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Abstract: Gearbox is an important structure of rotating machinery, and the accurate fault diagnosis
of gearboxes is of great significance for ensuring efficient and safe operation of rotating machinery.
Aiming at the problem that there is little common compound fault data of gearboxes, and there is a
lack of an effective diagnosis method, a gearbox fault simulation experiment platform is set up, and a
diagnosis method for the compound fault of gearboxes based on multi-feature and BP-AdaBoost is
proposed. Firstly, the vibration signals of six typical states of gearbox are obtained, and the original
signals are decomposed by empirical mode decomposition and reconstruct the new signal to achieve
the purpose of noise reduction. Then, perform the time domain analysis and wavelet packet analysis
on the reconstructed signal, extract three time domain feature parameters with higher sensitivity,
and combine them with eight frequency band energy feature parameters obtained by wavelet packet
decomposition to form the gearbox state feature vector. Finally, AdaBoost algorithm and BP neural
network are used to build the BP-AdaBoost strong classifier model, and feature vectors are input into
the model for training and verification. The results show that the proposed method can effectively
identify the gearbox failure modes, and has higher accuracy than the traditional fault diagnosis
methods, and has certain reference significance and engineering application value.
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1. Introduction

Energy consumption [1], energy saving [2,3], fault diagnosis [4], and their problem-solving method
is getting more and more attention for rotating machinery [5–7]. As a key transmission component for
adjusting speed and transmitting power, gearbox is an important component of rotating machinery [8],
which is widely used in industrial, civil and military fields, such as lathe, wind turbine, automobile,
construction machinery, helicopter, etc. [9–14]. However, the gearbox is one of the mechanical devices
with a high failure rate because of its complex structure and long-term operation in the complex
and harsh environment such as high speed and heavy load [15]. Once a fault occurs, it will lead
to unplanned downtime, huge economic losses, and even serious disaster consequences [16–19].
Therefore, it is very important to monitor the health of the gearbox and find out the faults as early as
possible so as to plan the shutdown and maintenance properly, so as to ensure the safe operation of the
mechanical equipment, improve the production efficiency, and increase the economic benefits [20,21].

At present, many scholars have been devoted to the research of gearbox fault diagnosis methods,
and have achieved certain results [22–25]. These fault diagnosis methods can be divided into two
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types: model-based and data-driven [26,27]. The model-based fault diagnosis method needs to use
the relevant professional knowledge of a mechanical failure mechanism to build a physical model.
Although the diagnosis accuracy is relatively high, the modeling is difficult and the model does not
have universality [28]. However, the data-driven fault diagnosis method does not depend on the
knowledge of the professional field, the algorithm is relatively simple and has good universality,
and has been widely used in gearbox fault diagnosis [29,30]. Among them, because the vibration
sensor is cheap and easy to install and use, the vibration signal acquisition process is simple and the
signal contains rich state information, so the data-driven fault diagnosis method based on the vibration
signal has attracted more researchers’ attention [31,32].

With the rapid development of artificial intelligence, the emergence of artificial neural network
provides a new idea for fault diagnosis. It is a new trend for the development of fault diagnosis
technology of rotating machinery to use an artificial neural network method, machine learning
algorithm, and other intelligent methods for fault pattern recognition [33]. Zhang et al. [34] proposed a
transfer learning method for fault diagnosis using artificial neural network, which can realize fault
diagnosis under different working conditions. He et al. [35] presented an approach that preprocesses
sensor signals using short-time Fourier transform (STFT). Based on a simple spectrum matrix obtained
by STFT, an optimized deep learning structure, and a large memory storage retrieval (LAMSTAR)
neural network is built to diagnose the bearing faults. Baraldi et al. [36] developed a diagnosis
system based on K-nearest neighbours classifiers, which is used to detect the degradation and fault
classification of bearings. Wu et al. [37] realized the diagnosis of bearing faults in rotating machinery
by selecting some features as the inputs of a support vector machine (SVM) classifier. In addition,
a convolutional neural network is widely used in fault diagnosis [38,39].

Gearboxes usually include gears, shafts, bearings, and other components with symmetry. Due
to the influence of manufacturing processes, lubrication conditions and long-term direct impact of
variable loads, the failure proportion of gear in various parts of a gearbox is the largest [40,41]. Single
gear may suffer from pitting, wear, and tooth breakage [42,43]. However, there may be multiple gears
that fail at the same time in the gearbox under actual circumstances, which is the compound fault of
gearbox mentioned in this paper. Although the above data-driven fault diagnosis method has made
some progress and effect, the diagnosis accuracy of the gearbox compound fault is not very high,
and there is still some room for improvement in the following aspects:

1. The vibration signal of the gearbox is a non-stationary, nonlinear signal and contains a certain
amount of noise [44]. In the process of signal processing, the traditional signal processing methods
such as Fourier transform and its improved algorithms, short-time Fourier transform, and wavelet
transform have some limitations in processing the vibration signals of the gearbox.

2. Traditional fault diagnosis methods rely on expert knowledge and experience to select feature
parameters, and mostly extract feature parameters from a single time domain, frequency-domain,
or time-frequency-domain analysis. Although some research reveals some fault features, there is
still not enough to distinguish different fault modes accurately.

3. At present, there is little research on the compound fault diagnosis of gearbox, but, in actual
situations, there may be different faults of multiple gears. Although some researchers have made
some progress in the diagnosis method of compound faults of gearboxes, the diagnosis accuracy
is not high enough, and the algorithm is relatively complex.

In the context of the above problems and research, in order to use the vibration signal of gearboxes
to diagnose the compound fault of gearboxes more effectively, this paper proposes a precise diagnosis
method of the compound fault of gearboxes based on multi-feature and BP-AdaBoost. Firstly, empirical
mode decomposition (EMD) is introduced to deal with the non-stationary and nonlinear signals in
gearbox faults, so as to achieve the purpose of noise reduction; then, time domain analysis and wavelet
packet analysis are carried out for the new fault signals after noise reduction processing. In time
domain analysis, the sensitivity analysis method can be used to screen out the time domain feature
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parameters with high sensitivity, and the band energy feature vectors can be obtained through wavelet
packet analysis. The two together constitute the state feature vectors that can effectively reflect the
running state of the gearbox; finally, AdaBoost algorithm is introduced into the BP neural network
model, and the state feature vectors are input into the constructed BP-AdaBoost fault diagnosis model,
and finally the precise diagnosis of compound fault of gearbox is realized.

The flow of the proposed method is shown in Figure 1, which includes the following steps:

1. Collect vibration signals of the gearbox under different operating conditions, decompose the
original vibration signal of gearbox by EMD, and select the appropriate intrinsic mode functions
(IMFs) to reconstruct the new signal;

2. First perform time domain analysis on the reconstructed signal, calculate time domain statistical
parameters, and select sensitive time domain feature parameters through sensitivity analysis;
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3. Then, perform wavelet packet analysis on the reconstructed signal, calculate the waveband energy
of each frequency band by wavelet packet decomposition, construct band energy feature vectors,
and finally form gearbox state feature vectors with the selected time domain feature parameters;

4. Establish the BP-AdaBoost model, select training samples and test samples, and use the training
samples to train the model;

5. Input the test samples into the trained BP-AdaBoost model to obtain the fault diagnosis results.

The main contributions of the work are summarized as follows:

1. By combining BP-AdaBoost with sensitivity analysis and wavelet packet analysis, a novel
intelligent fault diagnosis method for the compound fault of gearboxes is proposed, which can
effectively diagnose the compound fault of gearboxes.

2. In order to improve the accuracy of fault diagnosis, we improve the traditional fault diagnosis
method in three aspects. Firstly, EMD decomposition and reconstruction are used to denoise the
signal, then sensitivity analysis is used to select the time domain feature parameters with high
sensitivity and combine them with wavelet packet energy feature parameters to form the state
feature vector. Finally, BP-AdaBoost is used to build the fault diagnosis model.

3. The proposed method has certain reference significance and engineering application value for the
compound fault of gearboxes as well as other types of faults and machinery.

The rest of this paper is organized as follows. Section 2 briefly introduces the basic theory of
proposed method including EMD, time domain analysis, wavelet packet analysis, and BP-AdaBoost
algorithm. In Section 3, the effectiveness of the proposed method is verified by experiments.
Comparative experiments to verify the advantages of the proposed method are presented in Section 4.
Finally, conclusions are drawn in Section 5.

2. Basic Principle of the Proposed Method

2.1. EMD

The signal of gearbox fault is generally a non-stationary signal, so it is helpful to improve the
accuracy of fault diagnosis to adopt the appropriate method to deal with a non-stationary signal.
In the process of traditional wavelet analysis, once the wavelet function is selected, it can not be
changed according to the actual situation. From this point of view, wavelet transform is not adaptive.
Empirical mode decomposition (EMD) is completely adaptive, which does not need to determine the
decomposition basis in advance, and is suitable for processing non-stationary and nonlinear signals [45].
Therefore, the EMD method is used to decompose and reconstruct the original signal to achieve the
purpose of denoising.

The EMD method was proposed by Norden E. Huang in 1998. Now, it has been widely used in
mechanical fault diagnosis, earthquake research, and medical analysis [46]. The basic idea of EMD is
to decompose the complex signals into many simple ones for the convenience of analysis and research.
Its essence is to obtain the intrinsic mode function through the characteristic time scale of data, and then
decompose the data. The specific steps of EMD are as follows.

Step 1: determine all local extremum points of the original signal x(t), connect all maximum
points and all minimum points with cubic spline curves respectively, and get the upper and lower
envelope lines of x(t), so that all data points of the signal are between the two envelope lines.

Step 2: calculate the mean value m(t) of the upper and lower envelope, and subtract m(t) from
the original signal x(t) to get

h1(t) = x(t) −m(t). (1)

Check whether h1(t) satisfies the conditions of intrinsic mode function. If not, repeat the above
steps with h1(t) replacement x(t) until it is an intrinsic mode function, and record it as the first IMF of
the original signal.
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Step 3: after decomposing the first intrinsic mode function c1(t) from the original signal x(t),
subtract c1(t) from x(t) to get the residual value sequence r1(t)

r1(t) = x(t) − c1(t) (2)

Step 4: take r1(t) as the new signal to be processed, repeat the above steps, get n IMFs of the
original signal x(t) in turn, record it as c1(t), c2(t), · · · , cn(t), and then leave the remainder rn(t) of the
original signal.

In this way, the original signal x(t) is decomposed into the sum of several intrinsic mode functions
and a remainder:

x(t) =
n∑

i=1

ci(t)+rn(t) (3)

In order to make the final signal contain the most useful information and the least noise, n IMFs
need to be selectively utilized. Add the useful IMFs to get the final reconstruction signal y(t) as the
signal to be used, which can be expressed as

y(t) =
c∑

i=1

cc(t) (4)

2.2. Time Domain Analysis

The time domain diagram of vibration signal records the trend of signal size changing with
time in the operation of mechanical system. The time domain signal contains a large amount of
information, which is intuitive and easy to understand. It is the original basis of mechanical fault
diagnosis. However, the vibration signals collected by the gearbox test-bed are usually non-stationary
and non-periodic signals. It is difficult to see the difference between them and normal signals directly
from the time domain waveform. Therefore, it is necessary to carry out time domain statistical analysis
on the signals, calculate or estimate various time domain parameters and indexes of dynamic signals.
By studying and selecting the appropriate time domain feature parameters, we can make accurate
judgment for different types of faults.

The feature parameter extraction based on a time domain index refers to the use of the
statistical parameters of vibration signals in time domain to characterize the gearbox state information.
The advantage of time domain parameters in the field of fault identification is that they can directly
describe the gearbox state. Common time domain statistical parameters include: mean (P1), root mean
square (P2), square root amplitude (P3), absolute mean amplitude (P4), mean square (P5), maximum
(P6), minimum (P7), peak-to-peak (P8), waveform index (P9), peak index (P10), pulse index (P11),
margin index (P12), skewness index (P13), and kurtosis index (P14).

In practical application, all kinds of feature indexes have different emphasis on the expression of a
fault. Therefore, the above indexes can be used to describe the healthy state of gearbox, which can
complement each other and take sensitivity and stability into account.

In the process of time domain analysis, multiple time domain feature parameters will be extracted.
The sensitivity of the selected feature parameters to the fault determines the difficulty and accuracy of
fault diagnosis. Therefore, it is very important to select the appropriate feature parameters to form
the fault feature vector [47]. Therefore, it is necessary to analyze the sensitivity of these parameters
after extracting the time domain feature parameters, and screen out the feature parameters which can
effectively represent the state of gearbox. The calculation formula of sensitivity analysis is

u =

∣∣∣∣∣Xi−X
X

∣∣∣∣∣ (5)

where u is the sensitivity, Xi is the parameter to be analyzed, and X is the reference parameter. Usually,
the time domain feature parameters of normal state are taken as reference parameters, and the time
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domain feature parameters of fault state are taken as parameters to be analyzed. Note that sensitivity
analysis is a normalization process although it is used as a means for parameter selection.

2.3. Wavelet Packet Analysis

Wavelet transform is one of the most popular time-frequency transform methods that has the ability
to characterize signal characteristics in both time and frequency domain. At present, wavelet transform
is widely used in the field of rotating machinery fault diagnosis [48]. However, the decomposition
method adopted by wavelet decomposition has poor time resolution in the low frequency band and
poor frequency resolution in the high frequency band. In order to solve this problem, wavelet packet
analysis provides the way to solve the problem; it is the extension of wavelet analysis and is a more
precise method of signal analysis. It not only inherits the advantages of time-frequency localization of
wavelet transform, but also further decomposes the high frequency band that are not re-decomposed
by the wavelet transform, so as to improve the frequency resolution. The comparison figure of
frequency band division between wavelet decomposition and wavelet packet decomposition is shown
in Figure 2. Obviously, wavelet packet decomposition has symmetrical characteristics. S represents the
low frequency part of a vibration signal and D represents the high frequency part of a signal.
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For the key components such as gearbox, wavelet packet analysis can fully capture the useful
information in the vibration signal, which is conducive to accurate diagnosis, so wavelet packet
decomposition is more reliable and feasible. The principle of wavelet packet decomposition is
as follows.

If the original signal collected is xn
l (t) ∈ Un

l (subspace formed by orthogonal sum of wavelet
subspace and scale subspace), then xn

l (t) can be represented by wavelet packet decomposition:

xn
l (t) =

∑
l

d j,n
l un(2 jt− l) (6)

where j is scale, l is translation factor, un
(
2 j t− l) is basis function in subspace Un

l , d j,n
l is coefficient of

wavelet packet decomposition, and
{
d j+1,n

l

}
can be decomposed into

{
d j,2n

l

}
and

{
d j,2n+1

l

}
by a formula,

that is, {
d j,2n

l

}
=

∑
k
(ak−2)d j+1,n

k{
d j,2n+1

l

}
=

∑
k
(bk−2l)d j+1,n

k

(7)

where ak−2 is the scale in the decomposition process and bk−2l is the wavelet coefficient.
After the vibration signal of gearbox is decomposed by a frequency band in the above way,

each node will arrange the final result according to the frequency band, but it is difficult to
judge the operation state of gearbox intuitively through the sub-band information of wavelet
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packet decomposition, and the energy value of the vibration signal in different frequency bands
is different, which can effectively extract the information contained in each frequency band of the
signal. Therefore, the failure mode of the gearbox can be identified by calculating the energy of each
frequency band of the signal.

Suppose that the highest frequency of the vibration signal x(t) is fs. By performing wavelet
packet decomposition of J-layer on x(t), we can get 2J groups of wavelet packet coefficients, which are
ω

J
i , i = 0, 1, · · · , 2J

− 1, respectively. The corresponding frequency band of 2J groups of coefficients

is
[

i
2J fs, i+1

2J fs
]
.

According to Parseval’s theorem, the energy calculated in a time domain is consistent with that
calculated in a frequency domain, so the energy calculation formula of each frequency band is

EJ
i = ‖ω

J
i ‖

2
=

∫ +∞

−∞

∣∣∣∣ωJ
i (t)

∣∣∣∣2dt (8)

Taking EJ
i as the element can form an energy feature vector such as T =

[
EJ

0, EJ
1, · · · , EJ

2J−1

]
.

In practical applications, the energy of each node is usually normalized, that is, the proportion of the
energy of each node to the total energy is taken. Let E =

∑
i

EJ
i , and the energy feature vector can be

normalized as:
R =

1
E

[
EJ

0, EJ
1, · · · , EJ

2J−1

]
(9)

2.4. BP-AdaBoost Algorithm

A back propagation neural network (BP neural network, BPNN) has excellent nonlinear
approximation characteristics, and has been widely used in many fields, but there are also some defects,
such as being easy to fall into local minima and not being able to get the global optimal solution,
resulting in a low recognition rate of mechanical equipment failure mode. The AdaBoost algorithm is
introduced into a BP neural network model to build a BP-AdaBoost fault diagnosis model, which can
effectively improve the diagnosis accuracy of the original single BP neural network.

The AdaBoost (Adaptive Boosting) lifting method is one of the most classical methods in the
boosting algorithm family. It reduces the error rate through the adaptive learning method [49].
The main idea of the algorithm is: first, each sample is initialized to equal weight, and then iterates n
times with a weak classifier. After each iteration, the weight is updated according to the classification
results. For the failed samples, a larger weight is given, and more attention is paid to the next iteration.
Weak classifiers get a sequence of classification functions through multiple iterations. Each classification
function will give a certain weight according to the classification error, and finally combine multiple
weak classifiers to form a strong and stable classifier with small classification errors. The algorithm
flow of BP-AdaBoost is shown in Figure 3, and its main steps are as follows.Symmetry 2020, 12, x FOR PEER REVIEW 8 of 20 
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Step 1: data selection and network initialization. Select m group training samples from the sample
space and initialize the sample weight Dt(i) =1/m. According to the dimensions of sample input and
output, the structure of neural network is determined, and the weight and threshold of BP neural
network are initialized.

Step 2: weak classifier prediction. When training the t− th weak classifier, the BP neural network
is trained with the training data, and the output of the training result is predicted. The prediction
sequence g(t) and the prediction error sum et are obtained:

et =
∑

i

Dt(i) i = 1, 2, · · · , m(g(t) , y) (10)

where g(t) and y are predicted classification results and expected classification results, respectively.
Step 3: calculate the weight at of the prediction sequence according to the prediction error et.

The formula is
at =

1
2

ln
(1− et

et

)
(11)

Step 4: update the training sample weight. Adjust the weight of training samples in the next
round of training according to the prediction sequence weight at, and the adjustment formula is

Dt+1(i) =
Dt(i)

Bt
· exp[−atyigt(xi)] i = 1, 2, · · · , m (12)

where Bt is the normalization factor, the purpose is to keep the weight proportion unchanged and the
sum of the weights equal to 1.

Step 5: synthesize a strong classifier. After training T rounds, we get T groups weak classification
function f (gt, at), and combine them to get a strong classification function:

h(x) = sign

 T∑
t=1

at· f (gt, at)

 (13)

3. Experimental Verification and Analysis

In order to verify the effectiveness of the proposed method, the gearbox preset fault experiment
is specially set for data verification. A QPZZ-II rotating machinery vibration analysis and fault
diagnosis experimental platform system is adopted in the experiment, and the structural diagram
of the experimental platform is shown in Figure 4. The gearbox used in the experiment is mainly
composed of a pair of meshing gears. The big gear is the driving wheel, the number of teeth is 75,
the small gear is the driven wheel, the number of teeth is 55, and the module is 2. The speed range
of the motor is 75–1450 rpm, and the maximum workload is 5 N·m. The acquisition software of the
system can realize the signal acquisition and storage.

According to the analysis of common failure modes of gearbox, this experiment simulates six
operation states of gearbox, and the specific experimental settings are shown in Table 1.

Table 1. Gearbox preset fault experiment.

Mode Preset Fault Big Gear Small Gear Speed Workload

1 None (Healthy) Healthy Healthy

880 r/min 0.2 A

2 Tooth pitting Tooth pitting Healthy
3 Tooth wear Healthy Tooth wear
4 Broken tooth Broken tooth Healthy
5 Tooth pitting & wear Tooth pitting Tooth wear
6 Broken tooth & wear Broken tooth Tooth wear
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Figure 4. Structural diagram of the gearbox experimental platform.

During the experiment, the acceleration monitoring data in the y-direction on the load side of
a gearbox input shaft is collected by an acceleration sensor, and the sampling frequency is 5120 Hz.
The signal with a length of 5120 points each time is taken as a sample, so the time length of this signal
is 1 s, and the sample contains the state information of the gearbox within 1 s, and the rotational speed
of the gearbox is 880 rpm, so this signal can effectively contain all the information of the gearbox within
one operation cycle.

3.1. Denoising with EMD

The original signal collected is decomposed by the EMD method, and the decomposition result is
shown in Figure 5. In the figure, 12 IMFs of the signal are successively from top to bottom.Symmetry 2020, 12, x FOR PEER REVIEW 10 of 20 

 

 
Figure 5. EMD decomposition results. 

From Ref. [45], if the higher the ratio of energy of IMF obtained by EMD to that of an original 
signal, the higher the similarity between IMF and original signal, the more useful information it 
contains. 

After analysis and calculation, it can be known that, among the 12 IMFs obtained by the above 
decomposition, the first four IMFs occupy a relatively high energy of the original signal, so these four 
IMFs are selected as the IMFs of the reconstructed signals. The first four IMFs are added and 
reconstructed to obtain a new fault signal. The time domain diagram and spectrum diagram of the 
reconstructed signal are shown in Figure 6. At the same time, the time domain diagram and spectrum 
diagram of the original signal and the error diagram of the reconstructed signal and the original 
signal are made, as shown in Figures 7 and 8, respectively. 

 
Figure 6. The time domain diagram and spectrum diagram of the reconstructed signal. 

Figure 5. EMD decomposition results.



Symmetry 2020, 12, 461 10 of 19

From Ref. [45], if the higher the ratio of energy of IMF obtained by EMD to that of an original signal,
the higher the similarity between IMF and original signal, the more useful information it contains.

After analysis and calculation, it can be known that, among the 12 IMFs obtained by the above
decomposition, the first four IMFs occupy a relatively high energy of the original signal, so these
four IMFs are selected as the IMFs of the reconstructed signals. The first four IMFs are added and
reconstructed to obtain a new fault signal. The time domain diagram and spectrum diagram of the
reconstructed signal are shown in Figure 6. At the same time, the time domain diagram and spectrum
diagram of the original signal and the error diagram of the reconstructed signal and the original signal
are made, as shown in Figures 7 and 8, respectively.
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Through comparison, it can be found that the similarity between the new signal reconstructed by
the first four IMFs and the original signal is very high, which can hardly be seen by human eyes. This is
also verified in the reconstruction error diagram, which shows that the reconstructed signals retain
most of the useful fault information of the original signals, and achieve the purpose of removing noise.
Therefore, the reconstructed signal can be used as a new fault signal to extract fault feature parameters.

3.2. Time Domain Analysis of a Gearbox Vibration Signal

In order to extract fault information more comprehensively and effectively, 14 common time
domain statistical parameters are selected as the candidate parameters. Extract the time domain
feature parameters of the above new fault signals processed by the EMD method, and get the feature
parameters of normal state and five fault states, respectively, as shown in Table 2.

Table 2. Time domain statistical parameters of six states.

Parameters Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

P1 0.0121 0.0267 −0.2018 −0.0233 0.2207 0.0723
P2 4.2915 3.5691 20.0055 6.3319 15.9963 19.2551
P3 2.6146 2.0551 12.9985 4.0900 9.3023 12.3354
P4 3.1970 2.5351 15.5513 4.9034 11.5979 14.8461
P5 18.4172 12.7383 400.2220 40.0932 255.8814 370.7581
P6 21.4670 24.6709 82.7674 24.5781 60.6313 86.1785
P7 −19.4246 −29.4615 −69.0499 −33.4569 −91.3556 −80.3758
P8 40.8916 54.1324 151.8173 58.0350 151.9869 166.5542
P9 1.3424 1.4079 1.2864 1.2913 1.3792 1.2970

P10 5.0022 6.9124 4.1372 3.8816 3.7903 4.4756
P11 6.7148 9.7318 5.3222 5.0125 5.2278 5.8048
P12 8.2103 12.0045 6.3674 6.0093 6.5179 6.9863
P13 −0.0542 −0.0886 0.0576 −0.1437 −0.5402 −0.1214
P14 4.5205 8.4587 3.4973 3.7180 5.1208 3.7584

Each feature parameter can reflect certain fault information. The above 14 candidate feature
parameters reflect different fault information from different aspects, but their sensitivity to different
operating states is different. Because there is a certain correlation between the parameters, and too
many parameters will inevitably lead to a large increase in the amount of calculation due to the
“dimension effect”, it is necessary to carry out sensitivity analysis on 14 candidate feature parameters
to screen out the feature parameters with better sensitivity, which is more conducive to the recognition
of the working state of the gearbox.

Sensitivity analysis is carried out for 14 candidate feature parameters, and the analysis results are
shown in Figure 9.
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In Figure 9, each polyline represents the average sensitivity of each feature parameter in a
fault state. For the sensitivity of a feature parameter, the larger the value in a certain failure mode,
the more the feature parameter is conducive to distinguishing between normal status and failure mode.
When selecting the appropriate feature parameters, not only the ability of the feature parameters to
distinguish between normal and fault states, but also the ability of the feature parameters to identify
different fault modes.

It can be seen from Figure 9 that the first feature parameter (P1), the fifth feature parameter (P5),
and the 13th feature parameter (P13) are highly sensitive, and the differences between different fault
modes are relatively large. The ability to recognize different states of the gearbox is better. Therefore,
the three feature parameters of mean (P1), mean square (P5), and the skewness index (P13) are selected
as the time domain feature parameters of gearbox fault.

3.3. Wavelet Packet Analysis of a Gearbox Vibration Signal

Time domain indicators can characterize part of the gearbox fault information. However, using
only time domain feature parameters as feature vectors, errors in gearbox fault diagnosis results are
usually very large. Therefore, it is necessary to use the signal processing technology to analyze the
fault signal to obtain new fault feature parameters, and together with the fault feature parameters in
the time domain to form the gear box fault feature vector.

According to relevant theories and many times of practice, compared with other wavelet functions,
the wavelet basis functions based on Daubechies (db wavelet) are more suitable for analyzing the
vibration signals of gearboxes, and their performance is best when the number of wavelet n = 5.
Therefore, this paper selects Daubechies5 (called db5 wavelet) as the wavelet basis function for gearbox
signal analysis, and then uses the db5 wavelet basis to perform three-layer wavelet packet decomposition
on the data, and decomposes to obtain eight subbands. The wavelet packet decomposition tree structure
and decomposition results are shown in Figures 10 and 11, respectively.
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After the wavelet packet decomposition results are obtained, the energy of each frequency band
in six states of gearbox is calculated, and the normalized energy values of each frequency band are
used to form the energy characteristics. The frequency band energy distribution in each state is shown
in Figure 12.

As can be seen from Figure 12, under different operating conditions of the gearbox, the energy
characteristics of each frequency band of the vibration signal have significant differences, so it can
provide an effective basis for identifying the operating state of the gearbox.

Combining the eight wavelet packet energy features with the three-time domain feature parameters
obtained in the time domain analysis, the 11-dimensional gearbox state feature vector is constructed.
In this experiment, 160 sets of data are collected for each state of gearbox. Therefore, after the above
feature extraction, 160 sets of 11-dimensional gearbox state eigenvectors are obtained for each state.
Some of the state feature vector parameter values are shown in Table 3.
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Table 3. State feature vector.

Mode E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

1
0.0261 0.1276 0.1610 0.1981 0.0114 0.1179 0.1870 0.1709 0.0574 18.8602 −0.0838

···

2
0.0656 0.2726 0.1319 0.2498 0.0133 0.0535 0.1283 0.0851 −0.0250 12.5383 −0.0711

···

3
0.0247 0.0913 0.2021 0.1237 0.0052 0.1856 0.1230 0.2443 −0.1034 369.1129 −0.0236

···

4
0.0405 0.1118 0.2245 0.1474 0.0115 0.1833 0.1186 0.1623 −0.0190 36.2753 −0.1532

···

5
0.0462 0.1319 0.2056 0.2100 0.0041 0.0544 0.1395 0.2082 0.1430 255.7761 −0.5698

···

6
0.0406 0.2337 0.1185 0.1365 0.0194 0.2443 0.0696 0.1374 0.0159 352.1008 −0.0651

···

3.4. Gearbox Fault Diagnosis Based on BP-AdaBoost

Firstly, the BP-AdaBoost fault diagnosis model is established. According to the dimension of
data and the general rule of determining the number of neurons in the hidden layer, the structure of
BP neural network is 11-6-1. At the same time, considering the requirements of calculation time and
diagnosis accuracy, the number of weak classifiers is 10, and then 10 weak classifiers are used to form a
strong classifier to classify the operation state of the gearbox.

Among the 160 sets of state feature vectors of each of the above states, 100 groups are randomly
selected as training samples, and the remaining 60 groups are used as test samples. The training
samples of each mode are input into the established BP-AdaBoost fault diagnosis model in turn, and the
BP-AdaBoost model is trained. After training is completed, input the test samples and then get the test
results as shown in Figure 13. The test results are statistically calculated, and the diagnostic accuracy
of the BP-AdaBoost fault diagnosis model is calculated as shown in Table 4.
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Table 4. Statistics of diagnosis results.

Item Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Total

Test
samples 60 60 60 60 60 60 360

Correct
number 60 58 57 60 56 58 349

Accuracy 100.00% 96.67% 95.00% 100.00% 93.33% 96.67% 96.94%

From the above diagnosis results, it can be seen that, on the basis of extracting the multiple
features of the compound fault of gearboxes, the recognition accuracy of the gearbox fault mode using
BP AdaBoost fault diagnosis model is relatively high, and two groups have achieved all the correctness,
and the overall accuracy is close to 97%, which verifies the feasibility and effectiveness of the method
proposed in this paper.

4. Comparison Experiment and Discussion

In order to further verify the superiority of the proposed method in gearbox compound fault
diagnosis, comparative experiments are needed. In the first round of comparative experiments,
the original signal is not processed by the EMD method, and the time domain analysis and wavelet
packet analysis are directly performed to obtain the gearbox state feature vectors. Then, the same fault
diagnosis model is used. The comparison chart is shown in Figure 14.Symmetry 2020, 12, x FOR PEER REVIEW 16 of 20 
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Through comparative analysis, it can be clearly found that the accuracy rate of the feature
parameters extracted from the reconstructed vibration signal after the original vibration signal is
decomposed and reconstructed by EMD is significantly higher than the accuracy rate of feature
parameters extracted for fault diagnosis without EMD processing, which shows that, in the process of
processing the vibration signal of the gearbox, EMD achieves the purpose of denoising, and, at the same
time, the reconstructed signal contains as much useful information as possible, which can improve the
signal-to-noise ratio and thereby facilitate fault diagnosis.

In the second round of comparative experiments, based on the EMD decomposition of the original
vibration signal and the reconstruction signal, different feature parameters are extracted, including the
time domain feature parameters, the frequency domain feature parameters, and the frequency band
energy feature parameters of wavelet packet decomposition. These parameters are composed of 3D
time domain feature vectors, 3D frequency domain feature vectors, and 8-dimensional energy feature
vectors, respectively. Then, they are respectively input in some traditional fault diagnosis models,
such as BP neural network (BPNN) and support vector machine (SVM), the final fault diagnosis results
are summarized as shown in Table 5.

Table 5. Summary of diagnosis results.

Diagnostic Method Feature Vector Total Accuracy

BPNN Time domain feature vectors 80.28%
BPNN Frequency domain feature vectors 45.28%
BPNN Energy feature vectors 81.11%
BPNN Multi-feature vectors 89.17%
SVM Time domain feature vectors 76.11%
SVM Frequency domain feature vectors 50.28%
SVM Energy feature vectors 85.28%
SVM Multi-feature vectors 91.11%

Proposed method Multi-feature vectors 96.94%

A number of meaningful conclusions can be clearly drawn from Table 5. First of all, for the same
fault diagnosis method, the diagnosis accuracy rate is the highest when multi-feature vectors are used.
When only frequency domain feature vectors are used, the accuracy is only about 50%. This is because
the characteristic frequencies between compound faults of the gearbox are relatively close. It is difficult
to identify the compound fault mode of the gearbox based on the frequency domain characteristics.
Therefore, this paper uses a combination of sensitive time domain feature parameters and energy
feature parameters. In addition, when multi-feature vectors are used at the same time, the diagnostic
accuracy of the proposed method is higher than that of traditional fault diagnosis methods. Taking
BPNN as an example, due to the existence of local minimum points, it can not guarantee that the
network will eventually converge to the global minimum point. Therefore, the overall classification
recognition effect is relatively low, and the diagnostic accuracy of the similar compound fault mode is
the lowest. It should also be noted that the initialization of weights may affect the final convergence of
the network, resulting in some results with strong randomness, and the diagnostic results differ greatly
each time. However, BP-AdaBoost can fully take advantage of the adaptive learning method in the
AdaBoost lifting method to reduce the error rate. The strong classifier formed by integrating multiple
weak classifiers has small and stable classification errors.

5. Conclusions

In this paper, a diagnosis method for the compound fault of gearboxes based on the combination
of multi-feature vectors composed of sensitive time domain characteristic parameters and band
energy characteristics by wavelet packet decomposition and BP AdaBoost algorithm is proposed.
The following conclusions can be obtained through the experiments and simulation results. By collecting
and analyzing the vibration signal of the gearbox, the running state of the gearbox can be effectively
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monitored. Decomposing the original vibration signal of gearbox by EMD and selecting the appropriate
IMFs to reconstruct the new signal can achieve the purpose of denoising the original signal. Multiple
time domain statistical parameters are calculated from the time domain analysis. Through the
sensitivity analysis, the time-domain characteristic parameters that can effectively reflect the fault state
can be selected, so as to avoid the overlapping or interference of multiple parameters and reduce the
calculation amount. Among them, the sensitivity of mean, mean square value, and the skewness index
is higher, and the ability to identify different operation states of gearbox is better. Wavelet packet
decomposition is an effective feature extraction method of a gearbox vibration signal, which can extract
the feature information of a vibration signal in each frequency band, and the feature vector composed
of energy in each frequency band can well characterize the operation state of gearbox. The combination
of the time domain feature parameters and the frequency band energy feature is used as the state
feature vector of the gearbox, and the accuracy of diagnosis is close to 97% when it is input into the
BP-AdaBoost fault diagnosis model, which proves the effectiveness of the method proposed in this
paper. Compared with the traditional fault diagnosis methods, the advantages of the proposed method
can be found. Therefore, the proposed method has great potential for online or offline fault diagnosis
of a gearbox compound fault, which can effectively avoid serious accidents, ensure the safe operation
of equipment, and improve economic benefits. However, it should be noted that the method proposed
at present is only for the typical fault of the gear in the gearbox, but the gearbox also contains the
bearing and shaft and other components, which are likely to fail, so future work will focus on solving
the problem of compound fault diagnosis of multiple components in the gearbox.
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