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Abstract: In this paper, we initiate the notion of Ćirić type rational graphic (Υ, Λ)-contraction pair
mappings and provide some new related common fixed point results on partial b-metric spaces
endowed with a directed graph G. We also give examples to illustrate our main results. Moreover,
we present some applications on electric circuit equations and fractional differential equations.
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1. Introduction and Preliminaries

The Banach principle [1] has been improved and generalized by several researchers for
different kinds of contractions in various spaces. One of these generalizations corresponding to
an (Υ, Λ)-contraction, has been established by [2]. Recently, Ameer et al. [3] introduced common
fixed point results for generalized multivalued (α∗K, Υ, Λ)-contractions in αK-complete partial b-metric
spaces. Ameer et al. [4,5] introduced common fixed point results for generalized multivalued (Υ, Λ)-
contractions in complete metric, b-metric spaces. Ameer et al. [6] initiated the notion of rational
(Υ, Λ,<)-contractive pair of mappings (where < is a binary relation) and established new common
fixed point results for these mappings in complete metric spaces. On the other hand, Bakhtin [7]
investigated the concept of b-metric spaces. Subsequently, Czerwik [8] initiated the study of fixed point
results in b-metric spaces and proved an analogue of Banach’s fixed point theorem. Matthews [9] gave
the concept of a partial metric space and proved and Banach fixed point result. Shukla [10] extended
the notion of a partial metric to a partial b-metric. Afterwards, numerous research articles have been
dealt with fixed point theorems for various classes of single-valued and multi-valued operators in
b-metric and partial b-metric spaces (see, for example, [3,11–26]). In this article, we shall investigate
fixed points of Ćirić type rational graphic (Υ, Λ)-contraction pair mappings on partial b-metric spaces
endowed with a directed graph G.

Bakhtin [7] and Czerwik [8] generalized the notion of a metric as follows:

Definition 1 ([7,8]). Let M be a nonempty set and s ≥ 1 be a real number. A mapping d : M×M→ [0, ∞)

is said to be a b-metric if for all ζ1, ζ2, σ ∈ M,

(b1) d(ζ1, ζ2) = 0 if and only if ζ1 = ζ2;
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(b2) d(ζ1, ζ2) = d(ζ2, ζ1);
(b3) d(ζ1, ζ2) ≤ s[d(ζ1, σ) + d(σ, ζ2)].

The pair (M, d) is called a b-metric space (with coefficient s).

Matthews [9] generalized the notion of a metric as follows:

Definition 2 ([9]). Let M be a nonempty set. A mapping P : M×M→ [0, ∞) is said to be a partial metric if
for all ζ1, ζ2, σ ∈ M, P satisfies following axioms;

(P1) P(ζ1, ζ1) = P(ζ1, ζ2) = P(ζ2, ζ2) if and only if ζ1 = ζ2;
(P2) P(ζ1, ζ1) ≤ P(ζ1, ζ2);
(P3) P(ζ1, ζ2) = P(ζ2, ζ1);
(P4) P(ζ1, ζ2) ≤ P(ζ1, σ) + P(σ, ζ2)− P(σ, σ).

The pair (M, P) is called a partial metric space.

Shukla [10] generalized the notion of a partial metric as follows:

Definition 3 ([10]). Let M be a nonempty set and s ≥ 1 a real number. A mapping Pb : M×M→ [0, ∞) is
said to be a partial b-metric if for all ζ1, ζ2, σ ∈ M, Pb satisfies the following axioms:

(P1) Pb(ζ1, ζ1) = Pb(ζ1, ζ2) = Pb(ζ2, ζ2) if and only if ζ1 = ζ2;
(P2) Pb(ζ1, ζ1) ≤ Pb(ζ1, ζ2);
(P3) Pb(ζ1, ζ2) = Pb(ζ2, ζ1);
(P4) Pb(ζ1, ζ2) ≤ s[Pb(ζ1, σ) + Pb(σ, ζ2)]− Pb(σ, σ).

The pair (M, Pb) is called a partial b-metric space (with coefficient s).

Remark 1. The self distance Pb(ζ1, ζ1), referring to the size or weight of ζ1, is a feature used to describe the
amount of information contained in M.

Remark 2. Obviously, every partial metric space is a partial b-metric space with coefficient s = 1, and every
b-metric space is a partial b-metric space with zero self-distance. However, the converse of this fact need not hold.

Definition 4 ([10]). Let (M, Pb) be a partial b-metric space with coefficient s ≥ 1. Let {ζn} be a sequence in
M and ζ1 ∈ M. Then

(i) {ζn} is said to be convergent to ζ∗ if limn→∞ Pb(ζn, ζ∗) = Pb(ζ
∗, ζ∗).

(ii) {ζn} is said to be Cauchy sequence if limn,m→∞ Pb(ζn, ζm) exists and is finite.
(iii) (M, Pb) is said to be complete if every Cauchy sequence is convergent in M.

Lemma 1 ([10]). Let (ω, Pb, K) be a partial b-metric space.

(1) Every Cauchy sequence in (ω, dPb) is also Cauchy in (ω, Pb, K) and vice versa;
(2) (ω, Pb, K) is complete if and only if (ω, dPb) is a complete metric space;
(3) The sequence {ζn} is convergent to some v ∈ ω if and only if

lim
n→∞

Pb(ζn, v) = Pb(v, v) = lim
n,m→∞

Pb(ζn, ζm).

Denote a metric space by MS.
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Definition 5 ([27]). Let (M, d) be a MS. T : M → M is called an F-contraction self-mapping, if there exist
τ > 0 and F ∈ z so that

∀ζ, η ∈ M, d(T (ζ) , T (η)) > 0⇒ τ + F (d (T (ζ) , T (η))) ≤ F (d (ζ, η)) ,

where z is the family of functions F : (0, ∞)→ (−∞, ∞) such that

(F1) F is strictly increasing;
(F2) For each sequence {αn}∞

n=1 ⊂ (0, ∞),

lim
n→∞

F (αn) = −∞⇐⇒ lim
n→∞

αn = 0;

(F3) There exists γ ∈ (0, 1) such that limt−→0+ tγF(t) = 0.

Theorem 1 ([27]). Let (M, d) be a complete MS and T : M → M be an F- contraction mapping. Then T
possesses a unique fixed point ζ∗ ∈ M.

Piri and Kumam [28] modified the set of functions F ∈ z.

Definition 6 ([28]). Let (M, d) be a MS. T : M→ M is said to be a F-contraction self-mapping if there exist
F ∈ F and τ > 0 such that

∀ζ, η ∈ M, d(T (ζ) , T (η)) > 0⇒ τ + F (d (T (ζ) , T (η))) ≤ F (d (ζ, η)) ,

where F is the set of functions F : (0, ∞)→ (−∞, ∞) satisfying the following conditions:

(F1) F is strictly increasing, i.e., for all ζ, η ∈ R+ with ζ < η, F(ζ) < F(η);
(F2) For each positive real sequence {αn}∞

n=1,

lim
n→∞

F (αn) = −∞ if and only if lim
n→∞

αn = 0;

(F3) F is continuous.
On the other hand, recently Jleli and Samet [29,30] initiated the concept of θ-contractions.

Definition 7. Let (M, d) be a MS. A mapping T : M→ M is said to be a θ-contraction, if there exist θ ∈ Θ
and a real constant k ∈ (0, 1) such that

ζ, η ∈ M, d(T (ζ) , T (η)) 6= 0 =⇒ θ (d(T (ζ) , T (η))) ≤ [θ (d(ζ, η)]k ,

where Θ is the set of functions θ : (0, ∞) −→ (1, ∞) such that:
(Θ1) θ is non-decreasing;
(Θ2) for each positive sequence {tn},

lim
n→∞

θ(tn) = 1 if and only if lim
n→∞

tn = 0+;

(Θ3) there exist r ∈ (0, 1) and ` ∈ (0, ∞] such that limt−→0+
θ(t)−1

tr = `;
(Θ4) θ is continuous.

The main result of Jleli and Samet [29] is

Theorem 2 ([29]). Let (M, d) be a complete MS. Let T : M → M be a θ-contraction mapping. Then there
exists a unique fixed point of T.
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As in [2], the family of functions θ : (0, ∞) −→ (1, ∞) verifies:
(Θ1)′ θ is non-decreasing;
(Θ2)′ for each positive sequence {tn} , inftn∈(0,∞) θ(tn) = 1;
(Θ3)′ θ is continuous, is denoted by Ξ.

Theorem 3 ([2]). Let T : ω → ω be a self-mapping on the complete MS (ω, d). The following statements
are equivalent:
(i) T is a θ-contraction mapping with θ ∈ Ξ;
(ii) T is an F-contraction mapping with F ∈ F .

As in [31], a function Υ : (0, ∞) −→ (0, ∞) satisfies:
(i) Υ is monotone increasing, that is, t1 < t2 =⇒ Υ (t1) ≤ Υ (t2);
(ii) limn→∞ Υn(t) = 0 for all t> 0, where Υn stands for the nth iterate of Υ, is called a comparison
function. Clearly, if Υ is a comparison function, then Υ(t) < t for each t > 0.

Lemma 2 ([2]). Let Λ : (0, ∞) −→ (0, ∞) be a continuous non-decreasing function such that
infT∈(0,∞) φ(T) = 0. Let {tk}k be a positive sequence. So

lim
k→∞

Λ(tk) = 0 if and only if lim
k→∞

tk = 0.

Example 1 ([31]). The following functions Υ : (0, ∞) −→ (0, ∞) are comparison functions:
(i) Υ(t) = at with 0 < a < 1, for each t > 0;
(ii) Υ(t) = t

t+1 , for each t > 0.

Denote by Φ the set of functions Λ : (0, ∞) −→ (0, ∞) verifying:
(Φ1) Λ is non-decreasing;
(Φ2) for each positive sequence {tn},

lim
n→∞

Λ(tn) = 0 if and only if lim
n→∞

tn = 0;

(Φ3) Λ is continuous. Liu et al. [2] initiated the concept of (Υ, Λ)-Suzuki contractions.

Definition 8. Let (M, d) be a MS. A mapping T : M→ M is said to be a (Υ, Λ)-Suzuki contraction, if there
exist comparison functions Υ and Λ ∈ Φ such that, for all ζ, η ∈ M with T (ζ) 6= T (η),

1
2

d (ζ, T (ζ)) < d (ζ, η) =⇒ Λ (d (T (ζ) , T (η))) ≤ Υ [Λ (U (ζ, η))] ,

where

U (ζ, η) = max
{

d (ζ, η) , d (ζ, T (ζ)) , d (η, T (η)) ,
d (ζ, T (η)) + d (η, T (ζ))

2

}
.

Moreover, let (M, Pb) be a partial metric space, and ∆ denotes the diagonal of M×M. Let G be a
directed graph, which has no parallel edges such that the set V(G) of its vertices coincides with M,
and E(G) ⊆ M×M contains all loops (i.e., ∆ ⊆ E(G)). Hence, G is identify by the pair (V(G), E(G)).
Denote by G−1 the graph obtained from G by reversing the direction of its edges. That is,

E
(

G−1
)
= {(ζ, η) ∈ M×M : (η, ζ) ∈ E(G)} .
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It is more adaptable to treat
∼
G a directed graph for which the set of its edges is symmetric. Under

this convention, we have that

E(
∼
G) = E(G) ∪ E

(
G−1

)
.

In V(G), we define the relation R in the following way: for ζ, η ∈ V(G), we have ζRη if and only if
there is a path in G from ζ to η. If G is such that E(G) is symmetric, then for ζ ∈ V(G), the equivalence
class [ζ]∼

G
in V(G) defined by the relation R is V(Gζ). Recall that if φ:M→ M is an operator; then, by

Fix(φ) we denote the set of all fixed points of φ. Let

Mφ := {ζ ∈ M} : (ζ, φ (ζ)) ∈ E(G).

Property: A graph is said to satisfy property (E∗) if for any sequence {ζn} in V(G) with ζn → ζ

as n → ∞, (ζn, ζn+1) ∈ E(G) for n ∈ N implies that there is a subsequence
{

ζn(k)

}
of {ζn} with an

edge between ζn(k) and ζ for k ∈ N. Throughout this paper, G is a weighted graph such that the weight
of each vertex ζ is Pb (ζ, η), and the weight of each edge (ζ, η) is Pb (ζ, η). Since (M, Pb) is a partial
b-metric space, the weight assigned to each vertex ζ need not to be zero, and whenever a zero weight
is assigned to some edge (ζ, η), it reduces to a loop (ζ, ζ).

2. Main Results

We start with the following definition.

Definition 9. Let (M, Pb) be a partial b-metric space endowed with a directed graph G, s > 1 and φ, ψ be
self-mappings of M. We say that the pair (φ, ψ) is a Ćirić type rational graphic (Υ, Λ)-contraction pair, if:
(1) For every vertex u ∈ G, we have (u, φ (u)), (u, ψ (u)) ∈ E(G);
(2) There exists a comparison function Υ and Λ ∈ Φ such that for all ζ1, ζ2 ∈ M, with (ζ1, ζ2) ∈ E(G) and
φ (ζ1) 6= ψ (ζ2) , we have

Λ (sPb (φ (ζ1) , ψ (ζ2))) ≤ Υ [Λ (As (ζ1, ζ2))] , (1)

where,

As (ζ1, ζ2) = max


Pb (ζ1, ζ2) , Pb (ζ1, φ (ζ1)) ,

Pb (ζ2, ψ (ζ2)) , Pb(ζ1,ψ(ζ2))+Pb(φ(ζ1),ζ2)
2s2 ,

Pb(ψ(ζ2),ζ2)(1+Pb(ζ1,φ(ζ1)))
1+Pb(ζ1,ζ2)

.

 .

Remark 3. If φ = ψ, then we say that φ is a Ćirić type rational graphic (Υ, Λ)-contraction.

Our first main result is the following.

Theorem 4. Let (M, Pb) be a complete partial b-metric space endowed with a directed graph G. Let φ, ψ :
M→ M be maps such that (φ, ψ) is a Ćirić type rational graphic (Υ, Λ)-contraction pair. If Υ is continuous,
then the following assertions hold:
(a) Fix(φ) 6= ∅ or Fix(ψ) 6= ∅ if and only if Fix(φ) ∩ Fix(ψ) 6= ∅;
(b) If ζ∗ ∈ Fix(φ) ∩ Fix(ψ), then the weight assigned to the vertex ζ∗ is 0;
(c) Fix(φ) ∩ Fix(ψ) 6= ∅, provided that G satisfies property (E∗);
(d) Fix(φ) ∩ Fix(ψ) is a complete set if and only if Fix(φ) ∩ Fix(ψ) is a singleton set.

Proof. (a) Let Fix(φ) 6= ∅, so there exists ζ∗ ∈ Fix(φ). Then there is an edge between ζ∗ and φ (ζ∗),
so (ζ∗, φ (ζ∗)) ∈ E(G). Now, we shall prove that ζ∗ ∈ Fix(ψ); that is, the weight assigned to the edge
(ζ∗, ψ (ζ∗)) is zero. Assume, on the contrary, that a non zero weight is assigned to the edge (ζ∗, ψ (ζ∗)).
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As (ζ∗, ψ (ζ∗)) ∈ E(G) and (φ, ψ) is a Ćirić type rational graphic (Υ, Λ)-contraction pair, from (1), we
have

Λ (Pb (ζ
∗, ψ (ζ∗))) ≤ Λ (sPb (φ (ζ∗) , ψ (ζ∗)))

≤ Υ [Λ (As (ζ
∗, ζ∗))] ,

where

As (ζ
∗, ζ∗) = max


Pb (ζ

∗, ζ∗) , Pb (ζ
∗, φ (ζ∗)) ,

Pb (ζ
∗, ψ (ζ∗)) , Pb(ζ

∗ ,ψ(ζ∗))+Pb(ζ
∗ ,φ(ζ∗))

2s2 ,
Pb(ζ

∗ ,ψ(ζ∗))(1+Pb(ζ
∗ ,φ(ζ∗)))

1+Pb(ζ∗ ,ζ∗)


= max


Pb (ζ

∗, ζ∗) , Pb (ζ
∗, φ (ζ∗)) ,

Pb (ζ
∗, ψ (ζ∗)) , Pb(ζ

∗ ,ψ(ζ∗))+Pb(ζ
∗ ,φ(ζ∗))

2s2 ,
Pb(ζ

∗ ,ψ(ζ∗))(1+Pb(ζ
∗ ,φ(ζ∗)))

1+Pb(ζ∗ ,ζ∗)


= Pb (ζ

∗, φ (ζ∗)) .

Thus,
Λ (Pb (ζ

∗, ψ (ζ∗))) ≤≤ Υ [Λ (Pb (ζ
∗, φ (ζ∗)))] < Λ (Pb (ζ

∗, φ (ζ∗))) .

It is a contradiction. Hence, the weight assigned to the edge (ζ∗, ψ (ζ∗)) is zero; that is, ζ∗ =

ψ (ζ∗) . Thus,
ζ∗ ∈ Fix(φ) ∩ Fix(ψ),

Therefore,
Fix(φ) ∩ Fix(ψ) 6= ∅.

Conversely, let Fix(φ) ∩ Fix(ψ) 6= ∅. So there exists ζ∗ ∈ M such that ζ∗ ∈ Fix(φ) ∩ Fix(ψ), and
then ζ∗ ∈ Fix(φ) and ζ∗ ∈ Fix(ψ). Thus, the proof of (a) is ended.

(b) Let ζ∗ ∈ Fix(φ) ∩ Fix(ψ). Suppose on the contrary that the weight assigned to the vertex ζ∗ is
nonzero. As (ζ∗, ζ∗) ∈ E(G) and (φ, ψ) is a Ćirić type rational graphic (Υ, Λ)-contraction pair, we get

Λ (Pb (ζ
∗, ζ∗)) ≤ Λ (sPb (φ (ζ∗) , ψ (ζ∗)))

≤ Υ [Λ (As (ζ
∗, ζ∗))] ,

where

As (ζ
∗, ζ∗) = max


Pb (ζ

∗, ζ∗) , Pb (ζ
∗, φ (ζ∗)) ,

Pb (ζ
∗, ψ (ζ∗)) , Pb(ζ

∗ ,ψ(ζ∗))+Pb(ζ
∗ ,φ(ζ∗))

2s2 ,
Pb(ζ

∗ ,ψ(ζ∗))(1+Pb(ζ
∗ ,φ(ζ∗)))

1+Pb(ζ∗ ,ζ∗)


= max


Pb (ζ

∗, ζ∗) , Pb (ζ
∗, ζ∗) ,

Pb (ζ
∗, ζ∗) , Pb(ζ

∗ ,ζ∗)+Pb(ζ
∗ ,ζ∗)

2s2 ,
Pb(ζ

∗ ,ζ∗)(1+Pb(ζ
∗ ,ζ∗))

1+Pb(ζ∗ ,ζ∗)


= Pb (ζ

∗, ζ∗) .

It implies that
Λ (Pb (ζ

∗, ζ∗)) ≤ Υ [Λ (Pb (ζ
∗, ζ∗))] < Λ (Pb (ζ

∗, ζ∗)) ,

which is a contradiction. Therefore, the weight assigned to the edge (ζ∗, ζ∗) is zero. The proof of (b)
is completed.

(c) Let ζ0 ∈ M. If ζ∗ ∈ Fix(φ) or ζ0 ∈ Fix(ψ), then from (a) the proof is finished. Assume that
ζ0 /∈ Fix(φ); then φ (ζ0) 6= ζ0. Since there is an edge between φ (ζ0) and ζ0, that is, (ζ0, φ (ζ0)) ∈ E(G),
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this implies that there is φ (ζ0) = ζ1 ∈ M such that (ζ0, ζ1) ∈ E(G). Similarly, (ζ1, ψ (ζ1)) ∈ E(G)

implies (ζ1, ζ2) ∈ E(G). Continuing this process, we can construct the sequence {ζn} ∈ M such that
(ζn, ζn+1) ∈ E(G) is defined by

φ (ζ2n) = ζ2n+1 and ζ2n+2 = ψζ2n+1 for all n ∈ N.

If the weight assigned to the edge(ζ2m, ζ2m+1) is zero for some m ∈ N, then ζ2m = ζ2m+1 = φ (ζ2m),
which implies ζ2m ∈ Fix(φ), and from (a), ζ2m ∈ Fix(φ) ∩ Fix(ψ). Then there is nothing to prove.
Assume that the weight assigned to the edge (ζ2n, ζ2n+1) is non zero for all n ∈ N; that is, ζ2n 6= ζ2n+1

for all n ∈ N. By (1), we get

Λ (Pb (ζ2n+1, ζ2n)) ≤ Λ (sPb (ζ2n+1, ζ2n)) (2)

= Λ (sPb (φ (ζ2n) , ψ (ζ2n−1)))

≤ Υ

Λ

max


Pb (ζ2n, ζ2n−1) , Pb (ζ2n, φ (ζ2n)) ,

Pb (ζ2n−1, ψ (ζ2n−1)) ,
Pb(ζ2n ,ψ(ζ2n−1))+Pb(ζ2n−1,φ(ζ2n))

2s2 ,
Pb(ζ2n ,φ(ζ2n))(1+Pb(ζ2n−1,ψ(ζ2n−1)))

1+Pb(ζ2n ,ζ2n−1)






= Υ

Λ

max


Pb (ζ2n, ζ2n−1) , Pb (ζ2n, ζ2n+1) ,

Pb (ζ2n−1, ζ2n) , Pb(ζ2n ,ζ2n)+Pb(ζ2n−1,ζ2n+1)
2s2 ,

Pb(ζ2n ,ζ2n+1)(1+Pb(ζ2n−1,ζ2n))
1+Pb(ζ2n ,ζ2n−1)





≤ Υ

Λ

max


Pb (ζ2n, ζ2n−1) , Pb (ζ2n, ζ2n+1) ,

Pb (ζ2n−1, ζ2n) , Pb(ζ2n ,ζ2n)+Pb(ζ2n ,ζ2n+1)
2s ,

Pb(ζ2n−1,ζ2n)(1+Pb(ζ2n ,ζ2n+1))
Pb(ζ2n ,ζ2n−1)

,
Pb(ζ2n ,ζ2n+1)(1+Pb(ζ2n−1,ζ2n))

Pb(ζ2n ,ζ2n+1)






= Υ

Λ

max


Pb (ζ2n, ζ2n−1) , Pb (ζ2n, ζ2n+1) ,

Pb (ζ2n−1, ζ2n) , Pb(ζ2n ,ζ2n)+Pb(ζ2n ,ζ2n+1)
2s2 ,

Pb(ζ2n−1,ζ2n)(1+Pb(ζ2n ,ζ2n+1))
Pb(ζ2n ,ζ2n−1)





= Υ (Λ (max {Pb (ζ2n, ζ2n−1) , Pb (ζ2n, ζ2n+1)})) .

If max {Pb (ζ2n, ζ2n−1) , Pb (ζ2n, ζ2n+1)} = Pb (ζ2n, ζ2n+1); then, from (1) we have,

Λ (Pb (ζ2n+1, ζ2n)) ≤ Υ (Λ (Pb (ζ2n, ζ2n+1))) < Λ (Pb (ζ2n, ζ2n+1)) ,

which is a contradiction. Hence, max {Pb (ζ2n, ζ2n−1) , Pb (ζ2n, ζ2n+1)} = Pb (ζ2n−1, ζ2n) and

Λ (Pb (ζ2n+1, ζ2n)) ≤ Υ (Λ (Pb (ζ2n−1, ζ2n))) , for all n ∈ N. (3)

It yields that
Λ (Pb (ζ2n+1, ζ2n)) < Λ (Pb (ζ2n−1, ζ2n)) , for all n ∈ N.

Due to property (Φ1), we get

Pb (ζ2n+1, ζ2n) < Pb (ζ2n−1, ζ2n) , for all n ∈ N. (4)

Analogously, one can find that

Pb (ζ2n+2, ζ2n+1) < Pb (ζ2n, ζ2n+1) , for all n ∈ N. (5)
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The Equations (4) and (5) yield that {Pb (ζ2n+1, ζ2n)} is a decreasing sequence. From (5), we have

Λ (Pb (ζ2n, ζ2n+1)) ≤ Υ (Λ (Pb (ζ2n, ζ2n+1))) ≤ Υ2 (Λ (Pb (ζ2n−1, ζ2n))) (6)

≤ ... ≤ Υ2n (Λ (Pb (ζ0, ζ1))) .

Similarly, one gets

Λ (Pb (ζ2n+1, ζ2n+2)) ≤ Υ (Λ (Pb (ζ2n+1, ζ2n+2))) ≤ Υ2 (Λ (Pb (ζ2n, ζ2n+1))) (7)

≤ ... ≤ Υ2n+1 (Λ (Pb (ζ0, ζ1))) .

Letting n −→ ∞ in (6) and (7), we get

0 ≤ lim
n−→∞

Λ (Pb (ζn, ζn+1)) ≤ lim
n−→∞

Υn (Λ (Pb (ζ0, ζ1))) = 0;

that is,
lim

n−→∞
Λ (Pb (ζn, ζn+1)) = 0.

From (Φ2) and Lemma 2, we get

lim
n−→∞

Pb (ζn, ζn+1) = 0. (8)

Further, from (Pb2) we have
lim

n−→∞
Pb (ζn, ζn) = 0. (9)

We will prove that {ζn} is Pb-Cauchy. We argue by contradiction. Assume that there exist ε > 0

and a sequence
{

ĥn

}∞

n=1
and { ̂n}∞

n=1 of natural numbers such for all n ∈ N, ĥn > ̂n > n with

Pb

(
ζ ĥ(n), ζ ̂(n)

)
≥ ε, Pb

(
ζ ĥ(n), ζ ̂(n)−1

)
< ε. Therefore,

ε ≤ Pb

(
ζ ĥ(n), ζ ̂(n)

)
≤ s

[
Pb

(
ζ ĥ(n), ζ ̂(n)−1

)
+ Pb

(
ζ ̂(n)−1, ζ ̂(n)

)]
− Pb(ζ ̂(n)−1, ζ ̂(n)−1)

≤ s
[

Pb

(
ζ ĥ(n), ζ ̂(n)−1

)
+ Pb

(
ζ ̂(n)−1, ζ ̂(n)

)]
< sε + sPb

(
ζ ̂(n)−1, ζ ̂(n)

)
. (10)

Letting n→ ∞ in (10), we get

ε ≤ lim
n→∞

Pb

(
ζ ĥ(n), ζ ̂(n)

)
< sε. (11)

From triangular inequality, we have

Pb

(
ζ ĥ(n), ζ ̂(n)

)
≤ s[Pb

(
ζ ĥ(n), ζ ĥ(n)+1

)
+ Pb

(
ζ ĥ(n)+1, ζ ̂(n)

)
]− Pb

(
ζ ĥ(n)+1, ζ ĥ(n)+1

)
(12)

≤ s[Pb

(
ζ ĥ(n), ζ ĥ(n)+1

)
+ Pb

(
ζ ĥ(n)+1, ζ ̂(n)

)
],

and

Pb

(
ζ ĥ(n)+1, ζ ̂(n)

)
≤ s[Pb

(
ζ ĥ(n), ζ ĥ(n)+1

)
+ Pb

(
ζ ĥ(n), ζ ̂(n)

)
]− Pb

(
ζ ĥ(n), ζ ĥ(n)

)
(13)

≤ s[Pb

(
ζ ĥ(n), ζ ĥ(n)+1

)
+ Pb

(
ζ ĥ(n), ζ ̂(n)

)
].
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By taking upper limit as n→ ∞ in (12) and applying (8) together with (11),

ε ≤ lim
n→∞

sup Pb

(
ζ ĥ(n), ζ ̂(n)

)
≤ s

(
lim

n→∞
sup Pb

(
ζ ĥ(n)+1, ζ ̂(n)

))
.

Again, by taking the upper limit as n→ ∞ in (13), we get

ε

s
< lim

n→∞
sup Pb

(
ζ ĥ(n)+1, ζ ̂(n)

)
≤ s

(
lim

n→∞
sup Pb

(
ζ ĥ(n), ζ ̂(n)

))
≤ s2ε.

Thus
ε

s
≤ lim

n→∞
sup Pb

(
ζ ĥ(n)+1, ζ ̂(n)

)
≤ s2ε. (14)

Similarly,
ε

s
≤ lim

n→∞
sup Pb

(
ζ ĥ(n), ζ ̂(n)+1

)
≤ s2ε. (15)

By triangular inequality, we have

Pb

(
ζ ĥ(n)+1, ζ ̂(n)

)
≤ s[Pb

(
ζ ĥ(n)+1, ζ ̂(n)+1

)
+ Pb

(
ζ ̂(n)+1, ζ ̂(n)

)
]− Pb

(
ζ ̂(n)+1, ζ ̂(n)+1

)
(16)

≤ s[Pb

(
ζ ĥ(n)+1, ζ ̂(n)+1

)
+ Pb

(
ζ ̂(n)+1, ζ ̂(n)

)
].

Letting n→ ∞ in (16) and using the inequalities (8) and (14), we get

ε

s2 ≤ lim
k→∞

sup Pb

(
ζ ĥ(n)+1, ζ ̂(n)+1

)
. (17)

Following the above process, we find

lim
n→∞

sup Pb

(
ζ ĥ(n)+1, ζ ̂(n)+1

)
≤ s3ε. (18)

From (17) and (18), we get

ε

s2 ≤ lim
n→∞

sup Pb

(
ζ ĥ(n)+1, ζ ̂(n)+1

)
≤ s3ε. (19)

From (8) and (11), we can choose a positive integer n0 ≥ 1 such that for all n ≥ n0, from (1), we get

0 < Λ
(

sPb

(
ζ ĥ(n)+1, ζ ̂(n)

))
≤ Λ

(
sPb

(
φ
(

ζ ĥ(n)

)
, ψ
(

ζ ̂(n)−1

)))
≤ Υ

(
Λ
(

APb

(
ζ ĥ(n), ζ ̂(n)−1

)))
, for all n ≥ n0,
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where

APb

(
ζ ĥ(n), ζ ̂(n)−1

)
= max



Pb

(
ζ ĥ(n), ζ ̂(n)−1

)
, Pb

(
ζ ĥ(n), ψ

(
ζ ĥ(n)

))
,

Pb

(
ζ

̂(n)−1 , φ
(

ζ
̂(n)−1

))
,

Pb

(
ζ ĥ(n),φ

(
ζ

̂(n)−1

))
+Pb

(
ζ

̂(n)−1
,ψ
(

ζ ĥ(n)

))
2s2 ,

Pb(ψ(ζ ̂(n)−1),ζ ̂(n)−1)
(

1+Pb

(
ζ ĥ(n),φ

(
ζ ĥ(n)

)))
1+Pb

(
ζ ĥ(n),ζ ̂(n)−1

)



≤ max



Pb

(
ζ ĥ(n), ζ ̂(n)−1

)
, Pb

(
ζ ĥ(n), ζ ĥ(n)+1

)
,

Pb

(
ζ

̂(n)−1 , ζ
̂(n)

)
,

Pb

(
ζ ĥ(n),ζ ̂(n)

)
+Pb

(
ζ

̂(n)−1
,ζ ĥ(n)+1

)
2s2 ,

Pb(ζ ̂(n),ζ ̂(n)−1)
(

1+Pb

(
ζ ĥ(n),ζ ĥ(n)+1

))
1+Pb

(
ζ ĥ(n),ζ ̂(n)−1

)


.

Taking the upper limit as n→ ∞ and using (8), (11), (14) and (15), we get

ε

s
≤ lim

n→∞
sup As

(
ζ ĥ(n), ζ ̂(n)−1

)
≤ max

{
ε,

sε + s2ε

2s2

}
≤ max

{
ε,

s2ε + s2ε

2s2

}
= max

{
ε,

2s2ε

2s2

}
= max {ε, ε} = ε.

Thus,

Λ(ε) = Λ(s.
ε

s
) ≤ Λ

(
s lim

n→∞
sup Pb

(
ζ ĥ(n)+1, ζ ̂(n)

))
≤ lim

n→∞
Υ
(

Λ
(

As

(
ζ ĥ(n), ζ ̂(n)−1

)))
≤ Υ (Λ(ε)) < Λ(ε).

It is a contradiction. Therefore, {ζn} is Cauchy. Since (M, Pb, ) is a complete partial b-metric space,
by Lemma 1, (M, dPb) is a complete b-metric space. Therefore, the sequence {ζn} converges to some
ζ∗ ∈ (M, dPb). Again, by Lemma 1, there exists ζ∗ ∈ M such that

lim
n→∞

dPb (ζn, ζ∗) = 0 (20)

if and only if
lim

n→∞
Pb (ζn, ζ∗) = lim

n→∞
Pb (ζ

∗, ζ∗) = lim
n→∞

Pb (ζn, ζm) . (21)

Now, we show that ζ∗ ∈ Fix(φ), so the weight assigned to the edge (ζ∗, φ (ζ∗)) is zero. Suppose
that Pb (ζ

∗, φ (ζ∗)) > 0. If ζ2n+1 ∈ V(G), n ∈ N, then we get (ζ2n+1, ζ2n+2) = (ζ2n+1, ψ (ζ2n+1)) ∈
E(G). By property (E∗), there is a subsequence

{
ζ2n(k)+1

}
of {ζ2n+1} with an edge between ζ2n(k)+1

and ζ∗ for k ∈ N. Using (1), one gets
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Λ
(

Pb

(
φ (ζ∗) , ζ2n(k)+2

))
≤ Λ

(
sPb

(
φ (ζ∗) , ψ

(
ζ2n(k)+1

)))
(22)

≤ Υ


Λ


max



Pb

(
ζ∗, ζ2n(k)+1

)
, Pb (ζ

∗, φ (ζ∗)) ,

Pb

(
ζ2n(k)+1, ψ

(
ζ2n(k)+1

))
,

Pb(ζ∗ ,ψ(ζ2n(k)+1))+Pb(ζ2n(k)+1,φ(ζ∗))
2s2 ,

Pb(ζ
∗ ,φ(ζ∗))(1+Pb(ζ2n(k)+1,ψ(ζ2n(k)+1)))

1+Pb(ζ∗ ,ζ2n(k)+1)







= Υ


Λ


max



Pb

(
ζ∗, ζ2n(k)+1

)
, Pb (ζ

∗, φ (ζ∗)) ,

Pb

(
ζ2n(k)+1, ζ2n(k)+2

)
,

Pb(ζ∗ ,ζ2n(k)+2)+Pb(ζ2n(k)+1,φ(ζ∗))
2s2 ,

Pb(ζ
∗ ,φ(ζ∗))(1+Pb(ζ2n(k)+1,ζ2n(k)+2))

1+Pb(ζ∗ ,ζ2n(k)+1)







< Λ


max



Pb

(
ζ∗, ζ2n(k)+1

)
, Pb (ζ

∗, φ (ζ∗)) ,

Pb

(
ζ2n(k)+1, ζ2n(k)+2

)
,

Pb(ζ∗ ,ζ2n(k)+2)+Pb(ζ2n(k)+1,φ(ζ∗))
2s2 ,

Pb(ζ
∗ ,φ(ζ∗))(1+Pb(ζ2n(k)+1,ζ2n(k)+2))

1+Pb(ζ∗ ,ζ2n(k)+1)




Taking the upper limit as k→ ∞ in (22) and using the continuity of Λ, we have

Λ (Pb (φ (ζ∗) , ζ∗)) < Λ (Pb (ζ
∗, φ (ζ∗))) ,

a contradiction. Therefore, the assigned weight of the edge (ζ∗, φ (ζ∗)) is zero; that is, ζ∗ ∈ Fix (φ) .
Similarly, ζ∗ ∈ Fix (ψ). Hence, ζ∗ ∈ Fix (φ) ∩ Fix (ψ) . The proof of (c) is completed.

(d) First, we assume that Fix (φ) ∩ Fix (ψ) is complete. We shall prove that Fix (φ) ∩ Fix (ψ) is a
singleton. On the contrary, suppose that there exists ζ∗, η∗ ∈ Fix (φ) ∩ Fix (ψ) such that ζ∗ 6= η∗. As
(ζ∗, η∗) ∈ E (G) , so from (1), we have

Λ (Pb (ζ
∗, η∗)) ≤ Λ (sPb (φ (ζ∗) , ψ (η∗)))

≤ Υ

Λ

max


Pb (ζ

∗, η∗) , Pb (ζ
∗, φ (ζ∗)) ,

Pb (η
∗, ψ (η∗)) ,

Pb(ζ
∗ ,ψ(η∗))+Pb(η

∗ ,φ(ζ∗))
2s2 ,

Pb(ζ
∗ ,φ(ζ∗))(1+Pb(η

∗ ,ψ(η∗)))
1+Pb(ζ∗ ,η∗)






= Υ (Λ (Pb (ζ
∗, η∗)))

Λ (Pb (ζ
∗, η∗)) .

It is a contradiction. Thus, ζ∗ = η∗.
Conversely, assume that Fix (φ) ∩ Fix (ψ) is a singleton; then, Fix (φ) ∩ Fix (ψ) is complete.

Example 2. Let M = {1, 2, 3, 4, 5} = V (G) and Pb : M × M → [0, ∞) defined by Pb (ζ1, ζ2) =

[max {ζ1, ζ2}]2, for all ζ1, ζ2 ∈ M. Then (Pb, M) is a complete partial b-metric space with s = 2. Set

E(G) =


(1, 1) , (2, 2) , (3, 3) , (4, 4) , (5, 5) ,

(2, 1) , (4, 1) , (5, 1) , (3, 2) ,
(4, 2) , (5, 2) , (4, 3) , (5, 3) , (5, 4)

 .
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Define φ, ψ : M→ M by

φ (ζ1) =

{
1, ζ1 ∈ {1, 2, 5} ,
2, ζ1 ∈ {3, 4} .

and ψ (ζ1) =

{
1, ζ1 ∈ {1, 5} ,
2, ζ1 ∈ {2, 3, 4} .

and Λ, Υ : (0, ∞) −→ (0, ∞) , by

Λ (t) = tet, t > 0 , Υ (t) =
4t
5

, t > 0.

It is easy to show that, for every vertex u ∈ G, we have (u, φ (u)), (u, ψ (u)) ∈ E(G). Now, for all (ζ1, ζ2) ∈ M,
with ζ1 6= ζ2,

Hence, by Figure 1, (φ, ψ ) is a Ćirić type rational graphic (Υ, Λ)-contraction pair. Thus, all the conditions
of Theorem 4 are satisfied, and φ and ψ have a unique common fixed point (that is, 1). Figure 2 represents the
graph with all the possible cases.

ĆIRIĆ TYPE GRAPHIC (�;�)-CONTRACTION PAIRS OF MAPPINGS 11

It is a contradiction. Thus, �� = ��:
Conversely, assume that Fix (�) \ Fix ( ) is a singleton, then Fix (�) \ Fix ( ) is complete. �

Example 2.1. LetM = f1; 2; 3; 4; 5g = V (G) and Pb :M�M ! [0;1) de�ned by Pb (�1; �2) =
[max f�1; �2g]

2, for all �1; �2 2 M: Then (Pb;M) is a complete partial b-metric space with s = 2.
Set

E(G) =

8<: (1; 1) ; (2; 2) ; (3; 3) ; (4; 4) ; (5; 5) ;
(2; 1) ; (4; 1) ; (5; 1) ; (3; 2) ;

(4; 2) ; (5; 2) ; (4; 3) ; (5; 3) ; (5; 4)

9=; :

De�ne �;  :M !M by

� (�1) =

�
1; �1 2 f1; 2; 5g ;
2; �1 2 f3; 4g :

and  (�1) =
�
1; �1 2 f1; 5g ;
2; �1 2 f2; 3; 4g :

;

and �;� : (0;1) �! (0;1) ; by

� (t) = tet; t > 0 , �(t) =
4t

5
; t > 0.

It is easy to show that, for every vertex u 2 G, we have (u; � (u)); (u;  (u)) 2 E(G). Now, for all
(�1; �2) 2M; with �1 6= �2;

Hence, (�;  ) is a Ćiríc type rational graphic (�;�)-contraction pair. Thus, all the conditions of
Theorem 2.1 are satis�ed, and � and  have a unique common �xed point, (that is, 1). Figure 1

Figure 1. Verification of the contraction (1).
12 E. AMEER, H. AYDI, M. ARSHAD, M. DE LA SEN

represents the graph with all the possible cases.

If � =  in Theorem 2.1, we obtain the following result.

Corollary 2.1. Let (M;Pb) be a complete partial b-metric space endowed with a directed
graph G and the map � : M ! M such that � is a Ćiríc type rational graphic (�;�)-contraction.
If � is continuous, then the following assertions hold:
(a) if �� 2 Fix(�); then the weight assigned to the vertex �� is 0;
(b) Fix(�) 6= ;, provided that G satis�es property (E�);
(c) Fix(�) is a complete set if and only if Fix(�) is a singleton set.

If s = 1 in Theorem 2.1, we obtain the following result.

Theorem 2.2. Let (M;P ) be a complete partial metric space endowed with a directed graph
G. Let �;  :M !M be maps such that:
(1) for every vertex u 2 G, we have (u; � (u)); (u;  (u)) 2 E(G);
(2) there exist a comparison function � and � 2 � such that for all �1; �2 2M with (�1; �2) 2 E(G)
and � (�1) 6=  (�2) ; we have

� (P (� (�1) ;  (�2))) � � [� (A (�1; �2))] ;
where

A (�1; �2) = max

8<:
P (�1; �2) ; P (�1; � (�1)) ;

P (�2;  (�2)) ;
P (�1; (�2))+Pb(�(�1);�2)

2s2
;

P ( (�2);�2)(1+P (�1;�(�1)))
1+P (�1;�2)

:

9=; :

If � is continuous, then the following assertions hold:
(a) Fix(�) 6= ; or Fix( ) 6= ; if and only if Fix(�) \ Fix( ) 6= ;;
(b) if �� 2 Fix(�) \ Fix( ); then the weight assigned to the vertex �� is 0;
(c) Fix(�) \ Fix( ) 6= ;, provided that G satis�es the property (E�);
(d) Fix(�) \ Fix( ) is complete set if and only if Fix(�) \ Fix( ) is a singleton set.

Example 2.2. Let M = [0; 1] = V (G) and P : M �M ! [0;1) be de�ned by P (�1; �2) =
max f�1; �2g, for all �1; �2 2M: Then (P;M) is a complete partial metric space. Set

E(G) = f(�1; �2) : �1; �2 2 [0; 1]g :
De�ne �;  :M !M by

� (�1) =
�1
4
and  (�1) =

�1
5
;

Figure 2. The graph defined in Example 2.

If φ = ψ in Theorem 4, we obtain the following result.

Corollary 1. Let (M, Pb) be a complete partial b-metric space endowed with a directed graph G and the map
φ : M → M such that φ is a Ćirić type rational graphic (Υ, Λ)-contraction. If Υ is continuous, then the
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following assertions hold:
(a) If ζ∗ ∈ Fix(φ), then the weight assigned to the vertex ζ∗ is 0;
(b) Fix(φ) 6= ∅, provided that G satisfies property (E∗);
(c) Fix(φ) is a complete set if and only if Fix(φ) is a singleton set.

If s = 1 in Theorem 4, we obtain the following result.

Theorem 5. Let (M, P) be a complete partial metric space endowed with a directed graph G. Let φ, ψ : M→ M
be maps such that:
(1) For every vertex u ∈ G, we have (u, φ (u)), (u, ψ (u)) ∈ E(G);
(2) There exist a comparison function Υ and Λ ∈ Φ such that for all ζ1, ζ2 ∈ M with (ζ1, ζ2) ∈ E(G) and
φ (ζ1) 6= ψ (ζ2) , we have

Λ (P (φ (ζ1) , ψ (ζ2))) ≤ Υ [Λ (A (ζ1, ζ2))] ,

where

A (ζ1, ζ2) = max


P (ζ1, ζ2) , P (ζ1, φ (ζ1)) ,

P (ζ2, ψ (ζ2)) , P(ζ1,ψ(ζ2))+Pb(φ(ζ1),ζ2)
2s2 ,

P(ψ(ζ2),ζ2)(1+P(ζ1,φ(ζ1)))
1+P(ζ1,ζ2)

.

 .

If Υ is continuous, then the following assertions hold:
(a) Fix(φ) 6= ∅ or Fix(ψ) 6= ∅ if and only if Fix(φ) ∩ Fix(ψ) 6= ∅;
(b) If ζ∗ ∈ Fix(φ) ∩ Fix(ψ), then the weight assigned to the vertex ζ∗ is 0;
(c) Fix(φ) ∩ Fix(ψ) 6= ∅, provided that G satisfies the property (E∗);
(d) Fix(φ) ∩ Fix(ψ) is complete set if and only if Fix(φ) ∩ Fix(ψ) is a singleton set.

Example 3. Let M = [0, 1] = V (G) and P : M×M→ [0, ∞) be defined by P (ζ1, ζ2) = max {ζ1, ζ2}, for
all ζ1, ζ2 ∈ M. Then, (P, M) is a complete partial metric space. Set

E(G) = {(ζ1, ζ2) : ζ1, ζ2 ∈ [0, 1]} .

Define φ, ψ : M→ M by

φ (ζ1) =
ζ1

4
and ψ (ζ1) =

ζ1

5
,

and Λ, Υ : (0, ∞) −→ (0, ∞) , by

Λ (t) = tet, t > 0 , Υ (t) =
9t
10

, t > 0.

It is easy to show that, for every vertex u ∈ G, we have (u, φ (u)), (u, ψ (u)) ∈ E(G). Now, for all (ζ1, ζ2) ∈ M,
with ζ1 6= ζ2 6= 0,

Λ (P (φ (ζ1) , ψ (ζ2))) ≤ Υ [Λ (A (ζ1, ζ2))] .

Therefore, (φ, ψ) is a Ćirić type rational graphic (Υ, Λ)-contraction pair. Hence, the conditions of
Theorem 5 hold. Moreover, 0 is a common fixed point of φ and ψ.

3. Some Consequences

Corollary 2. Let (M, Pb) be a complete partial b-metric space (s > 1) endowed with a directed graph G. Let
φ, ψ : M→ M be maps such that:
(1) For every vertex u ∈ G, we have (u, φ (u)), (u, ψ (u)) ∈ E(G);
(2) There exist θ ∈ Ξ and k ∈ (0, 1) such that for all ζ1, ζ2 ∈ M, with (ζ1, ζ2) ∈ E(G) and φ (ζ1) 6= ψ (ζ2) ,
we have

θ (sPb (φ (ζ1) , ψ (ζ2))) ≤ [θ (As (ζ1, ζ2))]
k ,
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where

As (ζ1, ζ2) = max


Pb (ζ1, ζ2) , Pb (ζ1, φ (ζ1)) ,

Pb (ζ2, ψ (ζ2)) , Pb(ζ1,ψ(ζ2))+Pb(φ(ζ1),ζ2)
2s2 ,

Pb(ψ(ζ2),ζ2)(1+Pb(ζ1,φ(ζ1)))
1+Pb(ζ1,ζ2)

.

 .

Then the following assertions hold:
(a) Fix(φ) 6= ∅ or Fix(ψ) 6= ∅ if and only if Fix(φ) ∩ Fix(ψ) 6= ∅;
(b) If ζ∗ ∈ Fix(φ) ∩ Fix(ψ), then the weight assigned to the vertex ζ∗ is 0;
(c) Fix(φ) ∩ Fix(ψ) 6= ∅, provided that G satisfies property (E∗);
(d) Fix(φ) ∩ Fix(ψ) is a complete set if and only if Fix(φ) ∩ Fix(ψ) is a singleton set.

Proof. It suffices to take in Theorem 4, Υ (t) := (ln k) t and Λ (t) = ln (θ) (t) : (0, ∞) −→ (0, ∞) .

Corollary 3. Let (M, Pb) be a complete partial b-metric space (s > 1) endowed with a directed graph G. Let
φ, ψ : M→ M be maps such that:
(1) For every vertex u ∈ G, we have (u, φ (u)), (u, ψ (u)) ∈ E(G);
(2) There exist F ∈ F and τ > 0 such that for all (ζ1, ζ2) ∈ M with (ζ1, ζ2) ∈ E(G) and d (φ (ζ1) , ψ (ζ2)) >

0, we have
τ + F (sPb (φ (ζ1) , ψ (ζ2))) ≤ F (As (ζ1, ζ2)) ,

where

As (ζ1, ζ2) = max


Pb (ζ1, ζ2) , Pb (ζ1, φ (ζ1)) ,

Pb (ζ2, ψ (ζ2)) , Pb(ζ1,ψ(ζ2))+Pb(φ(ζ1),ζ2)
2s2 ,

Pb(ψ(ζ2),ζ2)(1+Pb(ζ1,φ(ζ1)))
1+Pb(ζ1,ζ2)

.

 .

Then the following assertions hold:
(a) Fix(φ) 6= ∅ or Fix(ψ) 6= ∅ if and only if Fix(φ) ∩ Fix(ψ) 6= ∅;
(b) If ζ∗ ∈ Fix(φ) ∩ Fix(ψ), then the weight assigned to the vertex ζ∗ is 0;
(c) Fix(φ) ∩ Fix(ψ) 6= ∅, provided that G satisfies property (E∗);
(d) Fix(φ) ∩ Fix(ψ) is a complete set if and only if Fix(φ) ∩ Fix(ψ) is a singleton set.

Proof. The result follows from Theorem 4 by taking Υ (t) = e−τt and Λ (t) = eF(t) : (0, ∞) −→
(0, ∞) .

Corollary 4. Let (M, Pb) be a complete partial b-metric space (s > 1) endowed with a directed graph G. Let
φ, ψ : M→ M be maps such that:
(1) For every vertex u ∈ G, we have (u, φ (u)), (u, ψ (u)) ∈ E(G);
(2) If for all (ζ1, ζ2) ∈ M, with (ζ1, ζ2) ∈ E(G) ,

d (φ (ζ1) , ψ (ζ2)) ≤ B (As (ζ1, ζ2)) .As (ζ1, ζ2)),

where

As (ζ1, ζ2) = max


Pb (ζ1, ζ2) , Pb (ζ1, φ (ζ1)) ,

Pb (ζ2, ψ (ζ2)) , Pb(ζ1,ψ(ζ2))+Pb(φ(ζ1),ζ2)
2s2 ,

Pb(ψ(ζ2),ζ2)(1+Pb(ζ1,φ(ζ1)))
1+Pb(ζ1,ζ2)

 ,

and B : [0, ∞)→ [0, ∞) is such that lim
r−→t+

B (r) < 1 for each t ∈ (0, ∞).

Then the following assertions hold:
(a) Fix(φ) 6= ∅ or Fix(ψ) 6= ∅ if and only if Fix(φ) ∩ Fix(ψ) 6= ∅;
(b) If ζ∗ ∈ Fix(φ) ∩ Fix(ψ), then the weight assigned to the vertex ζ∗ is 0;
(c) Fix(φ) ∩ Fix(ψ) 6= ∅, provided that G satisfies property (E∗);
(d) Fix(φ) ∩ Fix(ψ) is a complete set if and only if Fix(φ) ∩ Fix(ψ) is a singleton set.
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Proof. It follows from Theorem 4 by taking Υ (t) := B (t) t and Λ (t) = t : (0, ∞) −→ (0, ∞) .

Remark 4. Theorems 4 and 5 generalize and extend results of Liu et al. [2], Jleli and Samet [29] and
Wardowski [27] for partial b-metric spaces and partial metric spaces along with a power graphic contraction
pair, respectively.

4. Applications

4.1. Application to Electric Circuit Equations

In this section, we study the solution of the electric circuit equation (see [32]), which is in the
second-order differential equation form. The electric circuit (as in Figure 3):

14 E. AMEER, H. AYDI, M. ARSHAD, M. DE LA SEN

Proof. The result follows from Theorem 2.1 by taking �(t) = e�� t and � (t) = eF (t) :
(0;1) �! (0;1) : �

Corollary 3.3. Let (M;Pb) be a complete partial b-metric space (s > 1) endowed with a
directed graph G. Let �;  :M !M be maps such that:
(1) for every vertex u 2 G, we have (u; � (u)); (u;  (u)) 2 E(G);
(2) if for all (�1; �2) 2M; with (�1; �2) 2 E(G) ,

d (� (�1) ;  (�2)) � B (As (�1; �2)) :As (�1; �2));

where

As (�1; �2) = max

8<:
Pb (�1; �2) ; Pb (�1; � (�1)) ;

Pb (�2;  (�2)) ;
Pb(�1; (�2))+Pb(�(�1);�2)

2s2
;

Pb( (�2);�2)(1+Pb(�1;�(�1)))
1+Pb(�1;�2)

9=; ;

and B : [0;1)! [0;1) is such that lim
r�!t+

B (r) < 1 for each t 2 (0;1).
Then the following assertions hold:
(a) Fix(�) 6= ; or Fix( ) 6= ; if and only if Fix(�) \ Fix( ) 6= ;;
(b) if �� 2 Fix(�) \ Fix( ); then the weight assigned to the vertex �� is 0;
(c) Fix(�) \ Fix( ) 6= ;, provided that G satis�es property (E�);
(d) Fix(�) \ Fix( ) is a complete set if and only if Fix(�) \ Fix( ) is a singleton set.
Proof. It follows from Theorem 2.1 by taking �(t) := B (t) t and � (t) = t : (0;1) �!

(0;1) : �
Remark 3.1. Theorems 2.1 and 2.2 generalize and extend results of Liu et al. [6], Jleli and

Samet [3] and Wardowski [8] for partial b-metric spaces and partial metric spaces along with a
power graphic contraction pair, respectively.

4. Applications

4.1. Application to Electric Circuit Equations. In this section, we study the solution of
electric circuit equation (see [17]), which is in the second-order di¤erential equation form. The
electric circuit ( as in the following �gure):

contains an electromotive force E, a resistor R, an inductor L, a capacitor C, and a voltage V in
series. If the current I is the rate of change of charge q with respect to time t, we have I = dq

dt
and

(1) V = IR;

(2) V = qC;

(3) V = L
dI

dt
:

By law of Kirchho¤s voltage, the sum of these voltage drops is equal to the supplied voltage,
i.e,

IR +
q

C
+ L

dI

dt
= V (t) ,

Figure 3. Electric Circuit.

Contains an electromotive force E, a resistor R, an inductor L, a capacitor C, and a voltage V in
series. If the current I is the rate of change of charge q with respect to time t, we have I = dq

dt and

V = IR,

V = qC,

V = L
dI
dt

.

By law of Kirchhoffs voltage, the sum of these voltage drops is equal to the supplied voltage; i.e,

IR +
q
C
+ L

dI
dt

= V (t) ,

or
IR +

q
C
+ L

dI
dt

= V (t) , q (0) = 0, q′ (0) = 0. (23)

The Green function associated to (23) is given by

G(t, s) =

{
−seτ(s−t), if 0 ≤ s ≤ t ≤ 1,
−teτ(s−t), if 0 ≤ t ≤ s ≤ 1

where the constant τ > 0 is calculated in terms of R and L.
Let M = C([0, 1]) be the set of all continuous functions defined on [0, 1]. The partial b-metric Pb

on M is defined by

Pb (ζ1, ζ2) = max
0≤t≤1

|ζ1 (t)− ζ2 (t)|2 .

Moreover, we define the graph G with the partial ordered relation:

ζ1, ζ2 ∈ C([0, 1]), ζ1 ≤ ζ2 ⇔ ζ1 (t) ≤ ζ2 (t) ,

for all t ∈ [0, 1] . Let E (G) = {(ζ1, ζ2) ∈ M×M : ζ1 ≤ ζ2} . Note that (Pb, M) is a complete partial
b-metric space with coefficient s = 2, including a directed graph G. Clearly, ∆ = (M×M) ∈ E(G),
and (Pb, M, G) has property (E∗).
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Theorem 6. Let φ : C([0, 1])→ C([0, 1]) of a partial b-metric space (C([0, 1]), Pb). Suppose that the following
assumptions hold:
(1) There exists a continuous and non decreasing function K:[0, 1]×R→ R such that for all ζ1, ζ2 ∈ C([0, 1]),
with ζ1 ≤ ζ2,

|K(t, ζ1)− K(t, ζ2)| ≤ τ2e−τ
√

As(ζ1, ζ2),

where

As (ζ1, ζ2) = max


Pb (ζ1, ζ2) , Pb (ζ1, φ (ζ1)) ,

Pb (ζ2, φ (ζ2)) , Pb(ζ1,φ(ζ2))+Pb(φ(ζ1),ζ2)
2s2 ,

Pb(φ(ζ2),ζ2)(1+Pb(ζ1,φ(ζ1)))
1+Pb(ζ1,ζ2)

 ,

where t ∈ [0, 1], and τ ≥ 1,
(2) all ζ1 ∈ C([0, 1]),

ζ1 ≤
∫ 1

0
G(t, s)K(t, ζ1 (s))ds, for all t ∈ [0, 1] .

Then the problem (23) has a unique solution.

Proof. The above problem is equivalent to the integral equation:

ζ1(t) =
∫ 1

0
G(t, s)K(t, ζ1 (s))ds (24)

where t ∈ [0, 1]. Consider a mapping φ : M→ M defined by

φ (ζ1(t)) =
∫ t

0
G(t, s)K(t, ζ1 (s))ds (25)

where t ∈ [0, 1]. Then, ζ∗ is a solution of (24) if and only if ζ∗ is a fixed point of φ. From Condition (2),
it is easy to show that for every ζ1 ∈ M, we have ζ1 ≤ φ (ζ1); i.e., (u, φ (u)) ∈ E(G). It follows from
Condition (2) that Mφ = {ζ1 ∈ M : ζ1 ≤ φ (ζ1) , i.e.,(ζ1, φ (ζ1)) ∈ E(G)} 6= ∅. Let ζ1, ζ2 ∈ M; then,
from Condition (1), we have

|φ (ζ1(t))− φ (ζ2(t))| ≤
∫ t

0
G(t, s) |K(t, ζ1 (s))− K(t, ζ2 (s))| ds

≤
∫ t

0
G(t, s)τ2e−τ

√
As(ζ1, ζ2)ds

≤
∫ t

0
τ2e−τe−2τse2τs

√
As(ζ1, ζ2)G(t, s)ds

≤ τ2e−τ
√

As(ζ1, ζ2)
∫ t

0
e2τsG(t, s)ds

≤ e−τ
√

As(ζ1, ζ2)
[
e2τt (1− 2tτ + tτe−τt − e−τt)] .

Thus,

|φ (ζ1(t))− φ (ζ2(t))| e−2τt ≤ e−τ
√

As(ζ1, ζ2)
[
1− 2tτ + tτe−τt − e−τt] .

This implies that

|φ (ζ1(t))− φ (ζ2(t))| ≤ e−τ
√

As(ζ1, ζ2)
[
1− 2tτ + tτe−τt − e−τt] .
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Since 1− 2tτ + tτe−τt − e−τt ≤ 1, we get that

|φ (ζ1(t))− φ (ζ2(t))| ≤ e−τ
√

As(ζ1, ζ2).

Hence,
Pb (φ (ζ1(t)) , φ (ζ2(t))) ≤ e−2τ As(ζ1, ζ2).

Taking Λ(t) = t and Υ (t) = 2
e2τ with τ ≥ 1, one gets

Λ (sPb (φ (ζ1(t)) , φ (ζ2(t)))) = Λ (2Pb (φ (ζ1(t)) , φ (ζ2(t)))) ≤
2

e2τ
Λ (As(ζ1, ζ2))

= Υ (Λ (As(ζ1, ζ2))) ,

or
Λ (Pb (φ (ζ1(t)) , φ (ζ2(t)))) ≤ Υ (Λ (As(ζ1, ζ2))) .

Therefore, from Corollary 1 , φ has a fixed point. Consequently, the differential equation arising
in the electric circuit Equation (23) has a solution.

4.2. Application to Fractional Differential Equations

We apply the result given by Theorem 4 to study the existence of a solution for a system of
nonlinear fractional differential equations (see [33]). Let M = C ([0, 1] ,R) be the space of all continuous
functions on [0, 1]. The partial b-metric Pb on M is defined by

Pb(r, j) = max
t∈[0,1]

|r(t)− j(t)|2 , r, j ∈ χ.

Moreover, we define the graph G with the partial ordered relation:

r, j ∈ C([0, 1]), r ≤ j⇔ r(t) ≤ j(t),

for all t ∈ [0, 1] . Let E (G) = {(r, j) ∈ M×M : r ≤ j} . Note that (Pb, M) is a complete partial b-metric
space with coefficient s = 2, including a directed graph G. Clearly, ∆ = (M × M) ∈ E(G) and
(Pb, M, G) has property (E∗).

Consider the following system of fractional differential equations:{
CDαr (t) = K1(t, r(t))
CDα j (t) = K2(t, j(t))

, (26)

with boundary conditions {
r (0) = 0, Ir (1) = r′ (0)
j (0) = 0, Qj (1) = j′ (0) .

Note that CDα denotes the Caputo fractional derivative of order α, defined by{
CDαK1 (t) = 1

Γ(n−α)

∫ t
0 (t− s)n−α−1 Kn

1 (s))ds,
CDαK2 (t) = 1

Γ(n−α)

∫ t
0 (t− s)n−α−1 Kn

2 (s))ds,

where
n− 1 < α < 1 and n = [α] + 1,
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and IαK1 and IαK2 denote the Riemann–Liouville fractional integral of order α of continuous functions
K1 and K2, given by {

IαK1 (t) = 1
Γ(α)

∫ t
0 (t− s)α−1 K1(s)ds, with α > 0,

QαK2 (t) = 1
Γ(α)

∫ t
0 (t− s)α−1 K2(s)ds, with α > 0.

The system (23) can be written in the following integral form:

r (t) = 1
Γ(α)

∫ t
0 (t− s)α−1 K1(s, r(s))ds

+ 2t
Γ(α)

∫ 1
0

∫ s
0 (s− u)α−1 K1(u, r(u))duds,

j (t) = 1
Γ(α)

∫ t
0 (t− s)α−1 K2(s, j(s))ds

+ 2t
Γ(α)

∫ 1
0

∫ s
0 (s− u)α−1 K2(u, j(u))duds

Theorem 7. Assume that the following conditions hold:
(i) K1, K2 : [0, 1]×R −→ R are continuous functions;
(ii) K1 (s, .) , K2 (s, .) : R −→ R are increasing functions,
(iii) For all r, j ∈ M, with r ≤ j, we have

|K1 (s, r)− K2 (s, j)| ≤ e−τΓ (α + 1)
4

√
As (r, j),

where,

As (r, j) = max


Pb (r, j) , Pb (r, φ (r)) ,

Pb (j, φ (j)) , Pb(r,φ(j))+Pb(φ(r),j)
2s2 ,

Pb(φ(j),j)(1+Pb(r,φ(r)))
1+Pb(r,j)

 ,

(iv) There exist r0, j0 ∈ C ([0, 1] ,R) such that for all t ∈ [0, 1], we have

r0 (t) ≤ 1
Γ(α)

∫ t
0 (t− s)α−1 K1(s, r0(s))ds

+ 2t
Γ(α)

∫ 1
0

∫ s
0 (s− u)α−1 K1(u, r0(u))duds,

j0 (t) ≤ 1
Γ(α)

∫ t
0 (t− s)α−1 K2(s, j0(s))ds

+ 2t
Γ(α)

∫ 1
0

∫ s
0 (s− u)α−1 K2(u, j0(u))duds.

Then the system (23) has a solution.

Proof. Define the mappings φ, ψ : M −→ M by

φ (r (t)) = 1
Γ(α)

∫ t
0 (t− s)α−1 K1(s, r(s))ds

+ 2t
Γ(α)

∫ 1
0

∫ s
0 (s− u)α−1 K1(u, r(u))duds,

ψ (j (t)) = 1
Γ(α)

∫ t
0 (t− s)α−1 K2(s, j(s))ds

+ 2t
Γ(α)

∫ 1
0

∫ s
0 (s− u)α−1 K2(u, j(u))duds

.

Following assumptions (iii) and (iv), we have

|φ (r (t))− ψ (j (t))| =

∣∣∣∣∣∣∣∣∣∣∣

1
Γ(α)

∫ t
0 (t− s)α−1 K1(s, r(s))ds

− 1
Γ(α)

∫ t
0 (t− s)α−1 K2(s, j(s))ds

+ 2t
Γ(α)

∫ 1
0

∫ s
0 (s− u)α−1 K1(u, r(u))duds

− 2t
Γ(α)

∫ 1
0

∫ s
0 (s− u)α−1 K2(u, j(u))duds

∣∣∣∣∣∣∣∣∣∣∣
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≤
∣∣∣∣∫ t

0

1
Γ (α)

(t− s)α−1 [K1(s, r(s))− K2(s, j(s))] ds
∣∣∣∣

+

∣∣∣∣∫ 1

0

∫ s

0

2
Γ (α)

(s− u)α−1 [K1(s, r(u))− K2(u, j(u)] duds
∣∣∣∣

≤ 1
Γ (α)

.
∫ t

0
(t− s)α−1 |K1(s, r(s))− K2(s, j(s))| ds

+
2

Γ (α)
.
∫ 1

0

∫ s

0
(s− u)α−1 |K1(s, r(u))− K2(s, j(u))| duds

≤ 1
Γ (α)

e−τΓ (α + 1)
4

∫ t

0
(t− s)α−1 |r (s)− j (s)| ds

+
2

Γ (α)

e−τΓ (α + 1)
4

∫ 1

0

∫ s

0
(s− u)α−1 |r (u)− j (u)| duds

≤ 1
Γ (α)

e−τΓ (α + 1)
4

√
As (r, j).

∫ t

0
(t− s)α−1 ds +

+
2

Γ (α)

e−τΓ (α + 1)
4

.
√

As (r, j).
∫ 1

0

∫ s

0
(s− u)α−1 duds

≤
(

e−τΓ (α) .Γ (α + 1)
4Γ (α) .Γ (α + 1)

)
.
√

As (r, j) + (27)

2e−τ β (α + 1, 1)
Γ (α) .Γ (α + 1)

4Γ (α) .Γ (α + 1)
.
√

As (r, j)

≤ e−τ

4

√
As (r, j) +

e−τ

2

√
As (r, j) =

3e−τ

4

√
As (r, j) (28)

where β is the beta function. From the inequality (27), we obtain that

|φ (r (t))− ψ (j (t))| ≤ 3e−τ

4

√
As (r, j).

Hence,

Pb (φ (r (t)) , ψ (j (t))) ≤ 9e−2τ

16
As (r, j) .

This implies that

sPb (φ (r (t)) , ψ (j (t))) = 2Pb (φ (r (t)) , ψ (j (t)))

≤ 9
8e2τ

Pb (r (t) , j (t))

≤ 9
8e2τ

As (r (t) , j (t)) ,

where Λ (t) = t and Υ (t) = 9
8e2τ , τ ≥ 1. Since the above inequality holds for all r, j ∈ M with

r (t) ≤ j (t), it is true for any (r, j) ∈ E (G) . Hence, we have

Λ (sPb (φ (r (t)) , ψ (j (t)))) ≤ Υ (Λ (As (r, j))) .

Therefore, all hypotheses of Theorem 4 are satisfied. Hence, φ and ψ have a common fixed point;
that is, the system (26) has at least one solution.
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5. Conclusions

In this paper, we introduced the concept of a Ćirić type rational graphic (Υ, Λ)-contraction pair of
mappings and established some new results for such contractions in the context of complete partial
b-metric spaces endowed with a directed graph. Moreover, we give some examples in support of main
theorems. At the end, we applied our main results to provide solutions of electric circuit equations
and also of fractional differential equations. The obtained results generalize several corresponding
results in metric spaces.
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