

Xi
α

)
u

χx0u0(t)ξ (Λxu)
]

dv ≤ 0.

Combining Equations (7)–(9), we obtain

∫
Ω

[
∑

r=L,U
f r
xχx0u0(t) + λα

i (t)
(

Xi
α

)
x

χx0u0(t)

]
η (Λxu) dv

+
∫

Ω

[
µβ(t)

(
Yβ

)
x χx0u0(t) + Dαλα

i (t)
]

η (Λxu) dv

+
∫

Ω

[
∑

r=L,U
f r
uχx0u0(t) + λα

i (t)
(

Xi
α

)
u

χx0u0(t)

]
ξ (Λxu) dv

+
∫

Ω

[
µβ(t)

(
Yβ

)
u χx0u0(t)

]
ξ (Λxu) dv < 0.

Taking into account Equations (4) and (5) (with θ(t) = (1, 1)), we obtain a contradiction.
Consequently, (x0, u0) ∈ D is an LU-optimal solution in (CPη,ξ(x0, u0)) and the proof is complete.

Illustrative application. In order to illustrate the effectiveness of the aforementioned result
(see Theorem 2), consider the following bi-dimensional control problem (in short BCP):

(BCP) min
(x,u)

[∫
Ω0,3

(u(t)− 4)2 dt1dt2,
∫

Ω0,3

u2(t)dt1dt2
]

subject to

∂x
∂t1 (t) = 3− u(t),

∂x
∂t2 (t) = 3− u(t), t ∈ Ω0,3, (10)

81− x2(t) ≤ 0, t ∈ Ω0,3, (11)

x(0) = x(0, 0) = 6, x(3) = x(3, 3) = 8, (12)

where t =
(

t1, t2
)

and Ωt0,t1 = Ω0,3 is a square fixed by the diagonally opposite points t0 =
(

t1
0, t2

0

)
=

(0, 0) and t1 =
(

t1
1, t2

1

)
= (3, 3) in R2.

The symmetry of the variables t1 and t2, generated by (10), plays a crucial role in
our investigations, specifically, in obtaining the LU-optimal solution associated with (BCP).
Moreover, we consider interest only for affine state functions and θ = (θL, θU) is a constant function
(see Theorem 1).
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In the aforementioned application, the following mathematical tools are used:

f : Ω0,3 ×R×R→ K,

Xα : Ω0,3 ×R×R→ R, α = 1, 2,

Y : Ω0,3 ×R×R→ R,

f χxu(t) =
[

f Lχxu(t), f Uχxu(t)
]
=
[
(u(t)− 4)2 , u2(t)

]
,

X1χxu(t) = X2χxu(t) = 3− u(t), Yχxu(t) = 81− x2(t),

continuously differentiable functions. The closeness condition associated to Xα, α = 1, 2, implies
∂u
∂t1 (t) =

∂u
∂t2 (t), and the condition f Lχxu(t) ≤ f Uχxu(t), t ∈ Ω0,3, involves u(t) ≥ 2, t ∈ Ω0,3.

Consider the feasible point in (BCP)

x0(t) =
1
3

(
t1 + t2

)
+ 6, u0(t) =

8
3

, t ∈ Ω0,3 (13)

and let η, ξ : Ω0,3 × (R×R)2 → R be defined as

η (Λxu) =

{
x(t)− x0(t), t ∈ Int(Ω0,3)

0, t ∈ ∂Ω0,3,
(14)

ξ (Λxu) =

{
u(t)− u0(t), t ∈ Int(Ω0,3)

0, t ∈ ∂Ω0,3.
(15)

The modified interval-valued variational control problem associated with (BCP) is formulated as

(BCPη,ξ(x0, u0)) min
(x,u)

[∫
Ω0,3

(
64
9
− 8

3
u(t)

)
dt1dt2,

∫
Ω0,3

(
16
3

u(t)− 128
9

)
dt1dt2

]
subject to (10), (11), (12).

We can notice that (BCPη,ξ(x0, u0)) has a simplified form in comparison to (BCP).
Also, the feasible point (x0, u0), defined in (13), is an LU-optimal solution for (BCP). According
to the relations (4) − (6), with θ(t) = (1, 1), it follows that λ(t) = (c1, c2), where c1, c2 are real

constants with c1 + c2 =
8
3

and µ(t) = 0, ∀t ∈ Ω0,3. Further, it is easy to check the invexity of∫
Ω

µβ(t)Yβχxu(t)dv,
∫

Ω
λα

i (t)
(

Xi
αχxu(t)−

∂xi

∂tα
(t)
)

dv at (x0, u0) with respect to η and ξ formulated

in Equations (14) and (15). Consequently, the feasible point (x0, u0), defined in (13), is an LU-optimal
solution in (BCPη,ξ(x0, u0)).

The following result provides LU-optimality conditions for the reverse situation presented in the
previous theorem.

Theorem 3. Consider (x0, u0) ∈ D is an LU-optimal solution in (CPη,ξ(x0, u0)) and the functionals∫
Ω

f rχxu(t)dv, r = L, U, are pseudo-invex at (x0, u0) ∈ D with respect to η and ξ. Then (x0, u0) ∈ D is

an LU-optimal solution in (CP).

Proof. Consider, by reductio ad absurdum, that (x0, u0) ∈ D is not an LU-optimal solution in (CP).
Therefore, there exists (x, u) ∈ D satisfying∫

Ω
f χxu(t)dv ≺LU

∫
Ω

f χx0u0(t)dv.
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Since the functionals
∫

Ω
f rχxu(t)dv, r = L, U, are pseudo-invex at (x0, u0) ∈ D with respect to η and ξ,

the previous inequality implies∫
Ω
( fxχx0u0(t)η (Λxu)) dv +

∫
Ω
( fuχx0u0(t)ξ (Λxu)) dv ≺LU [0, 0].

By using the property η (Λx0u0) = ξ (Λx0u0) = 0, we can write the above inequality as follows∫
Ω
( fxχx0u0(t)η (Λxu)) dv +

∫
Ω
( fuχx0u0(t)ξ (Λxu)) dv

≺LU

∫
Ω
( fxχx0u0(t)η (Λx0u0)) dv +

∫
Ω
( fuχx0u0(t)ξ (Λx0u0)) dv,

which contradicts the optimality of (x0, u0) ∈ D in (CPη,ξ(x0, u0)). In consequence, (x0, u0) ∈ D is
an LU-optimal solution in (CP) and the proof is complete.

4. Conclusions

Because of the high complexity of the environment, often are inaccurate and unreliable initial
data. For example, in the modeling of many processes in industry and economy in order to make
decisions, it is not always possible to have complete information about the parameters and variables
involved. Therefore, an adequate uncertainty framework is necessary to formulate the model and
new methods have to be adapted or developed to provide optimal or efficient solutions in a certain
sense. In order to tackle the uncertainty in an optimization problem, the interval-valued optimization
represents a growing branch of applied mathematics.

In this paper, we have defined a modified interval-valued variational control problem which is
easier to solve than the initial control problem. Also, for this new interval-valued variational control
problem, we have formulated and proved conditions of LU-optimality. An example of interval-valued
variational control problem has been presented to illustrate the results established in the paper.
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